Volumetric Image Visualization

Alexandre Xavier Falcão

LIDS - Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

Normal estimation for the Phong's illumination model

- In the Phong's illumination model, the angle θ must be computed between $-\mathrm{n}^{\prime}=-\phi_{r}^{-1}(\mathrm{n})$ and the normal vector o. $\mathrm{n}\left(p^{\prime}\right)$ at the surface point p^{\prime}.

$$
r\left(p^{\prime}\right)=k_{a} r_{a}+r_{d}\left(p^{\prime}\right)\left(k_{d} \cos (\theta)+k_{s} \cos ^{n_{s}}(2 \theta)\right) .
$$

Normal estimation for the Phong's illumination model

- In the Phong's illumination model, the angle θ must be computed between $-\mathrm{n}^{\prime}=-\phi_{r}^{-1}(\mathrm{n})$ and the normal vector o. $\mathrm{n}\left(p^{\prime}\right)$ at the surface point p^{\prime}.

$$
r\left(p^{\prime}\right)=k_{a} r_{a}+r_{d}\left(p^{\prime}\right)\left(k_{d} \cos (\theta)+k_{s} \cos ^{n_{s}}(2 \theta)\right)
$$

- In this lecture, we will learn when and how to estimate o.n $\left(p^{\prime}\right)$ using the two main approaches:
- scene-based normal estimation and
- object-based normal estimation.

Scene-based normal estimation

Whenever there exists high contrast in $\hat{I}=\left(D_{I}, I\right)$ between an object and its surroundings, the normal vector at a surface voxel $p \in D_{l}$ can be estimated from the gradient vector G of the scene.

$$
\begin{aligned}
\mathrm{G}(p) & =\sum_{\forall q \in \mathcal{A}_{r}(p)} I(q)-I(p) \frac{q-p}{\|q-p\|}, \\
\mathcal{A}_{r}(p) & =\left\{q \in D_{I} \mid\|q-p\| \leq r, q \neq p\right\}
\end{aligned}
$$

for small values $1 \leq r \leq 5$.

	1			
2	0	3	2	
1	1	5	8	8
	8	6	9	6

Scene-based normal estimation

- The direction of $\mathrm{G}(p)$ is orthogonal to the surface at p, but its orientation might be towards either the interior or the exterior of the object.

Scene-based normal estimation

- The direction of $\mathrm{G}(p)$ is orthogonal to the surface at p, but its orientation might be towards either the interior or the exterior of the object.
- However, the orientation of the normal vector o. $\mathrm{n}(p)$ should always be towards the exterior of the object.

Scene-based normal estimation

- The direction of $\mathrm{G}(p)$ is orthogonal to the surface at p, but its orientation might be towards either the interior or the exterior of the object.
- However, the orientation of the normal vector $o . n(p)$ should always be towards the exterior of the object.
- Given that we have segmented the objects in the scene and output a label image $\hat{L}=\left(D_{l}, L\right)$, such that $L(p) \in\{0,1, \ldots, c\}$ indicates when $p \in D_{\text {I }}$ belongs to the background, $L(p)=0$, or to one of c objects, $L(p)=j$, $j \in[1, c]$, this information can be used as follows.

Scene-based normal estimation

The normal vector o.n(p) can be defined by

$$
o . \mathrm{n}(p)= \begin{cases}\frac{-\mathrm{G}(p)}{\|\mathrm{G}(p)\|} & \text { if } L\left(p+\alpha \frac{\mathrm{G}(p)}{\|\mathrm{G}(p)\|}\right)=L(p) \\ \frac{+\mathrm{G}(p)}{\|\mathrm{G}(p)\|} & \text { if } L\left(p+\alpha \frac{\mathrm{G}(p)}{\|\mathrm{G}(p)\|}\right) \neq L(p)\end{cases}
$$

where $1 \leq \alpha \leq 2$.

Scene-based normal estimation

The normal vector o.n(p) can be defined by

$$
o . \mathrm{n}(p)= \begin{cases}\frac{-\mathrm{G}(p)}{\|\mathrm{G}(p)\|} & \text { if } L\left(p+\alpha \frac{\mathrm{G}(p)}{\|\mathrm{G}(p)\|}\right)=L(p), \\ \frac{+\mathrm{G}(p)}{\|\mathrm{G}(p)\|} & \text { if } L\left(p+\alpha \frac{\mathrm{G}(p)}{\|\mathrm{G}(p)\|}\right) \neq L(p),\end{cases}
$$

where $1 \leq \alpha \leq 2$.

For a point $p^{\prime}=\left(x_{p^{\prime}}, y_{p^{\prime}}, z_{p^{\prime}}\right)$ with real coordinates, such that $\left(\left\lceil x_{p^{\prime}}\right\rceil,\left\lceil y_{p^{\prime}}\right\rceil,\left\lceil z_{p^{\prime}}\right\rceil\right) \in D_{l}$, o.n $\left(p^{\prime}\right)$ can be obtained by interpolation from the normal vectors of the nearby spels.

Interpolation for normal estimation

The gradient vectors of the nearby spels $q_{k} \in D_{l}, k=1,2, \ldots, 8$, are used to estimate $\mathrm{G}\left(p^{\prime}\right)$ and so o.n $\left(p^{\prime}\right)$.

$$
\begin{aligned}
\mathrm{G}\left(p^{\prime}\right) & =\left(x_{p^{\prime}}-x_{q_{1357}}\right) \mathrm{G}\left(q_{2468}\right)+\left(x_{q_{2468}}-x_{p^{\prime}}\right) \mathrm{G}\left(q_{1357}\right) \\
\mathrm{G}\left(q_{2468}\right) & =\left(z_{p^{\prime}}-z_{q_{24}}\right) \mathrm{G}\left(q_{68}\right)+\left(z_{q_{68}}-z_{p^{\prime}}\right) \mathrm{G}\left(q_{24}\right) \\
\mathrm{G}\left(q_{1357}\right) & =\left(z_{p^{\prime}}-z_{q_{13}}\right) \mathrm{G}\left(q_{57}\right)+\left(z_{q_{57}}-z_{p^{\prime}}\right) \mathrm{G}\left(q_{13}\right)
\end{aligned}
$$

Interpolation for normal estimation

$$
\begin{aligned}
\mathrm{G}\left(q_{24}\right) & =\left(y_{p^{\prime}}-y_{q_{4}}\right) \mathrm{G}\left(q_{2}\right)+\left(y_{q_{2}}-y_{p^{\prime}}\right) \mathrm{G}\left(q_{4}\right) \\
\mathrm{G}\left(q_{68}\right) & =\left(y_{p^{\prime}}-y_{q_{8}}\right) \mathrm{G}\left(q_{6}\right)+\left(y_{q_{6}}-y_{p^{\prime}}\right) \mathrm{G}\left(q_{8}\right) \\
\mathrm{G}\left(q_{13}\right) & =\left(y_{p^{\prime}}-y_{q_{3}}\right) \mathrm{G}\left(q_{1}\right)+\left(y_{q_{1}}-y_{p^{\prime}}\right) \mathrm{G}\left(q_{3}\right) \\
\mathrm{G}\left(q_{57}\right) & =\left(y_{p^{\prime}}-y_{q_{7}}\right) \mathrm{G}\left(q_{5}\right)+\left(y_{q_{5}}-y_{p^{\prime}}\right) \mathrm{G}\left(q_{7}\right)
\end{aligned}
$$

Normal estimation

- Examples of high constrast between object and surroundings are skin and bones in CT images, and brain in MR-T1 images.

Normal estimation

- Examples of high constrast between object and surroundings are skin and bones in CT images, and brain in MR-T1 images.
- Bones in MR-T1 images, however, do not present good contrast with the background.

Normal estimation

- Examples of high constrast between object and surroundings are skin and bones in CT images, and brain in MR-T1 images.
- Bones in MR-T1 images, however, do not present good contrast with the background.
- Such situations require object-based normal estimation methods.

Normal estimation

- Examples of high constrast between object and surroundings are skin and bones in CT images, and brain in MR-T1 images.
- Bones in MR-T1 images, however, do not present good contrast with the background.
- Such situations require object-based normal estimation methods.
- After segmentation, these methods depend on the type of object representation.

Normal estimation

- Examples of high constrast between object and surroundings are skin and bones in CT images, and brain in MR-T1 images.
- Bones in MR-T1 images, however, do not present good contrast with the background.
- Such situations require object-based normal estimation methods.
- After segmentation, these methods depend on the type of object representation.
- Mesh-based object representation.
- Voxel-based object representation.

Normal estimation from a surface mesh

When the object's surface is represented by a mesh of polygons,

- the vertices are stored in a given order for the normal estimation of the faces from the outer product between two edges.
- Normal estimation for the vertices, along the edges and scan-lines on the faces are obtained by interpolation.

Normal estimation from boundary voxels

- When the object's boundary is a voxel set $\mathcal{S} \subset D_{l}$, the Signed Euclidean distance transform (sEDT) can be used for gradient-based normal estimation.

Normal estimation from boundary voxels

- When the object's boundary is a voxel set $\mathcal{S} \subset D_{l}$, the Signed Euclidean distance transform (sEDT) can be used for gradient-based normal estimation.
- Boundary voxels \mathcal{S} may be extracted from each object o, with $\lambda(o) \in[1, c]$, in $\hat{L}=\left(D_{l}, L\right)$ as
$\mathcal{S}=\left\{p \in D_{l} \quad \mid \exists q \in \mathcal{A}_{1}(p), L(q) \neq L(p), L(p)=\lambda(o)\right\}$

Normal estimation from boundary voxels

- When the object's boundary is a voxel set $\mathcal{S} \subset D_{l}$, the Signed Euclidean distance transform (sEDT) can be used for gradient-based normal estimation.
- Boundary voxels \mathcal{S} may be extracted from each object o, with $\lambda(o) \in[1, c]$, in $\hat{L}=\left(D_{l}, L\right)$ as

$$
\mathcal{S}=\left\{p \in D_{l} \mid \exists q \in \mathcal{A}_{1}(p), L(q) \neq L(p), L(p)=\lambda(o)\right\}
$$

- One sEDT algorithm must be executed for each object o upto a small distance $\rho \geq 1$ from \mathcal{S}, such that even the parts of its surface hidden by other objects can be visualized when the visibility of those objects is turned off.

The sEDT algorithm

Input: $\hat{L}=\left(D_{I}, L\right), \lambda(o), \rho$, and \mathcal{S} of object o.
Output: Signed distance image $\hat{C}=\left(D_{l}, C\right)$, initially with zeros.

1. For each $p \in D_{l}, C(p) \leftarrow+\infty$.
2. While $\mathcal{S} \neq \emptyset$ do
3. Remove p from $\mathcal{S}, C(p) \leftarrow 0, R(p) \leftarrow p$, and insert p in Q.
4. While $Q \neq \emptyset$ do
5. Remove $p=\arg \min _{q \in Q}\{C(q)\}$ from Q.
6. If $\sqrt{C(p)} \leq \rho$ then
7. For each $q \in \mathcal{A}_{\sqrt{3}}(p) \mid C(q)>C(p)$ do
8. $\quad t m p \leftarrow\|q-R(p)\|^{2}$.
9. If $\operatorname{tmp}<C(q)$ then
10.

If $q \in Q$ then remove q from Q.
11.
$C(q) \leftarrow t m p, R(q) \leftarrow R(p)$, and insert q in Q.
12. For each $p \in D_{\text {I }}$ do, If $C(p)=+\infty$ then $C(p) \leftarrow 0$. Else,
13. If $L(p) \neq \lambda(o)$, then $C(p) \leftarrow-C(p)$.

Normal estimation from boundary voxels

By construction, the gradient of the signed distance image $\hat{C}=\left(D_{l}, C\right)$ at a boundary voxel $p \in \mathcal{S}$ should always point towards the interior of the object. The normal vector o.n (p) can then be estimated as

$$
\begin{aligned}
o . \mathrm{n}(p) & =\frac{-\mathrm{G}(p)}{\|\mathrm{G}(p)\|} \\
\mathrm{G}(p) & =\sum_{\forall q \in \mathcal{A}_{r}(p)} C(q)-C(p) \frac{q-p}{\|q-p\|} \\
\mathcal{A}_{r}(p) & =\left\{q \in D_{l} \mid\|q-p\| \leq r, q \neq p\right\}
\end{aligned}
$$

for small values $1 \leq r \leq 5$.

Scene-based vs. Object-based approaches

Scene-based normal estimation provides renditions of better quality, but object-based normal estimation is a good approximation needed in some situations.

Scene-based (left) and object-based (right) normal estimation. The holes may come from segmentation by thresholding or thin parts of the boundary.

Scene-based vs. Object-based approaches

Scene-based normal estimation provides renditions of better quality, but object-based normal estimation is a good approximation needed in some situations.

Scene-based (left) and object-based (right) normal estimation. The holes may come from segmentation by thresholding or thin parts of the boundary.

Scene-based vs. Object-based approaches

Scene-based normal estimation provides renditions of better quality, but object-based normal estimation is a good approximation needed in some situations.

Scene-based (left) and object-based (right) normal estimation. The holes may come from segmentation by thresholding or thin parts of the boundary.

