Volumetric Image Visualization

Prof. Alexandre Xavier Falcão

Task 3

1 Planar reslicing (reformatting)

In lecture 7, we learned the algorithm to obtain a planar cut by aligning the normal vector \mathbf{n} with a given arbitrary vector \mathbf{n}^{\prime} and placing the cut at point p_{0} inside the scene (Figure 1). We also learn how to move the cut plane from p_{0} to p_{n-1} in order to reslice the scene into a new one with n axial slices.

Figura 1: A planar cut at point p_{0}.
In this task, the vector \mathbf{n}^{\prime} is obtained from two given points, p_{0} and p_{n-1}, in the image region. The spacement d_{z}^{\prime} between the axial slices of the new scene will depend on the number n of desired slices. Vector \mathbf{n}^{\prime} is defined as

$$
\begin{equation*}
\mathbf{n}^{\prime}=\frac{p_{n-1}-p_{0}}{\left\|p_{n-1}-p_{0}\right\|} \tag{1}
\end{equation*}
$$

For n slices, $\lambda=\frac{\left\|p_{n-1}-p_{0}\right\|}{n}$ in the ray casting algorithm. The new spacement d_{z}^{\prime} between slices will be λd_{z}.

2 Task

You must develop a C code, reslicing.c, with the following usage: reslicing P1 P2 P3 P4 P5, where

P1 is the name of the input .scn scene.
P 2 are the $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ coordinates of a point p_{0} in the scene.
P3 are the $p_{n-1}=\left(x_{n-1}, y_{n-1}, z_{n-1}\right)$ coordinates of a point p_{n-1} in the scene.
P 4 is the number n of axial slices of the new scene.
P 5 is the output .scn scene.

