Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

Volumetric Image Acquisition

Each imaging modality presents its own strategy to convert a physical property, measured inside the material under image acquisition, into a value per volume element (voxel) of the resulting image.

Volumetric Image Acquisition

Each imaging modality presents its own strategy to convert a physical property, measured inside the material under image acquisition, into a value per volume element (voxel) of the resulting image.

- Confocal microscopy measures the laser light reflection at a number of focus planes across the material.

Volumetric Image Acquisition

Each imaging modality presents its own strategy to convert a physical property, measured inside the material under image acquisition, into a value per volume element (voxel) of the resulting image.

- Confocal microscopy measures the laser light reflection at a number of focus planes across the material.
- T1-weighted magnetic resonance (MR-T1) measures the longitudinal relaxation time of spins in hydrogen nuclei of the material, after turning on and off an external magnetic field.
- Computerized tomography (CT) measures the X-ray attenuation through the material on a number of projection planes.

Volumetric Image Acquisition

For instance, projection planes are distributed around the material and a reconstruction algorithm generates the 3D image from them.

Volumetric Image Acquisition

For instance, projection planes are distributed around the material and a reconstruction algorithm generates the 3D image from them.

Volumetric Image Acquisition

For instance, projection planes are distributed around the material and a reconstruction algorithm generates the 3D image from them.

Volumetric Image Acquisition

For instance, projection planes are distributed around the material and a reconstruction algorithm generates the 3D image from them.

Volumetric Image Acquisition

The 3D image reconstruction is an inverse problem.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]
$$

P_{3}	P_{4}

$$
\begin{aligned}
& A X=P \\
& X=A^{-1} P
\end{aligned}
$$

In 2D, let $X_{i}, i=1,2, \ldots, n$, be the pixel values underestimation from attenuation values $P_{j}, j=1,2, \ldots, m$, on the projections. This forms an over-determined linear system with $m>n$, wherein A^{-1} is the pseudo-inverse of the matrix A.

Volumetric Image Acquisition

The reconstruction algorithm is based on the Radon transform.

Volumetric Image Acquisition

The reconstruction algorithm is based on the Radon transform.
In 2D, for each rotation angle $\theta \in[0,180)$ of a source-sensor system around the center of the image, the attenuation values $R(\theta, \rho)$ at the polar coordinates (θ, ρ) result from the integration of the pixel values $f\left(x^{\prime}, y^{\prime}\right)$ underestimation along a line segment $y=a x+b$ from the source to the sensor.

$$
R(\theta, \rho)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}\right) \delta\left(y^{\prime}-y\right) d x^{\prime} d y^{\prime}
$$

The line segment $y=a x+b$ is orthogonal to the axis ρ, which is parallel to the source-sensor system, and the function δ (delta of Dirac) considers only the (x^{\prime}, y^{\prime}) coordinates that satisfy the line segment equation.

Volumetric Image Acquisition

By changing ρ within $\left[-\frac{D}{2}, \frac{D}{2}\right]$, where D is the diagonal of the image, we obtain one projection (signal) for a fixed $\theta \in[0,180$). By mapping the projections at each column θ, we can see an attenuation image $R(\theta, \rho)$ with sinusoidal patterns.

Volumetric Image Acquisition

By changing ρ within $\left[-\frac{D}{2}, \frac{D}{2}\right]$, where D is the diagonal of the image, we obtain one projection (signal) for a fixed $\theta \in[0,180$). By mapping the projections at each column θ, we can see an attenuation image $R(\theta, \rho)$ with sinusoidal patterns.

www.cs.cmu.edu/~pmuthuku/mlsp_page/lectures/Carsten_ Hoilund_Radon.pdf

Volumetric Image Acquisition

By changing ρ within $\left[-\frac{D}{2}, \frac{D}{2}\right]$, where D is the diagonal of the image, we obtain one projection (signal) for a fixed $\theta \in[0,180$). By mapping the projections at each column θ, we can see an attenuation image $R(\theta, \rho)$ with sinusoidal patterns.

WWw.cs.cmu.edu/~pmuthuku/mlsp_page/lectures/Carsten_ Hoilund_Radon.pdf

Volumetric Image Acquisition

- The inverse transformation to find the values $f(x, y)$ is based on the projection slice theorem.

Volumetric Image Acquisition

- The inverse transformation to find the values $f(x, y)$ is based on the projection slice theorem.
- This theorem says that the Fourier transform $\mathcal{F}_{\theta}(w)$ of $R(\theta, \rho)$ for a fixed column θ is equal to the slice (line) $\mathcal{S}(w)$ of the Fourier transform $\mathcal{F}(u, v)$ of $f(x, y)$ passing through its origin and parallel to the projection line.

Volumetric Image Acquisition

- The inverse transformation to find the values $f(x, y)$ is based on the projection slice theorem.
- This theorem says that the Fourier transform $\mathcal{F}_{\theta}(w)$ of $R(\theta, \rho)$ for a fixed column θ is equal to the slice (line) $\mathcal{S}(w)$ of the Fourier transform $\mathcal{F}(u, v)$ of $f(x, y)$ passing through its origin and parallel to the projection line.
- The result is that $f(x, y)=\int_{0}^{\pi} R^{\prime}(\theta, \rho) d \theta$, where $R^{\prime}(\theta, \rho)$ are the accumulated and filtered attenuation values from all lines that passed through (x, y).

Volumetric Image Acquisition

- The inverse transformation to find the values $f(x, y)$ is based on the projection slice theorem.
- This theorem says that the Fourier transform $\mathcal{F}_{\theta}(w)$ of $R(\theta, \rho)$ for a fixed column θ is equal to the slice (line) $\mathcal{S}(w)$ of the Fourier transform $\mathcal{F}(u, v)$ of $f(x, y)$ passing through its origin and parallel to the projection line.
- The result is that $f(x, y)=\int_{0}^{\pi} R^{\prime}(\theta, \rho) d \theta$, where $R^{\prime}(\theta, \rho)$ are the accumulated and filtered attenuation values from all lines that passed through (x, y).

In 3D, the interior of the material is sampled at integer coordinates (x, y, z), spaced by short distances $\left(d_{x}, d_{y}, d_{z}\right)$, and the estimated values $f(x, y, z)$ from 2D projections are quantitized with b bits, resulting the image values $I(x, y, z) \in\left[0,2^{b}-1\right]$.

Volumetric Image Acquisition

The values $I(x, y, z)$ are also referred to as $I(p)$, where $p=\left(x_{p}, y_{p}, z_{p}\right)$ is a voxel - space element (spel) in 3D or volumetric space defined by $\left(d_{x}, d_{y}, d_{z}\right)$ around $\left(x_{p}, y_{p}, z_{p}\right)$. See the medical image coordinate systems in www.slicer.org/slicerWiki/index.php/Coordinate_systems

Image Resolution

- For a same spatial region, lower is the volume $d_{x} d_{y} d_{z}$ of a voxel (e.g., $1 \mathrm{~mm}^{3}$), higher is the number $n_{x} n_{y} n_{z}$ of voxels, and so higher is the spatial resolution of the image.

Image Resolution

- For a same spatial region, lower is the volume $d_{x} d_{y} d_{z}$ of a voxel (e.g., $1 \mathrm{~mm}^{3}$), higher is the number $n_{x} n_{y} n_{z}$ of voxels, and so higher is the spatial resolution of the image.
- For a same range of measure, shorter is the quantitization interval, higher is the number b of bits, and so higher is the radiometric resolution.

Image Resolution

- For a same spatial region, lower is the volume $d_{x} d_{y} d_{z}$ of a voxel (e.g., $1 \mathrm{~mm}^{3}$), higher is the number $n_{x} n_{y} n_{z}$ of voxels, and so higher is the spatial resolution of the image.
- For a same range of measure, shorter is the quantitization interval, higher is the number b of bits, and so higher is the radiometric resolution.
- Although CT images are often acquired with values $I(p)$ in [$-1024,3071]$ (the Hounsfield scale), 3D images are usually acquired with $b=12$ bits and then they can usually be stored with values in [0, 4095].

3D Image File Formats

- One may find several popular 3D image file formats (e.g., MINC, NIFTI, and DICOM).
- DICOM is the standard one generated by the imaging modality devices, with packages, such as gdcm, containing the functions for data manipulation.
See http:
//gdcm.sourceforge.net/wiki/index.php/Main_Page.

3D Image File Formats

- One may find several popular 3D image file formats (e.g., MINC, NIFTI, and DICOM).
- DICOM is the standard one generated by the imaging modality devices, with packages, such as gdcm, containing the functions for data manipulation.
See http:
//gdcm.sourceforge.net/wiki/index.php/Main_Page.
- Each $x y$ slice (plane) in DICOM is stored in a separated file, with location z and spatial resolution $d_{x} d_{y}$, such that the difference between subsequent locations provides d_{z} (which might be variable).

3D Image File Formats

- One may find several popular 3D image file formats (e.g., MINC, NIFTI, and DICOM).
- DICOM is the standard one generated by the imaging modality devices, with packages, such as gdcm, containing the functions for data manipulation.
See http:
//gdcm.sourceforge.net/wiki/index.php/Main_Page.
- Each $x y$ slice (plane) in DICOM is stored in a separated file, with location z and spatial resolution $d_{x} d_{y}$, such that the difference between subsequent locations provides d_{z} (which might be variable).
- The images of the slices can also be compressed, but gdcm provides the decompressing functions.

3D Image File Formats

For the sake of simplicity, we will adopt our file format, named SCN, which contains an ASCII header followed by the binary data.

SCN
$n_{x} n_{y} n_{z}$
$d_{x} d_{y} d_{z}$
b
binary data...
where $b \in\{8,16\}$ for one or two bytes per voxel, the voxel size is $\left(d_{x}, d_{y}, d_{z}\right)$, and the image size is $\left(n_{x}, n_{y}, n_{z}\right)$. The voxels are stored by following the raster order $x=0,1, \ldots, n_{x}-1$ first, $y=0,1, \ldots, n_{y}-1$ second, and $z=0,1, \ldots, n_{z}-1$ third.

- A 3D image \hat{l} is a pair $\left(D_{l}, l\right)$, in which $I(p) \in Z$ is the value of a voxel p of the image domain $D_{l} \subset Z^{3}$.
- A 3D image \hat{I} is a pair $\left(D_{I}, I\right)$, in which $I(p) \in Z$ is the value of a voxel p of the image domain $D_{l} \subset Z^{3}$.
- The values $I(p)$ are stored in a vector, in our case, such that the relation between the vector index $p \in\left[0, n_{x} n_{y} n_{z}-1\right]$ and the voxel coordinates $\left(x_{p}, y_{p}, z_{p}\right)$ is given by:

$$
\begin{aligned}
p & =x_{p}+y_{p} n_{x}+z_{p} n_{x} n_{y} \\
z_{p} & =p \div n_{x} n_{y} \\
y_{p} & =\left(p \bmod n_{x} n_{y}\right) \div n_{x} \\
x_{p} & =\left(p \bmod n_{x} n_{y}\right) \bmod n_{x}
\end{aligned}
$$

where \div and mod are the integer division and the rest of it, respectively.

See

$$
\begin{aligned}
& \text { www.ic.unicamp.br/~afalcao/mo815-3dvis/libmo815-3dvis.tar. } \\
& \text { bz2 }
\end{aligned}
$$

