Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

(日)

• In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.

ヘロト ヘロト ヘビト ヘビト

э

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named *voxel splatting*, to guarantee that the rendition will not present unpainted voxels ("holes").

イロト 不得 トイヨト イヨト 三日

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named *voxel splatting*, to guarantee that the rendition will not present unpainted voxels ("holes").
- In this lecture, we will introduce the *ray casting* algorithm, which assumes the inverse of the scence transformation applied to the visualization plane (i.e., image \hat{J}), followed by the tracing of one ray per transformed pixel towards the scene.

イロト イヨト イヨト

- In the previous lecture, we introduced a rigid geometric transformation of a scene followed by projection.
- This approach, however, requires an old technique, named *voxel splatting*, to guarantee that the rendition will not present unpainted voxels ("holes").
- In this lecture, we will introduce the *ray casting* algorithm, which assumes the inverse of the scence transformation applied to the visualization plane (i.e., image \hat{J}), followed by the tracing of one ray per transformed pixel towards the scene.
- One may also translate the visualization plane after rotations to obtain cuts of the scene.

イロト イヨト イヨト

- Let the visualization plane be at $z = -\frac{d}{2}$, d being the diagonal of scene, then $(\frac{d}{2}, \frac{d}{2}, \frac{-d}{2})$ is the center of image \hat{J} .
- We must apply the inverse of the scene transformation i.e., translate the center of \hat{J} of $(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2})$, apply the inverse of the rotations of the scene, and then translate it of $c = (x_c, y_c, z_c)$, being c the center of the scene.

- Let the visualization plane be at z = -^d/₂, d being the diagonal of scene, then (^d/₂, ^d/₂, ^{-d}/₂) is the center of image Ĵ.
- We must apply the inverse of the scene transformation i.e., translate the center of \hat{J} of $(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2})$, apply the inverse of the rotations of the scene, and then translate it of $c = (x_c, y_c, z_c)$, being c the center of the scene.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let the visualization plane be at $z = -\frac{d}{2}$, d being the diagonal of scene, then $(\frac{d}{2}, \frac{d}{2}, -\frac{d}{2})$ is the center of image \hat{J} .
- We must apply the inverse of the scene transformation i.e., translate the center of \hat{J} of $(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2})$, apply the inverse of the rotations of the scene, and then translate it of $c = (x_c, y_c, z_c)$, being c the center of the scene.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let the visualization plane be at $z = -\frac{d}{2}$, d being the diagonal of scene, then $(\frac{d}{2}, \frac{d}{2}, -\frac{d}{2})$ is the center of image \hat{J} .
- We must apply the inverse of the scene transformation i.e., translate the center of \hat{J} of $(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2})$, apply the inverse of the rotations of the scene, and then translate it of $c = (x_c, y_c, z_c)$, being c the center of the scene.

If ϕ is the scene transformation, then its inverse ϕ^{-1} is the visualization-plane transformation

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix} = \mathbf{T}(x_c, y_c, z_c) \mathbf{R}_x(-\alpha) \mathbf{R}_y(-\beta) \mathbf{T}(\frac{-d}{2}, \frac{-d}{2}, \frac{-d}{2}) \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix}$$

which must be applied to each pixel $p \in D_J$, before casting a ray from the transformed p towards the scene. For $p_2 = (x_2, y_2, z_2, 1)$ and $p_1 = (x_1, y_1, z_1, 1)$, $(x_1, y_1) \in D_J$, we may rewrite the above equation as

$$p_2 = \phi^{-1}(p_1).$$

Note, however, that (u_p, v_p) are the coordinates of p in the image domain D_J. In the homogeneous (x, y, z, 1) coordinates system, a pixel p has coordinates (u_p, v_p, -d/2, 1).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- Note, however, that (u_p, v_p) are the coordinates of p in the image domain D_J. In the homogeneous (x, y, z, 1) coordinates system, a pixel p has coordinates (u_p, v_p, -d/2, 1).
- Similarly, $\phi_r^{-1}(\mathbf{n})$ must be $\mathbf{R}_x(-\alpha)\mathbf{R}_y(-\beta)$, which maps $\mathbf{n} = (0, 0, 1, 0)$ into a new vector \mathbf{n}' , such that $p' = p_0 + \lambda \mathbf{n}'$, $p_0 = \phi^{-1}(p)$ and $\lambda > 0$, is the equation of a ray that starts from p_0 towards the scene by following the direction and orientation of \mathbf{n}' .

• When casting a ray $p' = p_0 + \lambda \mathbf{n}'$ towards the scene, we wish to find the first point p_1 and the last point p_n at which the ray intersects the scene.

・ 同 ト ・ ヨ ト ・ ヨ ト

- When casting a ray $p' = p_0 + \lambda \mathbf{n}'$ towards the scene, we wish to find the first point p_1 and the last point p_n at which the ray intersects the scene.
- The ray casting algorithm is then reduced to the DDA algorithm in 3D from p_1 to p_n .

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

- When casting a ray $p' = p_0 + \lambda \mathbf{n}'$ towards the scene, we wish to find the first point p_1 and the last point p_n at which the ray intersects the scene.
- The ray casting algorithm is then reduced to the DDA algorithm in 3D from p_1 to p_n .
- It can be used in a variety of applications, such as the detection of the intersection between the ray and an object's surface and the extraction of scene's attributes along the ray.

A popular example is the maximum intensity projection (MIP) — a rendering technique that assigns to each $p \in D_J$ the maximum intensity along the ray $p' = p_0 + \lambda \mathbf{n}'$ inside the scene region.

That is, $J(p) = \max_{k=1,2,...,n} \{I(p_k)\}$, where $p_1, p_2, ..., p_n$ are obtained by the DDA algorithm in 3D.

- (同) - (目) - (目)

• For each $p' = p_0 + \lambda \mathbf{n}'$, the intersection points p_1 and p_n belong to two face planes of the scene.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- For each $p' = p_0 + \lambda \mathbf{n}'$, the intersection points p_1 and p_n belong to two face planes of the scene.
- Let then $f.\mathbf{n}$ and f.c be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).

・ 同 ト ・ ヨ ト ・ ヨ ト

- For each $p' = p_0 + \lambda \mathbf{n}'$, the intersection points p_1 and p_n belong to two face planes of the scene.
- Let then $f.\mathbf{n}$ and f.c be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$\langle p'-f.c,f.\mathbf{n}\rangle = 0.$$

- For each p' = p₀ + λn', the intersection points p₁ and p_n belong to two face planes of the scene.
- Let then $f.\mathbf{n}$ and f.c be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$\langle p'-f.c,f.\mathbf{n}\rangle = 0.$$

• The solution $p' \in \{p_1, p_n\}$ comes from the lowest and highest finite values of λ , such that $p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in D_I$.

- For each $p' = p_0 + \lambda \mathbf{n}'$, the intersection points p_1 and p_n belong to two face planes of the scene.
- Let then $f.\mathbf{n}$ and f.c be the unit normal vector and center of a face $f \in \mathcal{F}$ (the set of faces).
- In the intersection, one should expect that

$$\langle p'-f.c,f.\mathbf{n}\rangle = 0.$$

- The solution $p' \in \{p_1, p_n\}$ comes from the lowest and highest finite values of λ , such that $p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in D_I$.
- Let now DDA3D(\hat{l}, \mathcal{P}), $\mathcal{P} = \{p_1, p_n\}$, be the function that returns $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ a set of points visited by the DDA algorithm in 3D, using $sign(X) \in \{-1, 1\}$.

Input : Scene $\hat{I} = (D_I, I)$ and set $\mathcal{P} = \{p_1, p_n\}$ of points inside the scene region.

Output: Set $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ with the visited points.

1 If
$$p_1 = p_n$$
 then set $n \leftarrow 1$.
2 Else
3 Set $D_x \leftarrow x_{p_n} - x_{p_1}$, $D_y \leftarrow y_{p_n} - y_{p_1}$, $D_z \leftarrow z_{p_n} - z_{p_1}$.
4 If $|D_x| \ge |D_y|$ and $|D_x| \ge |D_z|$ then
5 Set $n \leftarrow |D_x| + 1$, $d_x \leftarrow sign(D_x)$, $d_y \leftarrow \frac{d_x D_y}{D_x}$, and
 $d_z \leftarrow \frac{d_x D_z}{D_x}$.
6 Else
7 If $|D_y| \ge |D_x|$ and $|D_y| \ge |D_z|$ then

イロト 不得 トイヨト イヨト 二日

8 Set
$$n \leftarrow |D_y| + 1$$
, $d_y \leftarrow sign(D_y)$, $d_x \leftarrow \frac{d_y D_x}{D_y}$, and
 $d_z \leftarrow \frac{d_y D_z}{D_y}$.
9 Else
10 Set $n \leftarrow |D_z| + 1$, $d_z \leftarrow sign(D_z)$, $d_x \leftarrow \frac{d_z D_x}{D_z}$, and
 $d_y \leftarrow \frac{d_z D_y}{D_z}$.
11 Set $(x_{p'}, y_{p'}, z_{p'}) \leftarrow (x_{p_1}, y_{p_1}, z_{p_1})$.
12 For each $k = 2$ to $n - 1$, do
13 Set $(x_{p'}, y_{p'}, z_{p'}) \leftarrow (x_{p'}, y_{p'}, z_{p'}) + (d_x, d_y, d_z)$
and $\mathcal{P} \leftarrow \mathcal{P} \cup \{(x_{p'}, y_{p'}, z_{p'})\}$.

ヘロト ヘ部ト ヘヨト ヘヨト

æ

The MIP algorithm

Input : Scene $\hat{I} = (D_I, I)$ and angles α and β . Output: MIP image $\hat{J} = (D_J, J)$.

1
$$\mathbf{n}' \leftarrow \phi_r^{-1}(\mathbf{n})$$
, where $\mathbf{n} = (0, 0, 1, 0)$.
2 For each $p \in D_J$ do

3
$$p_0 \leftarrow \phi^{-1}(p)$$
.

4 Find $\mathcal{P} = \{p_1, p_n\}$ by solving $\langle p_0 + \lambda \mathbf{n}' - f.c, f.\mathbf{n} \rangle = 0$ for each face $f \in \mathcal{F}$ of the scene, whenever they exist.

5 if
$$\mathcal{P} \neq \emptyset$$
 then

6
$$\mathcal{P} \leftarrow \mathsf{DDA3D}(\hat{I}, \mathcal{P})$$

7
$$J(p) \leftarrow \operatorname{argmax}_{p'=(x_{p'}, y_{p'}, z_{p'}) \in \mathcal{P}} \{I(p')\}$$

where the intensities I(p') for $p' \in \mathcal{P}$ are found by interpolation.