Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Instituto de Computação - UNICAMP
afalcao@ic.unicamp.br

From 2D to 3D

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.

From 2D to 3D

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named voxel splatting, to guarantee that the rendition will not present unpainted voxels ("holes").

From 2D to 3D

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named voxel splatting, to guarantee that the rendition will not present unpainted voxels ("holes").
- In this lecture, we will introduce the ray casting algorithm, which assumes the inverse of the scence transformation applied to the visualization plane (i.e., image $\hat{\jmath}$), followed by the tracing of one ray per transformed pixel towards the scene.

From 2D to 3D

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named voxel splatting, to guarantee that the rendition will not present unpainted voxels ("holes").
- In this lecture, we will introduce the ray casting algorithm, which assumes the inverse of the scence transformation applied to the visualization plane (i.e., image \hat{J}), followed by the tracing of one ray per transformed pixel towards the scene.
- One may also translate the visualization plane after rotations to obtain cuts of the scene.

Transformation of the visualization plane

- Let the visualization plane be at $z=-\frac{d}{2}, d$ being the diagonal of scene, then $\left(\frac{d}{2}, \frac{d}{2}, \frac{-d}{2}\right)$ is the center of image \hat{J}.
- We must apply the inverse of the scene transformation - i.e., translate the center of $\hat{\jmath}$ of $\left(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}\right)$, apply the inverse of the rotations of the scene, and then translate it of $c=\left(x_{c}, y_{c}, z_{c}\right)$, being c the center of the scene.

Transformation of the visualization plane

- Let the visualization plane be at $z=-\frac{d}{2}, d$ being the diagonal of scene, then $\left(\frac{d}{2}, \frac{d}{2}, \frac{-d}{2}\right)$ is the center of image \hat{J}.
- We must apply the inverse of the scene transformation - i.e., translate the center of $\hat{\jmath}$ of $\left(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}\right)$, apply the inverse of the rotations of the scene, and then translate it of $c=\left(x_{c}, y_{c}, z_{c}\right)$, being c the center of the scene.

Transformation of the visualization plane

- Let the visualization plane be at $z=-\frac{d}{2}, d$ being the diagonal of scene, then $\left(\frac{d}{2}, \frac{d}{2}, \frac{-d}{2}\right)$ is the center of image \hat{J}.
- We must apply the inverse of the scene transformation - i.e., translate the center of $\hat{\jmath}$ of $\left(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}\right)$, apply the inverse of the rotations of the scene, and then translate it of $c=\left(x_{c}, y_{c}, z_{c}\right)$, being c the center of the scene.

Transformation of the visualization plane

- Let the visualization plane be at $z=-\frac{d}{2}, d$ being the diagonal of scene, then $\left(\frac{d}{2}, \frac{d}{2}, \frac{-d}{2}\right)$ is the center of image \hat{J}.
- We must apply the inverse of the scene transformation - i.e., translate the center of $\hat{\jmath}$ of $\left(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}\right)$, apply the inverse of the rotations of the scene, and then translate it of $c=\left(x_{c}, y_{c}, z_{c}\right)$, being c the center of the scene.

Transformation of the visualization plane

If ϕ is the scene transformation, then its inverse ϕ^{-1} is the visualization-plane transformation

$$
\left[\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2} \\
1
\end{array}\right]=\mathbf{T}\left(x_{c}, y_{c}, z_{c}\right) \mathbf{R}_{x}(-\alpha) \mathbf{R}_{y}(-\beta) \mathbf{T}\left(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}\right)\left[\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1} \\
1
\end{array}\right]
$$

which must be applied to each pixel $p \in D_{J}$, before casting a ray from the transformed p towards the scene. For $p_{2}=\left(x_{2}, y_{2}, z_{2}, 1\right)$ and $p_{1}=\left(x_{1}, y_{1}, z_{1}, 1\right),\left(x_{1}, y_{1}\right) \in D_{J}$, we may rewrite the above equation as

$$
p_{2}=\phi^{-1}\left(p_{1}\right) .
$$

- Note, however, that $\left(u_{p}, v_{p}\right)$ are the coordinates of p in the image domain D_{J}. In the homogeneous $(x, y, z, 1)$ coordinates system, a pixel p has coordinates $\left(u_{p}, v_{p}, \frac{-d}{2}, 1\right)$.

Transformation of the visualization plane

- Note, however, that $\left(u_{p}, v_{p}\right)$ are the coordinates of p in the image domain D_{J}. In the homogeneous $(x, y, z, 1)$ coordinates system, a pixel p has coordinates $\left(u_{p}, v_{p}, \frac{-d}{2}, 1\right)$.
- Similarly, $\phi_{r}^{-1}(\mathbf{n})$ must be $\mathbf{R}_{x}(-\alpha) \mathbf{R}_{y}(-\beta)$, which maps $\mathbf{n}=(0,0,1,0)$ into a new vector \mathbf{n}^{\prime}, such that $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, $p_{0}=\phi^{-1}(p)$ and $\lambda>0$, is the equation of a ray that starts from p_{0} towards the scene by following the direction and orientation of \mathbf{n}^{\prime}.

Casting a ray towards the scene

- When casting a ray $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$ towards the scene, we wish to find the first point p_{1} and the last point p_{n} at which the ray intersects the scene.

Casting a ray towards the scene

- When casting a ray $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$ towards the scene, we wish to find the first point p_{1} and the last point p_{n} at which the ray intersects the scene.
- The ray casting algorithm is then reduced to the DDA algorithm in 3D from p_{1} to p_{n}.

Casting a ray towards the scene

- When casting a ray $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$ towards the scene, we wish to find the first point p_{1} and the last point p_{n} at which the ray intersects the scene.
- The ray casting algorithm is then reduced to the DDA algorithm in 3D from p_{1} to p_{n}.
- It can be used in a variety of applications, such as the detection of the intersection between the ray and an object's surface and the extraction of scene's attributes along the ray.

Casting a ray towards the scene

A popular example is the maximum intensity projection (MIP) - a rendering technique that assigns to each $p \in D_{J}$ the maximum intensity along the ray $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$ inside the scene region.

That is, $J(p)=\max _{k=1,2, \ldots, n}\left\{I\left(p_{k}\right)\right\}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are obtained by the DDA algorithm in 3D.

Casting a ray towards the scene

- For each $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, the intersection points p_{1} and p_{n} belong to two face planes of the scene.

Casting a ray towards the scene

- For each $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, the intersection points p_{1} and p_{n} belong to two face planes of the scene.
- Let then f.n and $f . c$ be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).

Casting a ray towards the scene

- For each $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, the intersection points p_{1} and p_{n} belong to two face planes of the scene.
- Let then f.n and $f . c$ be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$
\left\langle p^{\prime}-f . c, f . \mathbf{n}\right\rangle=0
$$

Casting a ray towards the scene

- For each $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, the intersection points p_{1} and p_{n} belong to two face planes of the scene.
- Let then f. \mathbf{n} and $f . c$ be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$
\left\langle p^{\prime}-f . c, f . \mathbf{n}\right\rangle=0
$$

- The solution $p^{\prime} \in\left\{p_{1}, p_{n}\right\}$ comes from the lowest and highest finite values of λ, such that $p^{\prime}=\left(\left\lceil x_{p^{\prime}}\right\rceil,\left\lceil y_{p^{\prime}}\right\rceil,\left\lceil z_{p^{\prime}}\right\rceil\right) \in D_{I}$.

Casting a ray towards the scene

- For each $p^{\prime}=p_{0}+\lambda \mathbf{n}^{\prime}$, the intersection points p_{1} and p_{n} belong to two face planes of the scene.
- Let then $f . n$ and $f . c$ be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$
\left\langle p^{\prime}-f . c, f . \mathbf{n}\right\rangle=0
$$

- The solution $p^{\prime} \in\left\{p_{1}, p_{n}\right\}$ comes from the lowest and highest finite values of λ, such that $p^{\prime}=\left(\left\lceil x_{p^{\prime}}\right\rceil,\left\lceil y_{p^{\prime}}\right\rceil,\left\lceil z_{p^{\prime}}\right\rceil\right) \in D_{I}$.
- Let now $\operatorname{DDA3D}(\hat{\imath}, \mathcal{P}), \mathcal{P}=\left\{p_{1}, p_{n}\right\}$, be the function that returns $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ - a set of points visited by the DDA algorithm in 3D, using $\operatorname{sign}(X) \in\{-1,1\}$.

The DDA algorithm in 3D

Input: Scene $\hat{I}=\left(D_{l}, I\right)$ and set $\mathcal{P}=\left\{p_{1}, p_{n}\right\}$ of points inside the scene region.
Output: Set $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with the visited points.

1 If $p_{1}=p_{n}$ then set $n \leftarrow 1$.
2 Else
3 Set $D_{x} \leftarrow x_{p_{n}}-x_{p_{1}}, D_{y} \leftarrow y_{p_{n}}-y_{p_{1}}, D_{z} \leftarrow z_{p_{n}}-z_{p_{1}}$.
4 If $\left|D_{x}\right| \geq\left|D_{y}\right|$ and $\left|D_{x}\right| \geq\left|D_{z}\right|$ then
$5 \quad$ Set $n \leftarrow\left|D_{x}\right|+1, d_{x} \leftarrow \operatorname{sign}\left(D_{x}\right), d_{y} \leftarrow \frac{d_{x} D_{y}}{D_{x}}$, and $d_{z} \leftarrow \frac{d_{x} D_{z}}{D_{x}}$.
6 Else
7 If $\left|D_{y}\right| \geq\left|D_{x}\right|$ and $\left|D_{y}\right| \geq\left|D_{z}\right|$ then

8

$$
\text { Set } n \leftarrow\left|D_{y}\right|+1, d_{y} \leftarrow \operatorname{sign}\left(D_{y}\right), d_{x} \leftarrow \frac{d_{y} D_{x}}{D_{y}} \text {, and }
$$

$$
d_{z} \leftarrow \frac{d_{y} D_{z}}{D_{y}}
$$

9 Else
$10 \quad$ Set $n \leftarrow\left|D_{z}\right|+1, d_{z} \leftarrow \operatorname{sign}\left(D_{z}\right), d_{x} \leftarrow \frac{d_{z} D_{x}}{D_{z}}$, and $d_{y} \leftarrow \frac{d_{z} D_{y}}{D_{z}}$.
11 Set $\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right) \leftarrow\left(x_{p_{1}}, y_{p_{1}}, z_{p_{1}}\right)$.
12 For each $k=2$ to $n-1$, do
13 Set $\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right) \leftarrow\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)+\left(d_{x}, d_{y}, d_{z}\right)$ and $\mathcal{P} \leftarrow \mathcal{P} \cup\left\{\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)\right\}$.

The MIP algorithm

Input: Scene $\hat{I}=\left(D_{l}, l\right)$ and angles α and β.
Output: MIP image $\hat{\jmath}=\left(D_{J}, J\right)$.
$1 \mathbf{n}^{\prime} \leftarrow \phi_{r}^{-1}(\mathbf{n})$, where $\mathbf{n}=(0,0,1,0)$.
2 For each $p \in D_{J}$ do
$3 \quad p_{0} \leftarrow \phi^{-1}(p)$.
$4 \quad$ Find $\mathcal{P}=\left\{p_{1}, p_{n}\right\}$ by solving $\left\langle p_{0}+\lambda \mathbf{n}^{\prime}-f . c, f . \mathbf{n}\right\rangle=0$ for each face $f \in \mathcal{F}$ of the scene, whenever they exist.
$5 \quad$ if $\mathcal{P} \neq \emptyset$ then
$6 \quad \mathcal{P} \leftarrow \operatorname{DDA3D}(\hat{\imath}, \mathcal{P})$
$7 J(p) \leftarrow \operatorname{argmax}_{p^{\prime}=\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right) \in \mathcal{P}}\left\{I\left(p^{\prime}\right)\right\}$
where the intensities $I\left(p^{\prime}\right)$ for $p^{\prime} \in \mathcal{P}$ are found by interpolation.

