Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO815 - Volumetric Image Visualization

イロト イポト イヨト イヨト

In this lecture, we will learn how to

• quickly estimate a normal vector during the surface rendering algorithm, and

 encode a normal vector o.n(p'), p' ∈ S, by using only two bytes per boundary voxel.

イロト イポト イヨト イヨト

In this lecture, we will learn how to

• quickly estimate a normal vector during the surface rendering algorithm, and

 encode a normal vector o.n(p'), p' ∈ S, by using only two bytes per boundary voxel.

• The lecture will also cover the creation of stereo renditions by surface rendering.

イロト イボト イヨト イヨト

Instead of directly obtaining the Phong's shading r(p') as a result of ray casting from each pixel $p \in D_J$, one can quickly generate distance $\hat{D} = (D_J, D)$ and index $\hat{V} = (D_J, V)$ buffers from ray casting and use them to compute $\hat{J} = (D_J, \mathbf{J})$, $\mathbf{J}(p) \leftarrow r(p')(o.r_1, o.r_2, o.r_3)$, afterwards.

$$r(p') = k_a r_a + r_d(p') \left(k_d \cos\left(\theta\right) + k_s \cos^{n_s}\left(2\theta\right)\right)$$

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Instead of directly obtaining the Phong's shading r(p') as a result of ray casting from each pixel $p \in D_J$, one can quickly generate distance $\hat{D} = (D_J, D)$ and index $\hat{V} = (D_J, V)$ buffers from ray casting and use them to compute $\hat{J} = (D_J, \mathbf{J})$, $\mathbf{J}(p) \leftarrow r(p')(o.r_1, o.r_2, o.r_3)$, afterwards.

$$r(p') = k_a r_a + r_d(p') \left(k_d \cos\left(\theta\right) + k_s \cos^{n_s}\left(2\theta\right)\right)$$

The distance map D can be used to estimate the depth shading $r_d(p')$ while the index map V can be used to estimate the normal vector at p' (i.e., to obtain θ).

・ロト ・ 雪 ト ・ ヨ ト ・

Depth shading

The depth map stores the distance $D(p) = ||p' - p_0||$, $p_0 = \phi^{-1}(p)$, between the viewing plane and the surface point p' that is reached from $p \in D_J$. The depth shading can be defined as

$$r_d(p') = H rac{d_{\max} - D(p)}{d_{\max} - d_{\min}}$$

where d_{\min} and d_{\max} are the minimum and maximum values in D.

・ 同 ト ・ ヨ ト ・ ヨ ト

The index map stores the closest voxel $V(p) = p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in S \subset D_I$ reached from $p \in D_J$.

イロト 不得 トイヨト イヨト 三日

The index map stores the closest voxel $V(p) = p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in S \subset D_I$ reached from $p \in D_J$.

• This allows normal estimation in the case of opaque objects only.

イロト 不得 トイヨト イヨト 三日

The index map stores the closest voxel $V(p) = p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in S \subset D_I$ reached from $p \in D_J$.

- This allows normal estimation in the case of opaque objects only.
- One has to be careful to avoid computations with voxels from distinct objects and distant parts of the same object.

The index map stores the closest voxel $V(p) = p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in S \subset D_I$ reached from $p \in D_J$.

- This allows normal estimation in the case of opaque objects only.
- One has to be careful to avoid computations with voxels from distinct objects and distant parts of the same object.
- This technique might create artifacts, but it performs a good job in most cases.

イロト 不得 トイヨト イヨト 三日

The index map stores the closest voxel $V(p) = p' = (\lceil x_{p'} \rceil, \lceil y_{p'} \rceil, \lceil z_{p'} \rceil) \in S \subset D_I$ reached from $p \in D_J$.

- This allows normal estimation in the case of opaque objects only.
- One has to be careful to avoid computations with voxels from distinct objects and distant parts of the same object.
- This technique might create artifacts, but it performs a good job in most cases.
- It also allows direct access to p' when the user clicks on a pixel p in the rendition $\hat{J} = (D_J, \mathbf{J})$.

Let $\mathcal{A}_r(p') = \{q \in S \mid ||q - p'|| \leq r, L(q) = L(p')\}$ be an ordered set obtained from the 8-neighbors of $p \in D_J$ in \hat{V} as visited in a counter-clockwise order. The normal vector $\mathbf{n}(p')$ can be obtained from the subsequent spels $q, q' \in \mathcal{A}_r(p') \mid q \prec q'$, as

The distance r > 0 should be a small value.

Revisiting the surface rendering algorithm

01
$$\mathbf{n}' \leftarrow \phi_r^{-1}(\mathbf{n})$$
, where $\mathbf{n} = (0, 0, 1, 0)$.
02 For each $p \in D_J$ do
03 $p_0 \leftarrow \phi^{-1}(p)$.
04 Find $\mathcal{P} = \{p_1, p_n\}$ by solving $\langle p_0 + \lambda \mathbf{n}' - f.c, f.\mathbf{n} \rangle = 0$
for each face $f \in \mathcal{F}$ of the scene, whenever they exist.
05 if $\mathcal{P} \neq \emptyset$ then
06 $p' \leftarrow \text{FindSurfacePoint}(\hat{L}, \mathcal{P})$.
07 if $p' \neq nil$ then $D(p) \leftarrow ||p' - p_0||$ and $V(p) \leftarrow p'$.
08 Compute $d_{\min} = \min_{p \in D_J} \{D(p) > 0\}$ and
 $d_{\max} = \max_{p \in D_J} \{D(p)\}$.
09 For each $p \in D_J$ do
10 Find $o.\mathbf{n}(p')$, where $V(p) = p'$, and $r_d(p')$ from $D(p)$.
11 $\mathbf{J}(p) \leftarrow \mathbf{c}(p')$ by Phong's model.

・ロト ・回ト ・ヨト ・ヨト

э

Comparison among the three approaches

Note that, for a same set S, the index-based normal estimation (right) shows less holes than the scene-based (left) and object-based (center) approaches, because it might be using parts of the internal boundary near the external one.

< 回 > < 回 > < 回 >

Comparison among the three approaches

Note that, for a same set S, the index-based normal estimation (right) shows less holes than the scene-based (left) and object-based (center) approaches, because it might be using parts of the internal boundary near the external one.

伺下 イヨト イヨト

Comparison among the three approaches

Note that, for a same set S, the index-based normal estimation (right) shows less holes than the scene-based (left) and object-based (center) approaches, because it might be using parts of the internal boundary near the external one.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Encoding the normal vectors

Let a unit vetor $\mathbf{n} = (n_x, n_y, n_z)$ be written in polar coordinates

$$n_x = \cos(b)\cos(a)$$

$$n_y = \cos(b)\sin(a)$$

$$n_z = \sin(b)$$

One may create a look-up table with unit vectors by varying a = 0, 1, ..., 359 and b = -90, -89, ..., 90, as follows.

Let $\mathbf{n}[i] = (n_x[i], n_y[i], n_z[i])$ be a look-up table of possible unit normal vectors.

01.	$i \leftarrow 1$
02.	For $b \leftarrow -90$ to 90 do
03.	$\gamma \leftarrow b rac{\pi}{180.}$
04.	For $a \leftarrow 0$ to $a = 359$ do
05.	$\alpha \leftarrow a \frac{\pi}{180.}$
06.	$\textit{n}_{\textit{x}}[i] \leftarrow \cos(\gamma) \cos(\alpha)$
07.	$\textit{n}_{\textit{y}}[i] \gets \cos(\gamma) \sin(\alpha)$
08.	$\textit{n}_{\textit{z}}[\textit{i}] \gets sin(\gamma)$
09	$i \leftarrow i + 1$

イロト 不得 トイヨト イヨト 三日

Let $\mathbf{n}[i] = (n_x[i], n_y[i], n_z[i])$ be a look-up table of possible unit normal vectors.

01.	$i \leftarrow 1$
02.	For $b \leftarrow -90$ to 90 do
03.	$\gamma \leftarrow b rac{\pi}{180.}$
04.	For $a \leftarrow 0$ to $a = 359$ do
05.	$\alpha \leftarrow a \frac{\pi}{180.}$
06.	$\textit{n}_{\textit{x}}[\textit{i}] \leftarrow \cos(\gamma) \cos(\alpha)$
07.	$\textit{n}_{\textit{y}}[\textit{i}] \gets \cos(\gamma) \sin(\alpha)$
08.	$\textit{n}_{\textit{z}}[\textit{i}] \gets sin(\gamma)$
09.	$i \leftarrow i + 1$

The idea is to store one index in 2 bytes per boundary voxel $p' \in S$.

・ロト ・ 雪 ト ・ ヨ ト ・

Therefore, for each voxel $p' \in S$ of each object o,

- one can estimate its unit normal vector $o.\mathbf{n}(p')$,
- find the index *i** of its closest unit normal **n** in the look-up table,

$$i^* = \arg \max_i \{ \langle o.\mathbf{n}(p'), \mathbf{n}[i] \rangle \},\$$

• and store the index *i*^{*} to have fast access to its surrogate **n**[*i*^{*}] when needed for the Phong's illumination model.

イロト イヨト イヨト

Stereo surface rendering

Finally, given two viewing angles α (tilt) and β (spin). One can create a stereo rendition $\hat{J} = (D_J, \mathbf{J})$ as follows.

- The view of the left eye using $(\alpha, \beta 5)$ is assigned to the red component of **J**.
- The view of the right eye using (α, β + 5) is assigned to the blue component of J.
- The average between the two views is assigned to the green component of **J**.

