Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

Geometric Transformations

- A geometric transformation is a function applied to a set of points (e.g., spels or any subset of \Re^{3}) or a vector.

Geometric Transformations

- A geometric transformation is a function applied to a set of points (e.g., spels or any subset of \Re^{3}) or a vector.
- Such a set of points may contain elements of a plane or a line segment, and we are often interested in estimating the image intensities at them, whenever they fall in some image domain.

Geometric Transformations

- A geometric transformation is a function applied to a set of points (e.g., spels or any subset of \Re^{3}) or a vector.
- Such a set of points may contain elements of a plane or a line segment, and we are often interested in estimating the image intensities at them, whenever they fall in some image domain.
- We are interested in affine transformations in 3D and projections from 3D to 2D:
- Translation and scaling;
- Rotation around one of the axis x, y, or z, with respect to the origin of a coordinate system;
- Rotation around an arbitrary axis with respect to an abitrary point; and
- Orthogonal projection.

Let $\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)$ be a translation that moves a point from $p=\left(x_{p}, y_{p}, z_{p}\right)$ to $q=\left(x_{q}, y_{q}, z_{q}\right)$ by using a displacement vector $\mathbf{t}=\left(t_{x}, t_{y}, t_{z}\right)$.

$$
\left[\begin{array}{l}
x_{q} \\
y_{q} \\
z_{q}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right]
$$

Translation

Let $\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)$ be a translation that moves a point from $p=\left(x_{p}, y_{p}, z_{p}\right)$ to $q=\left(x_{q}, y_{q}, z_{q}\right)$ by using a displacement vector $\mathbf{t}=\left(t_{x}, t_{y}, t_{z}\right)$.

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q}
\end{array}\right]=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right]
$$

Such an additive form of describing a translation is inconvenient, but the use of homogeneous coordinates can fix that and allow to describe and combine multiple geometric transformations by matrix multiplications.

In homogeneous coordinates, the points p and q may be written as $\left(x_{p}, y_{p}, z_{p}, 1\right)$ and $\left(x_{q}, y_{q}, z_{q}, 1\right)$, respectively, and $\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)$ becomes a multiplicative translation matrix.

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

In homogeneous coordinates, the points p and q may be written as $\left(x_{p}, y_{p}, z_{p}, 1\right)$ and $\left(x_{q}, y_{q}, z_{q}, 1\right)$, respectively, and $\mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)$ becomes a multiplicative translation matrix.

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

The inverse simply requires the translation matrix $\mathbf{T}\left(-t_{x},-t_{y},-t_{z}\right)$ in homogeneous coordinates.

Scaling

One can increase/decrease the size of a geometric structure (e.g., a cube) by scaling the coordinates of its vertices. Let $\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)$ be the scaling matrix, such a transformation is described by

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

Scaling

One can increase/decrease the size of a geometric structure (e.g., a cube) by scaling the coordinates of its vertices. Let $\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)$ be the scaling matrix, such a transformation is described by

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

- When applied to spels of an image domain, it changes the image size, but intensities must be estimated at the new spels.
- Reduction in size requires factors in $(0,1)$, factors greater than 1 increase the size, and negative factors reflect it along the corresponding axis with respect to the origin.
- The inverse is $\mathbf{S}\left(\frac{1}{s_{x}}, \frac{1}{s_{y}}, \frac{1}{s_{z}}\right)$.

Rotation around axis z with respect to the origin

Let $\mathbf{v}_{z}=(0,0,1,0)$ be a unit vector along z and $(0,0,0,1)$ be the origin, a rotation θ around axis z with respect to $(0,0,0,1)$

changes only the x and y coordinates when mapping a point $p=\left(x_{p}, y_{p}, z_{p}, 1\right)$ into a new point $q=\left(x_{q}, y_{q}, z_{q}, 1\right)$ by following the right-hand rule - right hand with the thumb out-stretched along z, the index finger along x, and the middle finger along y, movement from x to y of an angle θ.

Rotation around axis z with respect to the origin

This rotation is represented by a matrix $\mathbf{R}_{z}(\theta)$ derived as follows.

$$
\begin{aligned}
x_{p} & =r \cos (\alpha) \\
y_{p} & =r \sin (\alpha) \\
x_{q} & =r \cos (\theta+\alpha) \\
x_{q} & =r \cos (\alpha) \cos (\theta)-r \sin (\alpha) \sin (\theta) \\
x_{q} & =x_{p} \cos (\theta)-y_{p} \sin (\theta) \\
y_{q} & =r \sin (\theta+\alpha) \\
y_{q} & =r \cos (\alpha) \sin (\theta)+r \sin (\alpha) \cos (\theta) \\
y_{q} & =x_{p} \sin (\theta)+y_{p} \cos (\theta) \\
z_{q} & =z_{p}
\end{aligned}
$$

Rotation around axis z with respect to the origin

$$
\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

Rotations around x and y with respect to the origin

Similarly, the rotation matrices around x and y with respect to the origin are given by

$$
\begin{aligned}
& \mathbf{R}_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}_{y}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & 0 & \sin (\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\theta) & 0 & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Note only that the signs of the sines are interchanged in $\mathbf{R}_{y}(\theta)$, because this rotation is contrary to the right-hand rule.

Rotations around the main axes with respect to an arbitrary point

In order to rotate around the main axes with respect to an arbitrary point c (e.g., the center of the image domain), the origin must be translated to c, the rotation applied, and then the origin translated back to a position that avoids clipping.

Rotations around the main axes with respect to an arbitrary point

For instance, a rotation $\mathbf{R}_{x}(\theta)$ (tilt) followed by $\mathbf{R}_{y}(\alpha)$ (spin) with respect to the center $c=\left(x_{c}, y_{c}, z_{c}, 1\right)$ of an image domain D_{l} is

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
x_{q} \\
y_{q} \\
z_{q} \\
1
\end{array}\right]=} & {\left[\begin{array}{llll}
1 & 0 & 0 & d / 2 \\
0 & 1 & 0 & d / 2 \\
0 & 0 & 1 & d / 2 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\alpha) & 0 & \sin (\alpha) \\
0 & 1 & 0 \\
0 \\
-\sin (\alpha) & 0 & \cos (\alpha) \\
0 & 0 & 0
\end{array}\right]}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{c} \\
0 & 1 & 0 & -y_{c} \\
0 & 0 & 1 & -z_{c} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right] .
$$

where d is the diagnonal of D_{l}.

Rotation around an arbitrary axis with respect to an arbitrary point

In order to rotate θ around an arbitrary axis $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, 0\right)$, with respect to an arbitrary point $c=\left(x_{c}, y_{c}, z_{c}, 1\right)$, we apply a translation $\mathbf{T}\left(-x_{c},-y_{c},-z_{c}\right)$, alignment between \mathbf{v} and z, rotation θ, and translation $\mathbf{T}\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right)$.

Rotation around an arbitrary axis with respect to an arbitrary point

Given that z is the chosen axis, the alignment of \mathbf{v} with the vector $\mathbf{v}_{z}=(0,0,1,0)$ requires a rotation α around x followed by a rotation $-\beta$ around y, with respect to the origin c.

(a) The rotation α of \mathbf{v} (blue) stops at the plane $x z$ (red) and the rotation $-\beta$ aligns v (red) with the axis z (green). (b) The projection $\mathbf{v}_{y z}$ (magenta) of \mathbf{v} (blue) over the plane $y z$ forms the same angle α with the axis z.

Rotation around an arbitrary axis with respect to an arbitrary point

The desired transformation is represented by the following sequence of matrices.
$\mathbf{T}\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right) \mathbf{R}_{x}^{-1}(\alpha) \mathbf{R}_{y}^{-1}(-\beta) \mathbf{R}_{z}(\theta) \mathbf{R}_{y}(-\beta) \mathbf{R}_{x}(\alpha) \mathbf{T}\left(-x_{c},-y_{c},-z_{c}\right)$.
Given that the inverse of a rotation $\mathbf{R}^{-1}(\theta)=\mathbf{R}^{t}(\theta)=\mathbf{R}(-\theta)$ and $\left(\mathbf{R}_{1}(\alpha) \mathbf{R}_{2}(\beta)\right)^{-1}=\mathbf{R}_{2}^{-1}(\beta) \mathbf{R}_{1}^{-1}(\alpha)=\mathbf{R}_{2}(-\beta) \mathbf{R}_{1}(-\alpha)$. We may rewrite the above equation as

$$
\mathbf{T}\left(\frac{d}{2}, \frac{d}{2}, \frac{d}{2}\right) \mathbf{R}_{x}(-\alpha) \mathbf{R}_{y}(\beta) \mathbf{R}_{z}(\theta) \mathbf{R}_{y}(-\beta) \mathbf{R}_{x}(\alpha) \mathbf{T}\left(-x_{c},-y_{c},-z_{c}\right)
$$

Rotation around an arbitrary axis with respect to an arbitrary point

The main issue is how to find α and β based on the figure below?

From (b) and (a), we have respectively that

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{v_{y}}{v_{z}}\right) \\
& \beta=\tan ^{-1}\left(\frac{v_{x}}{v_{z}^{\prime}}\right) .
\end{aligned}
$$

Rotation around an arbitrary axis with respect to an arbitrary point

This implies that

$$
\begin{aligned}
\tan \alpha & =\frac{v_{y}}{v_{z}}, \\
\tan \beta & =\frac{v_{x}}{v_{z}^{\prime}}, \\
v_{x}^{2}+v_{y}^{2}+v_{z}^{2} & =1, \\
v_{x}^{2}+v_{z}^{\prime 2} & =1,
\end{aligned}
$$

Rotation around an arbitrary axis with respect to an arbitrary point

then

$$
\begin{aligned}
v_{x}^{2}+v_{y}^{2}+v_{z}^{2} & =v_{x}^{2}+v_{z}^{\prime 2} \\
v_{z}^{2} \tan ^{2} \alpha+v_{z}^{2} & =v_{z}^{\prime 2} \\
v_{z}^{2}\left(1+\tan ^{2} \alpha\right) & =v_{z}^{\prime 2} \\
\frac{v_{z}^{2}}{\cos ^{2} \alpha} & =v_{z}^{\prime 2} \\
v_{z}^{\prime} & =\frac{v_{z}}{\cos \alpha} .
\end{aligned}
$$

This is then valid for $v_{z}>0$. For $v_{z}=0$ and $v_{z}<0$, we will have the following rules, left as exercise.

Rotation around an arbitrary axis with respect to an arbitrary point

- If $v_{z}<0$, then α and β must be subtracted by 180 , whenever they are different of zero.

Rotation around an arbitrary axis with respect to an arbitrary point

- If $v_{z}<0$, then α and β must be subtracted by 180 , whenever they are different of zero.
- If $v_{z}=0$, the above equations need special treatment:
- if $v_{x}=0$ and $v_{y} \neq 0$, then $\beta=0$ and $\alpha=90 \operatorname{sign}\left(v_{y}\right)$;
- if $v_{x} \neq 0$ and $v_{y}=0$, then $\beta=90 \operatorname{sign}\left(v_{x}\right)$ and $\alpha=0$; and
- if $v_{y} \neq 0$ and $v_{x} \neq 0$, then it is better to apply $\mathbf{R}_{z}(\gamma)$ with $\gamma=-\operatorname{sign}\left(v_{y}\right) \cos ^{-1} v_{x}$ followed by $\mathbf{R}_{y}(-90)$ to align \mathbf{v} first with the axis x and then next with the axis z.

Rotation around an arbitrary axis with respect to an arbitrary point

- If $v_{z}<0$, then α and β must be subtracted by 180 , whenever they are different of zero.
- If $v_{z}=0$, the above equations need special treatment:
- if $v_{x}=0$ and $v_{y} \neq 0$, then $\beta=0$ and $\alpha=90 \operatorname{sign}\left(v_{y}\right)$;
- if $v_{x} \neq 0$ and $v_{y}=0$, then $\beta=90 \operatorname{sign}\left(v_{x}\right)$ and $\alpha=0$; and
- if $v_{y} \neq 0$ and $v_{x} \neq 0$, then it is better to apply $\mathbf{R}_{z}(\gamma)$ with $\gamma=-\operatorname{sign}\left(v_{y}\right) \cos ^{-1} v_{x}$ followed by $\mathbf{R}_{y}(-90)$ to align \mathbf{v} first with the axis x and then next with the axis z.
- Among several applications, an interesting one is the reslicing of a 3D image along an arbitrary axis \mathbf{v}.

