Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

Planar cuts, reslicing, and interpolation

- In the previous lecture, we learned that for a set \mathcal{P} of points $p_{k}, k \in[1, n]$, in the scene region, the intensities $I\left(p_{k}\right)$ must be obtained by interpolation.

Planar cuts, reslicing, and interpolation

- In the previous lecture, we learned that for a set \mathcal{P} of points $p_{k}, k \in[1, n]$, in the scene region, the intensities $I\left(p_{k}\right)$ must be obtained by interpolation.
- Today, we will learn how to create sequences of cuts (new slices) in the scene for a given viewing direction and orientation \mathbf{n}^{\prime}, which also requires interpolation.

Planar cuts, reslicing, and interpolation

- In the previous lecture, we learned that for a set \mathcal{P} of points $p_{k}, k \in[1, n]$, in the scene region, the intensities $I\left(p_{k}\right)$ must be obtained by interpolation.
- Today, we will learn how to create sequences of cuts (new slices) in the scene for a given viewing direction and orientation \mathbf{n}^{\prime}, which also requires interpolation.
- We will then learn how to estimate the intensity at any point inside the scene region from the intensities of the nearby spels - i.e., the interpolation operation.

Planar cuts and reslicing

In order to obtain a planar cut (slice) at a point p_{0} inside the scene, such that \mathbf{n}^{\prime} is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of $\hat{\jmath}$) to the origin of the (x, y, z) coordinate system.
- Align the \mathbf{n} vector to the desired viewing vector \mathbf{n}^{\prime} - this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_{0}.

Planar cuts and reslicing

In order to obtain a planar cut (slice) at a point p_{0} inside the scene, such that \mathbf{n}^{\prime} is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of $\hat{\jmath}$) to the origin of the (x, y, z) coordinate system.
- Align the \mathbf{n} vector to the desired viewing vector \mathbf{n}^{\prime} - this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_{0}.

Planar cuts and reslicing

In order to obtain a planar cut (slice) at a point p_{0} inside the scene, such that \mathbf{n}^{\prime} is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of $\hat{\jmath}$) to the origin of the (x, y, z) coordinate system.
- Align the \mathbf{n} vector to the desired viewing vector \mathbf{n}^{\prime} - this is the inverse of the transformation that aligns an arbitrary vector to the z -axis.
- Translate the rotated viewing plane to the desired location p_{0}.

Planar cuts and reslicing

In order to obtain a planar cut (slice) at a point p_{0} inside the scene, such that \mathbf{n}^{\prime} is the ortogonal vector to the cut, one needs to apply the following transformations:

- Translate the viewing (cut) plane (i.e., center of $\hat{\jmath}$) to the origin of the (x, y, z) coordinate system.
- Align the \mathbf{n} vector to the desired viewing vector \mathbf{n}^{\prime} - this is the inverse of the transformation that aligns an arbitrary vector to the z-axis.
- Translate the rotated viewing plane to the desired location p_{0}.

Planar cuts and reslicing

Therefore, for every $p \in D_{J}$, we must apply the transformation Ψ below, being $\Psi_{r}=\mathbf{R}_{x}(-\alpha) \mathbf{R}_{y}(\beta)$ the alignment of \mathbf{n} with \mathbf{n}^{\prime} :

$$
\left[\begin{array}{c}
x_{p^{\prime}} \\
y_{p^{\prime}} \\
z_{p^{\prime}} \\
1
\end{array}\right]=\mathbf{T}\left(+x_{p_{0}},+y_{p_{0}},+z_{p_{0}}\right) \Psi_{r} \mathbf{T}\left(\frac{-d}{2}, \frac{-d}{2}, \frac{d}{2}\right)\left[\begin{array}{c}
u_{p} \\
v_{p} \\
\frac{-d}{2} \\
1
\end{array}\right]
$$

- The coordinates $p^{\prime}=\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)$ may not be integers, which requires interpolation to assign $J(p) \leftarrow I\left(p^{\prime}\right)$.
- For reslicing a scene from p_{0} with spacement $\lambda>0$ between slices, one can move the cut plane to $p_{k}=p_{k-1}+\lambda \mathbf{n}^{\prime}$, $k=1,2, \ldots, n-1$.

Algorithm to get a slice given p_{0} and \mathbf{n}^{\prime}

Input: Scene $\hat{l}=\left(D_{l}, l\right), p_{0}$, and \mathbf{n}^{\prime}.
Output: Image $\hat{\jmath}=\left(D_{J}, J\right)$ of the slice.

1 Compute Ψ and Ψ_{r} from $p_{0}, \mathbf{n}=(0,0,1,0)$, and \mathbf{n}^{\prime}.
2 For each $p \in D_{J}$ do
3 $p^{\prime} \leftarrow \Psi(p)$.
4 If $\left(\left\lceil x_{p^{\prime}}\right\rceil,\left\lceil y_{p^{\prime}}\right\rceil,\left\lceil z_{p^{\prime}}\right\rceil\right) \in D_{I}$ then
$5 \quad J(p) \leftarrow I\left(p^{\prime}\right)$ using interpolation.

Reslicing algorithm

Input: Scene $\hat{I}=\left(D_{l}, l\right), p_{0}, \mathbf{n}^{\prime}, \lambda$, and number n of slices.
Output: Scene $\hat{J}=\left(D_{J}, J\right)$, with axial slices $J_{0}, J_{1}, \ldots, J_{n-1}$.
$1 J_{0} \leftarrow \operatorname{GetSlice}\left(\hat{I}, p_{0}, \mathbf{n}^{\prime}\right)$.
2 For $k=1$ to $n-1$ do
$3 \quad p_{k} \leftarrow p_{k-1}+\lambda \mathbf{n}^{\prime}$.
$4 \quad J_{k} \leftarrow \operatorname{GetSlice}\left(\hat{l}, p_{k}, \mathbf{n}^{\prime}\right)$

Interpolation

- Interpolation estimates the intensity $I\left(p^{\prime}\right)$ at a point $p^{\prime}=\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)$ with real coordinates inside a scene by using the spel values $I\left(q_{k}\right), k=1,2, \ldots,\left|\mathcal{A}\left(p^{\prime}\right)\right|$, where $q_{k} \in \mathcal{A}\left(p^{\prime}\right) \subset D_{l}$ and $\mathcal{A}\left(p^{\prime}\right)$ is a set of nearby spels of p^{\prime}.
- Interpolation is required when geometric transformations Φ on spels of an image $\hat{l}=\left(D_{l}, l\right)$ create an image $\hat{\jmath}=\left(D_{J}, J\right)$.
- In order to avoid holes (i.e., unfilled spels in \hat{J}), one must apply Φ^{-1} on each spel $p \in D_{J}$ to obtain $p^{\prime}=\Phi^{-1}(p)$, with real coordinates for interpolation $J(p) \leftarrow I\left(p^{\prime}\right)$.

I(x, y)

Interpolation

- Interpolation estimates the intensity $I\left(p^{\prime}\right)$ at a point $p^{\prime}=\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)$ with real coordinates inside a scene by using the spel values $I\left(q_{k}\right), k=1,2, \ldots,\left|\mathcal{A}\left(p^{\prime}\right)\right|$, where $q_{k} \in \mathcal{A}\left(p^{\prime}\right) \subset D_{l}$ and $\mathcal{A}\left(p^{\prime}\right)$ is a set of nearby spels of p^{\prime}.
- Interpolation is required when geometric transformations Φ on spels of an image $\hat{l}=\left(D_{l}, l\right)$ create an image $\hat{\jmath}=\left(D_{J}, J\right)$.
- In order to avoid holes (i.e., unfilled spels in \hat{J}), one must apply Φ^{-1} on each spel $p \in D_{J}$ to obtain $p^{\prime}=\Phi^{-1}(p)$, with real coordinates for interpolation $J(p) \leftarrow I\left(p^{\prime}\right)$.

Bilinear interpolation

In 2D, the nearby spels $q_{k} \in \mathcal{A}\left(p^{\prime}\right) \subset D_{l}, k=1,2,3,4$, may be obtained as $q_{1}=\left(\left\lfloor x_{p^{\prime}}\right\rfloor,\left\lfloor y_{p^{\prime}}\right\rfloor\right), q_{2}=\left(\left\lfloor x_{p^{\prime}}\right\rfloor+1,\left\lfloor y_{p^{\prime}}\right\rfloor\right)$, $q_{3}=\left(\left\lfloor x_{p^{\prime}}\right\rfloor,\left\lfloor y_{p^{\prime}}\right\rfloor+1\right)$, and $q_{4}=\left(\left\lfloor x_{p^{\prime}}\right\rfloor+1,\left\lfloor y_{p^{\prime}}\right\rfloor+1\right)$.

$$
\begin{aligned}
I\left(p^{\prime}\right) & =\left(y_{p^{\prime}}-y_{q_{12}}\right) I\left(q_{34}\right)+\left(y_{q_{34}}-y_{p^{\prime}}\right) I\left(q_{12}\right) \\
I\left(q_{12}\right) & =\left(x_{p^{\prime}}-x_{q_{1}}\right) I\left(q_{2}\right)+\left(x_{q_{2}}-x_{p^{\prime}}\right) I\left(q_{1}\right) \\
I\left(q_{34}\right) & =\left(x_{p^{\prime}}-x_{q_{3}}\right) I\left(q_{4}\right)+\left(x_{q_{4}}-x_{p^{\prime}}\right) I\left(q_{3}\right)
\end{aligned}
$$

Bilinear interpolation

Scaling and rotation around the center of the image and axis z.

Trilinear interpolation

In 3D, the nearby spels $q_{k} \in \mathcal{A}\left(p^{\prime}\right) \subset D_{l}, k=1,2, \ldots, 8$, are obtained similarly, based on the floor operations on the $x_{p^{\prime}}, y_{p^{\prime}}$, and $z_{p^{\prime}}$ real coordinates of p^{\prime}.

$$
\begin{aligned}
I\left(p^{\prime}\right) & =\left(x_{p^{\prime}}-x_{q_{1357}}\right) I\left(q_{2468}\right)+\left(x_{q_{2468}}-x_{p^{\prime}}\right) I\left(q_{1357}\right) \\
I\left(q_{2468}\right) & =\left(z_{p^{\prime}}-z_{q_{24}}\right) I\left(q_{68}\right)+\left(z_{q_{68}}-z_{p^{\prime}}\right) I\left(q_{24}\right) \\
I\left(q_{1357}\right) & =\left(z_{p^{\prime}}-z_{q_{13}}\right) I\left(q_{57}\right)+\left(z_{q_{57}}-z_{p^{\prime}}\right) I\left(q_{13}\right)
\end{aligned}
$$

$$
\begin{aligned}
& I\left(q_{24}\right)=\left(y_{p^{\prime}}-y_{q_{4}}\right) I\left(q_{2}\right)+\left(y_{q_{2}}-y_{p^{\prime}}\right) I\left(q_{4}\right) \\
& I\left(q_{68}\right)=\left(y_{p^{\prime}}-y_{q_{8}}\right) I\left(q_{6}\right)+\left(y_{q_{6}}-y_{p^{\prime}}\right) I\left(q_{8}\right) \\
& I\left(q_{13}\right)=\left(y_{p^{\prime}}-y_{q_{3}}\right) I\left(q_{1}\right)+\left(y_{q_{1}}-y_{p^{\prime}}\right) I\left(q_{3}\right) \\
& I\left(q_{57}\right)=\left(y_{p^{\prime}}-y_{q_{7}}\right) I\left(q_{5}\right)+\left(y_{q_{5}}-y_{p^{\prime}}\right) I\left(q_{7}\right)
\end{aligned}
$$

Reformatting a scene

Therefore, a scene $\hat{l}=\left(D_{l}, l\right)$ with spels sizes $\left(d_{x}, d_{y}, d_{z}\right)$ can be reformatted into a scene $\hat{J}=\left(D_{l}, J\right)$ with spels sizes $\left(d_{x}^{\prime}, d_{y}^{\prime}, d_{z}^{\prime}\right)$ by scaling D_{J}, with factors $s_{x}=\frac{d_{x}}{d_{x}^{\prime}}, s_{y}=\frac{d_{y}}{d_{y}^{\prime}}$, and $s_{z}=\frac{d_{z}}{d_{z}^{\prime}}$, and determining the intensities $J(p)$ via 3D interpolation in $\hat{I}=\left(D_{I}, I\right)$.

Reformatting a scene

Therefore, a scene $\hat{l}=\left(D_{l}, l\right)$ with spels sizes $\left(d_{x}, d_{y}, d_{z}\right)$ can be reformatted into a scene $\hat{\jmath}=\left(D_{I}, J\right)$ with spels sizes $\left(d_{x}^{\prime}, d_{y}^{\prime}, d_{z}^{\prime}\right)$ by scaling D_{J}, with factors $s_{x}=\frac{d_{x}}{d_{x}^{\prime}}, s_{y}=\frac{d_{y}}{d_{y}^{\prime}}$, and $s_{z}=\frac{d_{z}}{d_{z}^{\prime}}$, and determining the intensities $J(p)$ via 3D interpolation in $\hat{I}=\left(D_{l}, I\right)$. However, it is more efficient to

- interpolate $\hat{I}=\left(D_{I}, I\right)$ along x, generating $\hat{l}^{\prime}=\left(D_{I^{\prime}}, I^{\prime}\right)$ with spels sizes $\left(d_{x}^{\prime}, d_{y}, d_{z}\right)$,
- then interpolate $\hat{I}^{\prime}=\left(D_{I^{\prime}}, I^{\prime}\right)$ along y, generating $\hat{I}^{\prime \prime}=\left(D_{I^{\prime \prime}}, I^{\prime \prime}\right)$ with spels sizes $\left(d_{x}^{\prime}, d_{y}^{\prime}, d_{z}\right)$, and
- finally interpolate $\hat{I}^{\prime \prime}=\left(D_{I^{\prime \prime}}, I^{\prime \prime}\right)$ along z, generating $\hat{\jmath}=\left(D_{I}, J\right)$ with spels sizes $\left(d_{x}^{\prime}, d_{y}^{\prime}, d_{z}^{\prime}\right)$.

Reformatting a scene

- For instance, let $q_{1}, q_{2}, \ldots, q_{n_{x}}$ be the voxels along the x direction of $\hat{I}=\left(D_{l}, I\right)$ for a fixed row y and a fixed slice z.
- By starting at $p_{1}=q_{1}=\left(x_{q_{1}}, y, z\right) \in D_{l}$ and adding d_{x}^{\prime} to generate the subsequent voxels $p_{k+1}=\left(x_{p_{1}}+k d_{x}^{\prime}, y, z\right) \in D_{l^{\prime}}$, $k=1,2, \ldots, n_{x}^{\prime}-1$, the intensities $I^{\prime}\left(p_{k+1}\right)$ of the subsequent voxels $p_{k+1} \in D_{\prime^{\prime}}$ can be found by linear interpolation.

$$
\begin{aligned}
& I^{\prime}\left(p_{k+1}\right)=\left(x_{p_{k+1}}-x_{q_{k}}\right) I\left(q_{k+1}\right)+\left(x_{q_{k+1}}-x_{p_{k+1}}\right) I\left(q_{k}\right) . \\
& \mathrm{d}_{\mathrm{x}}^{\prime}
\end{aligned}
$$

$$
d_{x}
$$

Effects of reformatting

A scene should be reformatted to become isotropic - i.e., with spels of equal sizes in all axes. This is paramount for rendering and segmentation.

Axial slices from bottom to top: $d_{x}^{\prime}=d_{y}^{\prime}<d_{z}^{\prime}$ (left), $d_{x}^{\prime}=d_{y}^{\prime}>d_{z}^{\prime}$ (center), and $d_{x}^{\prime}=d_{y}^{\prime}=d_{z}^{\prime}$ (right, isotropic).

