Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

Planar cuts, reslicing, and interpolation

In the previous lecture, we learned that for a set P of points p_k, k ∈ [1, n], in the scene region, the intensities I(p_k) must be obtained by interpolation.

・ロト ・ 同ト ・ ヨト ・ ヨト

Planar cuts, reslicing, and interpolation

- In the previous lecture, we learned that for a set P of points p_k, k ∈ [1, n], in the scene region, the intensities I(p_k) must be obtained by interpolation.
- Today, we will learn how to create sequences of cuts (new slices) in the scene for a given viewing direction and orientation **n**', which also requires interpolation.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Planar cuts, reslicing, and interpolation

- In the previous lecture, we learned that for a set P of points p_k, k ∈ [1, n], in the scene region, the intensities I(p_k) must be obtained by interpolation.
- Today, we will learn how to create sequences of cuts (new slices) in the scene for a given viewing direction and orientation **n**', which also requires interpolation.
- We will then learn how to estimate the intensity at any point inside the scene region from the intensities of the nearby spels
 — i.e., the interpolation operation.

イロト イポト イヨト イヨト

In order to obtain a planar cut (slice) at a point p_0 inside the scene, such that \mathbf{n}' is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of \hat{J}) to the origin of the (x, y, z) coordinate system.
- Align the n vector to the desired viewing vector n' this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_0 .

In order to obtain a planar cut (slice) at a point p_0 inside the scene, such that \mathbf{n}' is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of \hat{J}) to the origin of the (x, y, z) coordinate system.
- Align the n vector to the desired viewing vector n' this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_0 .

In order to obtain a planar cut (slice) at a point p_0 inside the scene, such that \mathbf{n}' is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of \hat{J}) to the origin of the (x, y, z) coordinate system.
- Align the n vector to the desired viewing vector n' this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_0 .

In order to obtain a planar cut (slice) at a point p_0 inside the scene, such that \mathbf{n}' is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of \hat{J}) to the origin of the (x, y, z) coordinate system.
- Align the n vector to the desired viewing vector n' this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_0 .

Therefore, for every $p \in D_J$, we must apply the transformation Ψ below, being $\Psi_r = \mathbf{R}_x(-\alpha)\mathbf{R}_y(\beta)$ the alignment of **n** with **n**':

$$\begin{bmatrix} x_{p'} \\ y_{p'} \\ z_{p'} \\ 1 \end{bmatrix} = \mathbf{T}(+x_{p_0},+y_{p_0},+z_{p_0})\Psi_r\mathbf{T}(\frac{-d}{2},\frac{-d}{2},\frac{d}{2})\begin{bmatrix} u_p \\ v_p \\ \frac{-d}{2} \\ 1 \end{bmatrix}$$

- The coordinates $p' = (x_{p'}, y_{p'}, z_{p'})$ may not be integers, which requires interpolation to assign $J(p) \leftarrow I(p')$.
- For reslicing a scene from p_0 with spacement $\lambda > 0$ between slices, one can move the cut plane to $p_k = p_{k-1} + \lambda \mathbf{n}'$, k = 1, 2, ..., n 1.

イロト イポト イヨト イヨト

Input: Scene $\hat{l} = (D_I, I)$, p_0 , and $\mathbf{n'}$. Output: Image $\hat{J} = (D_J, J)$ of the slice.

- 1 Compute Ψ and Ψ_r from p_0 , $\mathbf{n} = (0, 0, 1, 0)$, and \mathbf{n}' .
- 2 For each $p \in D_J$ do

3
$$p' \leftarrow \Psi(p)$$
.

4 If
$$(\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in D_I$$
 then

5 $J(p) \leftarrow I(p')$ using interpolation.

イロト イポト イラト イラト

Input: Scene $\hat{I} = (D_I, I)$, p_0 , \mathbf{n}' , λ , and number *n* of slices. Output: Scene $\hat{J} = (D_J, J)$, with axial slices J_0, J_1, \dots, J_{n-1} .

1
$$J_0 \leftarrow GetSlice(\hat{l}, p_0, \mathbf{n}').$$

2 For $k = 1$ to $n - 1$ do
3 $p_k \leftarrow p_{k-1} + \lambda \mathbf{n}'.$
4 $J_k \leftarrow GetSlice(\hat{l}, p_k, \mathbf{n}').$

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Interpolation

- Interpolation estimates the intensity *I(p')* at a point p' = (x_{p'}, y_{p'}, z_{p'}) with real coordinates inside a scene by using the spel values *I(q_k)*, *k* = 1, 2, ..., |*A(p')*|, where q_k ∈ *A(p')* ⊂ *D_I* and *A(p')* is a set of nearby spels of p'.
- Interpolation is required when geometric transformations Φ on spels of an image $\hat{I} = (D_I, I)$ create an image $\hat{J} = (D_J, J)$.
- In order to avoid holes (i.e., unfilled spels in \hat{J}), one must apply Φ^{-1} on each spel $p \in D_J$ to obtain $p' = \Phi^{-1}(p)$, with real coordinates for interpolation $J(p) \leftarrow I(p')$.

Interpolation

- Interpolation estimates the intensity *I(p')* at a point p' = (x_{p'}, y_{p'}, z_{p'}) with real coordinates inside a scene by using the spel values *I(q_k)*, *k* = 1, 2, ..., |*A(p')*|, where q_k ∈ *A(p')* ⊂ D_I and *A(p')* is a set of nearby spels of p'.
- Interpolation is required when geometric transformations Φ on spels of an image $\hat{I} = (D_I, I)$ create an image $\hat{J} = (D_J, J)$.
- In order to avoid holes (i.e., unfilled spels in Ĵ), one must apply Φ⁻¹ on each spel p ∈ D_J to obtain p' = Φ⁻¹(p), with real coordinates for interpolation J(p) ← I(p').

Bilinear interpolation

In 2D, the nearby spels $q_k \in \mathcal{A}(p') \subset D_I$, k = 1, 2, 3, 4, may be obtained as $q_1 = (\lfloor x_{p'} \rfloor, \lfloor y_{p'} \rfloor)$, $q_2 = (\lfloor x_{p'} \rfloor + 1, \lfloor y_{p'} \rfloor)$, $q_3 = (\lfloor x_{p'} \rfloor, \lfloor y_{p'} \rfloor + 1)$, and $q_4 = (\lfloor x_{p'} \rfloor + 1, \lfloor y_{p'} \rfloor + 1)$.

$$I(p') = (y_{p'} - y_{q_{12}})I(q_{34}) + (y_{q_{34}} - y_{p'})I(q_{12})$$

$$I(q_{12}) = (x_{p'} - x_{q_1})I(q_2) + (x_{q_2} - x_{p'})I(q_1)$$

$$I(q_{34}) = (x_{p'} - x_{q_3})I(q_4) + (x_{q_4} - x_{p'})I(q_3)$$

< 同 > < 三 > < 三 >

Bilinear interpolation

Scaling and rotation around the center of the image and axis z.

(日本)(日本)

Trilinear interpolation

In 3D, the nearby spels $q_k \in \mathcal{A}(p') \subset D_I$, k = 1, 2, ..., 8, are obtained similarly, based on the floor operations on the $x_{p'}$, $y_{p'}$, and $z_{p'}$ real coordinates of p'.

$$I(p') = (x_{p'} - x_{q_{1357}})I(q_{2468}) + (x_{q_{2468}} - x_{p'})I(q_{1357})$$

$$I(q_{2468}) = (z_{p'} - z_{q_{24}})I(q_{68}) + (z_{q_{68}} - z_{p'})I(q_{24})$$

$$I(q_{1357}) = (z_{p'} - z_{q_{13}})I(q_{57}) + (z_{q_{57}} - z_{p'})I(q_{13})$$

→ < Ξ → <</p>

Trilinear interpolation

$$I(q_{24}) = (y_{p'} - y_{q_4})I(q_2) + (y_{q_2} - y_{p'})I(q_4)$$

$$I(q_{68}) = (y_{p'} - y_{q_8})I(q_6) + (y_{q_6} - y_{p'})I(q_8)$$

$$I(q_{13}) = (y_{p'} - y_{q_3})I(q_1) + (y_{q_1} - y_{p'})I(q_3)$$

$$I(q_{57}) = (y_{p'} - y_{q_7})I(q_5) + (y_{q_5} - y_{p'})I(q_7)$$

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Reformatting a scene

Therefore, a scene $\hat{I} = (D_I, I)$ with spels sizes (d_x, d_y, d_z) can be reformatted into a scene $\hat{J} = (D_I, J)$ with spels sizes (d'_x, d'_y, d'_z) by scaling D_J , with factors $s_x = \frac{d_x}{d'_x}$, $s_y = \frac{d_y}{d'_y}$, and $s_z = \frac{d_z}{d'_z}$, and determining the intensities J(p) via 3D interpolation in $\hat{I} = (D_I, I)$.

• (1) • (

Therefore, a scene $\hat{l} = (D_I, I)$ with spels sizes (d_x, d_y, d_z) can be reformatted into a scene $\hat{J} = (D_I, J)$ with spels sizes (d'_x, d'_y, d'_z) by scaling D_J , with factors $s_x = \frac{d_x}{d'_x}$, $s_y = \frac{d_y}{d'_y}$, and $s_z = \frac{d_z}{d'_z}$, and determining the intensities J(p) via 3D interpolation in $\hat{l} = (D_I, I)$. However, it is more efficient to

• interpolate $\hat{l} = (D_l, l)$ along x, generating $\hat{l}' = (D_{l'}, l')$ with spels sizes (d'_x, d_y, d_z) ,

- then interpolate $\hat{l}' = (D_{l'}, l')$ along y, generating $\hat{l}'' = (D_{l''}, l'')$ with spels sizes (d'_x, d'_y, d_z) , and
- finally interpolate $\hat{I}'' = (D_{I''}, I'')$ along z, generating $\hat{J} = (D_I, J)$ with spels sizes (d'_x, d'_y, d'_z) .

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Reformatting a scene

- For instance, let q₁, q₂, ..., q_{nx} be the voxels along the x direction of l̂ = (D₁, l) for a fixed row y and a fixed slice z.
- By starting at p₁ = q₁ = (x_{q1}, y, z) ∈ D_I and adding d'_x to generate the subsequent voxels p_{k+1} = (x_{p1} + kd'_x, y, z) ∈ D_{I'}, k = 1, 2, ..., n'_x 1, the intensities I'(p_{k+1}) of the subsequent voxels p_{k+1} ∈ D_{I'} can be found by linear interpolation.

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

Effects of reformatting

A scene should be reformatted to become isotropic — i.e., with spels of equal sizes in all axes. This is paramount for rendering and segmentation.

Axial slices from bottom to top: $d'_x = d'_y < d'_z$ (left), $d'_x = d'_y > d'_z$ (center), and $d'_x = d'_y = d'_z$ (right, isotropic).