Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

From 3D to 2D

This lecture is organized as follows.

From 3D to 2D

This lecture is organized as follows.

- Rendering - a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).

From 3D to 2D

This lecture is organized as follows.

- Rendering - a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).
- Rendering with orthogonal projection - a geometric transformation that avoids distortions in the interpretation of the scene.

From 3D to 2D

This lecture is organized as follows.

- Rendering - a process that creates an image (rendition) in a viewing plane with some object information from a 3D image (scene).
- Rendering with orthogonal projection - a geometric transformation that avoids distortions in the interpretation of the scene.
- A simple rendering example - how to draw the wireframe of a scene.

Rendering

By using some illumination model, one can simulate the transformation of a scene followed by the projection onto a viewing plane $u v$ of the light reflected on the surface of each object inside the scene.

An observer and a white light source may be assumed to be at an infinite distance $(z=-\infty)$ to the viewing plane. One can also simulate the inverse transformation of the observer, light source, and viewing plane.

Rendering

By using some illumination model, one can simulate the transformation of a scene followed by the projection onto a viewing plane $u v$ of the light reflected on the surface of each object inside the scene.

An observer and a white light source may be assumed to be at an infinite distance $(z=-\infty)$ to the viewing plane. One can also simulate the inverse transformation of the observer, light source, and viewing plane.

Orthogonal projection

- A projection is a change from the scene coordinate system (x, y, z) to the coordinate system (u, v, n) of the viewing plane, where $\mathrm{n}=(0,0,1,0)$ is the viewing direction and $-\mathrm{v}=(0,-1,0,0)$ is the view-up vector.

Orthogonal projection

- A projection is a change from the scene coordinate system (x, y, z) to the coordinate system (u, v, n) of the viewing plane, where $\mathrm{n}=(0,0,1,0)$ is the viewing direction and $-\mathrm{v}=(0,-1,0,0)$ is the view-up vector.
- By rotating a scene, with diagonal d, around its center $c=\left(x_{c}, y_{c}, z_{c}, 1\right)$ and axes $x($ tilt $)$ and y (spin), one obtains its orthogonal projection in $u v$ as

$$
v=y_{2}
$$

where changes in $T\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right)$ and on the position of $u v$ might cause clipping and cut of the scene.

Orthogonal projection

The value z_{2} represents the distance between $x y$ and the object's surface, so those distance values may be stored in a z-buffer and used for hidden surface removal or, together with the illumination model, for showing the closer objects brighter in the rendition $\hat{\jmath}=\left(D_{J}, J\right)$, with $d \times d$ pixels to avoid clipping.

The bounding box of the scene (cyan) is called its wireframe.

Drawing the wireframe of the scene

- Consider the problem of drawing the visible edges of the scene's wireframe in $u v$, for different tilt and spin angles, by assuming the faces of the scene are opaque.

Drawing the wireframe of the scene

- Consider the problem of drawing the visible edges of the scene's wireframe in $u v$, for different tilt and spin angles, by assuming the faces of the scene are opaque.
- As strategy, one can
- first determine which faces are visible after transformation and,
- for each edge, if both of its extreme points belong to a visible face,
- they must be projected and
- a line must be drawn between them in the $u v$ plane.

Graphical context

A first step in rendering is to define the graphical context, which must store all information needed for the rendering.

- The transformations that will be applied to points and vectors, respectively.

$$
\begin{aligned}
\Phi & =\mathrm{T}\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right) \mathrm{R}_{y}(\beta) \mathrm{R}_{x}(\alpha) \mathrm{T}\left(-x_{c},-y_{c},-z_{c}\right) \\
\Phi_{r} & =\mathrm{R}_{y}(\beta) \mathrm{R}_{x}(\alpha)
\end{aligned}
$$

Graphical context

- A set \mathcal{F} with the faces of the scene, as represented by their centers and normal vectors, respectively:

$$
\begin{aligned}
& 0:\left(n_{x}-1, \frac{n_{y}}{2}, \frac{n_{z}}{2}, 1\right) \text { and }(1,0,0,0) ; 1:\left(0, \frac{n_{y}}{2}, \frac{n_{z}}{2}, 1\right) \text { and } \\
& (-1,0,0,0) ; 2:\left(\frac{n_{x}}{2}, n_{y}-1, \frac{n_{z}}{2}, 1\right) \text { and }(0,1,0,0) ; \\
& 3:\left(\frac{n_{x}}{2}, 0, \frac{n_{z}}{2}, 1\right) \text { and }(0,-1,0,0) ; 4:\left(\frac{n_{x}}{2}, \frac{n_{y}}{2}, n_{z}-1,1\right) \text { and } \\
& (0,0,1,0) ; \text { and } 5:\left(\frac{n_{x}}{2}, \frac{n_{y}}{2}, 0,1\right) \text { and }(0,0,-1,0) .
\end{aligned}
$$

Graphical context

- A set \mathcal{V} with the vertices of the scene:

$$
\begin{aligned}
& 0:(0,0,0,1) ; 1:\left(n_{x}-1,0,0,1\right) ; 2:\left(0, n_{y}-1,0,1\right) ; \\
& 3:\left(n_{x}-1, n_{y}-1,0,1\right) ; 4:\left(0,0, n_{z}-1,1\right) ; \\
& 5:\left(n_{x}-1,0, n_{z}-1,1\right) ; 6:\left(0, n_{y}-1, n_{z}-1,1\right) ; \\
& 7:\left(n_{x}-1, n_{y}-1, n_{z}-1,1\right) ;
\end{aligned}
$$

- A set \mathcal{E} with the edges of the scene by indicating which vertices compose each edge (e.g., edge 0 connects vertices 0 and 1).

A visible face

A face $f \in \mathcal{F}$ is visible if, after transformation $\Phi_{r}(f . n)$ of its normal vector f.n, the inner product $\left\langle\Phi_{r}(f . n),-n\right\rangle>0$, where $-\mathrm{n}=(0,0,-1,0)$.

A point in a face

The extreme points e.p p_{1} and e. p_{n} of an edge $e \in \mathcal{E}$ fall in a face $f \in \mathcal{F}$ with center at $f . c$, iff $\left\langle e . p_{1}-f . c, f . n\right\rangle=0$ and $\left\langle e . p_{n}-f . c, f . n\right\rangle=0$.

Drawing an edge of a visible face

- By identifying that a face $f \in \mathcal{F}$ is visible and an edge $e \in \mathcal{E}$ is part of that face, we must transform the points of e, by $p_{1} \leftarrow \Phi\left(e . p_{1}\right)$ and $p_{n} \leftarrow \Phi\left(e . p_{n}\right)$, and draw a line in $u v$ (i.e., image $\left.\hat{J}=\left(D_{J}, J\right)\right)$ from $p_{1}=\left(u_{p_{1}}, v_{p_{1}}\right)$ to $p_{n}=\left(u_{p_{n}}, v_{p_{n}}\right)$.

Drawing an edge of a visible face

- By identifying that a face $f \in \mathcal{F}$ is visible and an edge $e \in \mathcal{E}$ is part of that face, we must transform the points of e, by $p_{1} \leftarrow \Phi\left(e . p_{1}\right)$ and $p_{n} \leftarrow \Phi\left(e . p_{n}\right)$, and draw a line in $u v$ (i.e., image $\left.\hat{\jmath}=\left(D_{J}, J\right)\right)$ from $p_{1}=\left(u_{p_{1}}, v_{p_{1}}\right)$ to $p_{n}=\left(u_{p_{n}}, v_{p_{n}}\right)$.
- This line can be drawn by using the Digital Differential Analyzer (DDA) algorithm.

The DDA algorithm in 2D

- Let $p_{k}=\left(u_{p_{k}}, v_{p_{k}}\right), k=1,2, \ldots, n$, be the n points drawn from p_{1} to p_{n} in $u v$. Each subsequent point $p_{k+1}=\left(u_{p_{k+1}}, v_{p_{k+1}}\right)$ is obtained by

$$
\left(u_{p_{k+1}}, v_{p_{k+1}}\right)=\left(u_{p_{k}}, v_{p_{k}}\right)+\left(d_{u}, d_{v}\right),
$$

where the displacement $\left(d_{u}, d_{v}\right)$ follows the direction and orientation of the line segment from p_{1} to p_{n}. These points must also be approximated to pixels in D_{J}.

The DDA algorithm in 2D

- Let $p_{k}=\left(u_{p_{k}}, v_{p_{k}}\right), k=1,2, \ldots, n$, be the n points drawn from p_{1} to p_{n} in $u v$. Each subsequent point $p_{k+1}=\left(u_{p_{k+1}}, v_{p_{k+1}}\right)$ is obtained by

$$
\left(u_{p_{k+1}}, v_{p_{k+1}}\right)=\left(u_{p_{k}}, v_{p_{k}}\right)+\left(d_{u}, d_{v}\right)
$$

where the displacement $\left(d_{u}, d_{v}\right)$ follows the direction and orientation of the line segment from p_{1} to p_{n}. These points must also be approximated to pixels in D_{J}.

- In order to avoid that a pixel be visited multiple times, d_{u} and d_{v} can be computed as $d_{a}=\operatorname{sign}\left(a_{p_{n}}-a_{p_{1}}\right) \in\{-1,1\}$, $a \in\{u, v\}$.

The DDA algorithm in 2D

- Let $p_{k}=\left(u_{p_{k}}, v_{p_{k}}\right), k=1,2, \ldots, n$, be the n points drawn from p_{1} to p_{n} in $u v$. Each subsequent point $p_{k+1}=\left(u_{p_{k+1}}, v_{p_{k+1}}\right)$ is obtained by

$$
\left(u_{p_{k+1}}, v_{p_{k+1}}\right)=\left(u_{p_{k}}, v_{p_{k}}\right)+\left(d_{u}, d_{v}\right)
$$

where the displacement $\left(d_{u}, d_{v}\right)$ follows the direction and orientation of the line segment from p_{1} to p_{n}. These points must also be approximated to pixels in D_{J}.

- In order to avoid that a pixel be visited multiple times, d_{u} and d_{v} can be computed as $d_{a}=\operatorname{sign}\left(a_{p_{n}}-a_{p_{1}}\right) \in\{-1,1\}$, $a \in\{u, v\}$.
- The maximum intensity H can be used to draw the lines in the output image $\hat{\jmath}=\left(D_{J}, J\right)$.

Input: Points p_{1} and p_{n}, and intensity H.
Output: Image $\hat{\jmath}=\left(D_{J}, J\right)$.
1 If $p_{1}=p_{n}$ then set $n \leftarrow 1$.
2 Else
3 set $D_{u} \leftarrow u_{p_{n}}-u_{p_{1}}$ and $D_{v} \leftarrow v_{p_{n}}-v_{p_{1}}$.
4 If $\left|D_{u}\right| \geq\left|D_{v}\right|$ then
$5 \quad$ set $n \leftarrow\left|D_{u}\right|+1, d_{u} \leftarrow \operatorname{sign}\left(D_{u}\right)$, and $d_{v} \leftarrow \frac{d_{u} D_{v}}{D_{u}}$.
6 Else
$7 \quad$ set $n \leftarrow\left|D_{v}\right|+1, d_{v} \leftarrow \operatorname{sign}\left(D_{v}\right)$, and $d_{u} \leftarrow \frac{d_{v} D_{u}}{D_{v}}$.
8 Set $p=\left(u_{p}, v_{p}\right) \leftarrow\left(u_{p_{1}}, v_{p_{1}}\right)$.
9 For each $k=1$ to n, do
$10 \quad$ Set $J(p) \leftarrow H$.
11 Set $p=\left(u_{p}, v_{p}\right) \leftarrow\left(u_{p}, v_{p}\right)+\left(d_{u}, d_{v}\right)$.

Adding attributes to the rendering

- The lines may be drawn with thickness $2 r$ by changing $J(p) \leftarrow H$ to $\forall q \in \mathcal{A}_{r}(p), J(q) \leftarrow H$, where $q \in \mathcal{A}_{r}(p)$ if $1 \leq\|q-p\| \leq r$.

Adding attributes to the rendering

- The lines may be drawn with thickness $2 r$ by changing $J(p) \leftarrow H$ to $\forall q \in \mathcal{A}_{r}(p), J(q) \leftarrow H$, where $q \in \mathcal{A}_{r}(p)$ if $1 \leq\|q-p\| \leq r$.
- One can also draw colored lines by painting their red, green, and blue values in three bands of a colored image $\hat{J}=\left(D_{J}, J\right)$.

Adding attributes to the rendering

- The lines may be drawn with thickness $2 r$ by changing $J(p) \leftarrow H$ to $\forall q \in \mathcal{A}_{r}(p), J(q) \leftarrow H$, where $q \in \mathcal{A}_{r}(p)$ if $1 \leq\|q-p\| \leq r$.
- One can also draw colored lines by painting their red, green, and blue values in three bands of a colored image $\hat{J}=\left(D_{J}, J\right)$.
- Let's implement this simple algorithm as exercise?

Algorithm to draw a wireframe

Input: Scene $\hat{I}=\left(D_{l}, l\right)$, angles α, and β.
Output: Rendition $\hat{\jmath}=\left(D_{J}, J\right)$ of the wireframe.

1. create a graphical context with $\mathcal{F}, \mathcal{E}, H, \Phi$, and Φ_{r} from D_{l}, α, and β.
2. for each $f \in \mathcal{F}$ do
3. if $\left\langle\Phi_{r}(f . n),(0,0,-1,0)\right\rangle>0$ then
4. for each edge $e \in \mathcal{E}$ do
5. if $\left\langle e . p_{1}-f . c, f . n\right\rangle=0$ and $\left\langle e . p_{n}-f . c, f . n\right\rangle=0$ then
6. $\quad p_{1} \leftarrow \Phi\left(e . p_{1}\right)$ and $p_{n} \leftarrow \Phi\left(e . p_{n}\right)$
7.

$\operatorname{DrawLine2D}\left(\hat{J}, p_{1}, p_{n}, H\right)$

