Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

ヘロア ヘロア ヘビア ヘビア

э

• Rendering — a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).

イロト イヨト イヨト

- Rendering a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).
- Rendering with orthogonal projection a geometric transformation that avoids distortions in the interpretation of the scene.

・ロト ・ 雪 ト ・ ヨ ト ・

- Rendering a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).
- Rendering with orthogonal projection a geometric transformation that avoids distortions in the interpretation of the scene.
- A simple rendering example how to draw the wireframe of a scene.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Rendering

By using some illumination model, one can simulate the transformation of a scene followed by the projection onto a viewing plane uv of the light reflected on the surface of each object inside the scene.

An observer and a white light source may be assumed to be at an infinite distance $(z = -\infty)$ to the viewing plane. One can also simulate the inverse transformation of the observer, light source, and viewing plane.

Rendering

By using some illumination model, one can simulate the transformation of a scene followed by the projection onto a viewing plane uv of the light reflected on the surface of each object inside the scene.

An observer and a white light source may be assumed to be at an infinite distance $(z = -\infty)$ to the viewing plane. One can also simulate the inverse transformation of the observer, light source, and viewing plane.

Orthogonal projection

A projection is a change from the scene coordinate system (x, y, z) to the coordinate system (u, v, n) of the viewing plane, where n = (0, 0, 1, 0) is the viewing direction and -v = (0, -1, 0, 0) is the view-up vector.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Orthogonal projection

- A projection is a change from the scene coordinate system (x, y, z) to the coordinate system (u, v, n) of the viewing plane, where n = (0, 0, 1, 0) is the viewing direction and -v = (0, -1, 0, 0) is the view-up vector.
- By rotating a scene, with diagonal d, around its center $c = (x_c, y_c, z_c, 1)$ and axes x (*tilt*) and y (*spin*), one obtains its orthogonal projection in uv as

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix} = \mathsf{T}\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right) \mathsf{R}_y(\beta) \mathsf{R}_x(\alpha) \mathsf{T}\left(-x_c, -y_c, -z_c\right) \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix}$$
$$u = x_2$$
$$v = y_2$$

where changes in $T(\frac{d}{2}, \frac{d}{2}, \frac{d}{2})$ and on the position of uv might cause clipping and cut of the scene.

Orthogonal projection

The value z_2 represents the distance between xy and the object's surface, so those distance values may be stored in a *z*-buffer and used for hidden surface removal or, together with the illumination model, for showing the closer objects brighter in the rendition $\hat{J} = (D_J, J)$, with $d \times d$ pixels to avoid clipping.

The bounding box of the scene (cyan) is called its wireframe.

Drawing the wireframe of the scene

• Consider the problem of drawing the visible edges of the scene's wireframe in *uv*, for different tilt and spin angles, by assuming the faces of the scene are opaque.

Drawing the wireframe of the scene

- Consider the problem of drawing the visible edges of the scene's wireframe in *uv*, for different tilt and spin angles, by assuming the faces of the scene are opaque.
- As strategy, one can
 - first determine which faces are visible after transformation and,
 - for each edge, if both of its extreme points belong to a visible face,
 - they must be projected and
 - a line must be drawn between them in the *uv* plane.

A first step in rendering is to define the graphical context, which must store all information needed for the rendering.

• The transformations that will be applied to points and vectors, respectively.

$$\Phi = \mathsf{T}(\frac{d}{2}, \frac{d}{2}, \frac{d}{2})\mathsf{R}_{y}(\beta)\mathsf{R}_{x}(\alpha)\mathsf{T}(-x_{c}, -y_{c}, -z_{c})$$

$$\Phi_{r} = \mathsf{R}_{y}(\beta)\mathsf{R}_{x}(\alpha)$$

イロト イポト イヨト イヨト

Graphical context

• A set \mathcal{F} with the faces of the scene, as represented by their centers and normal vectors, respectively: 0: $(n_x - 1, \frac{n_y}{2}, \frac{n_z}{2}, 1)$ and (1, 0, 0, 0); 1: $(0, \frac{n_y}{2}, \frac{n_z}{2}, 1)$ and (-1, 0, 0, 0); 2: $(\frac{n_x}{2}, n_y - 1, \frac{n_z}{2}, 1)$ and (0, 1, 0, 0); 3: $(\frac{n_x}{2}, 0, \frac{n_z}{2}, 1)$ and (0, -1, 0, 0); 4: $(\frac{n_x}{2}, \frac{n_y}{2}, n_z - 1, 1)$ and (0, 0, 1, 0); and 5: $(\frac{n_x}{2}, \frac{n_y}{2}, 0, 1)$ and (0, 0, -1, 0).

(4回) (日) (日)

Graphical context

A set *E* with the edges of the scene by indicating which vertices compose each edge (e.g., edge 0 connects vertices 0 and 1).

A face $f \in \mathcal{F}$ is visible if, after transformation $\Phi_r(f.n)$ of its normal vector f.n, the inner product $\langle \Phi_r(f.n), -n \rangle > 0$, where -n = (0, 0, -1, 0).

イロト イヨト イヨト イヨト

A point in a face

The extreme points $e.p_1$ and $e.p_n$ of an edge $e \in \mathcal{E}$ fall in a face $f \in \mathcal{F}$ with center at f.c, iff $\langle e.p_1 - f.c, f.n \rangle = 0$ and $\langle e.p_n - f.c, f.n \rangle = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

By identifying that a face f ∈ F is visible and an edge e ∈ E is part of that face, we must transform the points of e, by p₁ ← Φ(e.p₁) and p_n ← Φ(e.p_n), and draw a line in uv (i.e., image Ĵ = (D_J, J)) from p₁ = (u_{p1}, v_{p1}) to p_n = (u_{pn}, v_{pn}).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- By identifying that a face f ∈ F is visible and an edge e ∈ E is part of that face, we must transform the points of e, by p₁ ← Φ(e.p₁) and p_n ← Φ(e.p_n), and draw a line in uv (i.e., image Ĵ = (D_J, J)) from p₁ = (u_{p1}, v_{p1}) to p_n = (u_{pn}, v_{pn}).
- This line can be drawn by using the *Digital Differential Analyzer* (DDA) algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let p_k = (u_{pk}, v_{pk}), k = 1, 2, ..., n, be the n points drawn from p₁ to p_n in uv. Each subsequent point p_{k+1} = (u_{pk+1}, v_{pk+1}) is obtained by

$$(u_{p_{k+1}}, v_{p_{k+1}}) = (u_{p_k}, v_{p_k}) + (d_u, d_v),$$

where the displacement (d_u, d_v) follows the direction and orientation of the line segment from p_1 to p_n . These points must also be approximated to pixels in D_J .

Let p_k = (u_{pk}, v_{pk}), k = 1, 2, ..., n, be the n points drawn from p₁ to p_n in uv. Each subsequent point p_{k+1} = (u_{pk+1}, v_{pk+1}) is obtained by

$$(u_{p_{k+1}}, v_{p_{k+1}}) = (u_{p_k}, v_{p_k}) + (d_u, d_v),$$

where the displacement (d_u, d_v) follows the direction and orientation of the line segment from p_1 to p_n . These points must also be approximated to pixels in D_J .

• In order to avoid that a pixel be visited multiple times, d_u and d_v can be computed as $d_a = sign(a_{p_n} - a_{p_1}) \in \{-1, 1\}$, $a \in \{u, v\}$.

Let p_k = (u_{pk}, v_{pk}), k = 1, 2, ..., n, be the n points drawn from p₁ to p_n in uv. Each subsequent point p_{k+1} = (u_{pk+1}, v_{pk+1}) is obtained by

$$(u_{p_{k+1}}, v_{p_{k+1}}) = (u_{p_k}, v_{p_k}) + (d_u, d_v),$$

where the displacement (d_u, d_v) follows the direction and orientation of the line segment from p_1 to p_n . These points must also be approximated to pixels in D_J .

- In order to avoid that a pixel be visited multiple times, d_u and d_v can be computed as $d_a = sign(a_{p_n} a_{p_1}) \in \{-1, 1\}$, $a \in \{u, v\}$.
- The maximum intensity H can be used to draw the lines in the output image $\hat{J} = (D_J, J)$.

Input: Points p_1 and p_n , and intensity H. Output: Image $\hat{J} = (D_J, J)$.

1 If
$$p_1 = p_n$$
 then set $n \leftarrow 1$.
2 Else
3 set $D_u \leftarrow u_{p_n} - u_{p_1}$ and $D_v \leftarrow v_{p_n} - v_{p_1}$.
4 If $|D_u| \ge |D_v|$ then
5 set $n \leftarrow |D_u| + 1$, $d_u \leftarrow sign(D_u)$, and $d_v \leftarrow \frac{d_u D_v}{D_u}$.
6 Else
7 set $n \leftarrow |D_v| + 1$, $d_v \leftarrow sign(D_v)$, and $d_u \leftarrow \frac{d_v D_u}{D_v}$.
8 Set $p = (u_p, v_p) \leftarrow (u_{p_1}, v_{p_1})$.
9 For each $k = 1$ to n , do

- 10 Set $J(p) \leftarrow H$.
- 11 Set $p = (u_p, v_p) \leftarrow (u_p, v_p) + (d_u, d_v)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• The lines may be drawn with thickness 2r by changing $J(p) \leftarrow H$ to $\forall q \in \mathcal{A}_r(p), J(q) \leftarrow H$, where $q \in \mathcal{A}_r(p)$ if $1 \leq ||q - p|| \leq r$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

- The lines may be drawn with thickness 2r by changing $J(p) \leftarrow H$ to $\forall q \in \mathcal{A}_r(p), J(q) \leftarrow H$, where $q \in \mathcal{A}_r(p)$ if $1 \leq ||q p|| \leq r$.
- One can also draw colored lines by painting their red, green, and blue values in three bands of a colored image $\hat{J} = (D_J, J)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- The lines may be drawn with thickness 2r by changing $J(p) \leftarrow H$ to $\forall q \in A_r(p), J(q) \leftarrow H$, where $q \in A_r(p)$ if $1 \leq ||q p|| \leq r$.
- One can also draw colored lines by painting their red, green, and blue values in three bands of a colored image $\hat{J} = (D_J, J)$.

• Let's implement this simple algorithm as exercise?

・ 同 ト ・ ヨ ト ・ ヨ ト

Input: Scene $\hat{I} = (D_I, I)$, angles α , and β . Output: Rendition $\hat{J} = (D_J, J)$ of the wireframe.

- 1. create a graphical context with \mathcal{F} , \mathcal{E} , H, Φ , and Φ_r from D_l , α , and β .
- 2. for each $f \in \mathcal{F}$ do
- 3. if $\langle \Phi_r(f.n), (0, 0, -1, 0) \rangle > 0$ then
- 4. for each edge $e \in \mathcal{E}$ do
- 5. if $\langle e.p_1 f.c, f.n \rangle = 0$ and $\langle e.p_n f.c, f.n \rangle = 0$ then
- 6. $p_1 \leftarrow \Phi(e.p_1) \text{ and } p_n \leftarrow \Phi(e.p_n)$
- 7. DrawLine2D (\hat{J}, p_1, p_n, H)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >