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Shape-based image representation

Image superpixels and objects may be represented by their
contours, skeletons, and salience points.

Contours have internal and external skeletons.

The concave and convex saliences of a contour are related to
its external and internal skeletons, respectively.

Salience points of superpixels are strongly related to feature
points for image matching.
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Agenda

Multiscale contours.

Multiscale skeletons.

Salience points.
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Multiscale contours

Let S ⊂ B be a set of contour pixels extracted from a border
set B, such that Lct(p) is known for p ∈ S (previous lecture).

Let (DI ,Ar ) be a non-weighted graph for the binary image
Î = (DI , I ) and adjacency relation Ar .

Let fedt be a connectivity function defined as

fedt(〈p〉) =

{
0 if p ∈ S,
+∞ otherwise.

fedt(πp · 〈p, q〉) = (‖q − R(p)‖2)2 ,

where R(p) ∈ S is the root pixel of πp.

For some r ≥
√

2, the minimization of the cost map
V (p) = minπp∈Π{fedt(πp)} assigns to each pixel p ∈ DI the
squared Euclidean distance to its closest pixel R(p) ∈ S.
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Multiscale contours

This transformation is named Euclidean distance transform of S.

When S contains a single contour, it creates in the connectivity
map V multiscale contours (iso-contours) by subsequent exact
dilations and erosions of S [1].
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Euclidean distance transform (EDT)

The IFT algorithm for fedt can execute the EDT in O(|DI |) for
small values of r ≥

√
2.

Input: Binary image Î = (DI , I ), seed set S,
and adjacency relation Ar .

Output: Connectivity map V .
Auxiliary: Priority queue Q based on bucket sort,

root map R, and variable tmp.

For contours and surfaces, r =
√

2 and r =
√

3 are usually enough,
respectively.
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Euclidean distance transform (EDT)

01. For each p ∈ DI , do.

02. Set V (p)← +∞.

03. If p ∈ S then set V (p)← 0 and R(p)← p.

04. Insert p in Q.

05. While Q 6= ∅, do.

06. Remove p from Q such that p = arg minq∈Q{V (q)}.
07. For each q ∈ Ar (p) such that V (q) > V (p), do.

08. Set tmp ← (‖q − R(p)‖2)2.

09. If tmp < V (q), then.

10. Set V (q)← tmp and R(q)← R(p).

Note that, we may use the values in I to constrain computation
inside an object, outside it, and/or up to a threshold V (p) ≤ T .
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Euclidean distance transform (EDT)

The example shows two contours with pixel labels 1 or 2 (black)
and initial costs 0 (red). The cost of the remaining pixels is +∞.
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Euclidean distance transform (EDT)

The EDT algorithm propagates the minimum cost to all pixels
(red). It can be easily modified to propagate the contour labels in
Lct (colored regions) and the optimum-path tree of each contour
pixel (arrows) in a predecessor map P.
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Euclidean distance transform (EDT)

A skeleton by influence zones (SKIZ) can be defined by pixels p
(green) such that it exits a 4-neighbor q ∈ A1(p) with
Lct(q) > Lct(p).
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Multiscale skeletons

Each contour is related to its internal and external skeletons
(medial axes)— point sets with at least two equidistant pixels
on the contour.

By painting a ball of radius
√

V (p) for each skeleton pixel p,
one can reconstruct the shape. Filtered skeletons imply
filtered shapes.

From each contour in S, one can create internal and external
multiscale skeletons which are one-pixel-wide and connected
in all scales.
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Multiscale skeletons

Let nk be the number of pixels in a contour Sk ∈ S,
k = {1, 2, . . . ,K}.

A multiscale skeleton Ŝ = (DI ,S) is an image where S(p) is
the maximum geodesic length γ(f1, f2) between f1, f2 ∈ Sk —
feature (root) points equidistant to p ∈ DI\S [2].
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Multiscale skeletons

By labeling contour pixels pi ∈ Sk , i ∈ [1, n], with the
geodesic length Lpx(pi ) equal to fgeo(π∗p1;pi

) (previous
lecture), one can directly obtain γ(f1, f2) between any pair of
feature points (f1, f2) ∈ Sk .

γ(f 1, f 2) = min{∆, nk −∆},
∆ = |Lpx(f2)− Lpx(f1)|.

As shown next, the module |Lpx(f2)− Lpx(f1)| is not even
required for multiscale skeletonization.
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Multiscale skeletons

You may propagate Lpx(R(p)) in the EDT algorithm to every pixel
p, such that Lpx(R(p)) = Lpx(p).
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Multiscale skeletons

1. For each p ∈ DI\S, do.

2. Set S(p)← 0.

3. For each q ∈ A1(p) do.

4. If Lct(R(q)) > Lct(R(p)), then.

5. Set S(p)← +∞.

6. Else if Lct(R(q)) = Lct(R(p)), then.

7. Set ∆← Lpx(R(q))− Lpx(R(p)).

8. Set S(p)← max{S(p),mink=Lct(R(p)){∆, nk −∆}}.

Let R(p) be the feature point of p after EDT computation.

Lines 4 and 5 define the SKIZ among multiple contours.

Lines 7 and 8 define the importance S(p) based on the
geodesic length between feature points of p and its
4-adjacents q.
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Multiscale shape representation: Skeletons

By thresholding, S(p) ≥ T ∀p ∈ DI , at a given scale value T > 0,
one obtains an one-pixel-wide and connected skeleton. Higher is
T , more simplified are the skeletons.

Note that connected skeletons are guaranteed only for A√2 in the
EDT algorithm.
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Multiscale shape representation: Skeletons

An example with multiple contours.

Figure from [2].
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Multiscale shape representation: Skeletons

3D surface skeletons can be obtained by the direct extension of the
geodesic length on surfaces as importance measure [2].

Figure from [2].
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Salience points

Terminal points of the internal and external skeletons can be
directly related to convex and concave salience points on the
contour, respectively [3].
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Salience points

Let Ŝk = (DI ,Sk) be a binary image, where Sk(p) = 1 when
p ∈ DI is a skeleton point and Sk(p) = 0 otherwise. Terminal
points of the skeleton can be defined as pixels p ∈ DI with exactly
one q ∈ A√2(p)\{p} such that Sk(p) = Sk(q) = 1.

Such a definition might fail if exists q1, q2 ∈ A√2(p)\{p}, such
that Sk(p) = Sk(q1) = Sk(q2) = 1, q1 6= q2, and (q1, q2) ∈ A1.
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Salience points

An alternative is to slightly change the scale threshold used to
obtain the skeleton. Another alternative is to compute the
influence zones of the skeleton points within a small distance r
(e.g., 10) to it.

The area A and aperture angle θ of the influence zones are higher
for terminal points. By measuring A = θr2

2 , it is safe to select
points with θ above a threshold (e.g., θ > 70o).
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Salience points

Now, to determine which salience point a on a contour of
perimeter n corresponds to a terminal point c of the skeleton, we
must determine if the root R(c) = b or R(c) = d .

Let q ∈ A1(c) be the pixel used to set S(c) in the multiscale
skeletonization algorithm. Then, either

(1) R(q) = d and R(c) = b, or
(2) R(q) = b and R(c) = d .
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Salience points

For clockwise-labeled contour pixels,

(1) If R(c) = b, then a is the point with Lpx(a) obtained from

Lpx(b)− S(c)
2 .

(2) If R(c) = d , then a is the point with Lpx(a) obtained from

Lpx(d) + S(c)
2 .

For ∆ = Lpx(q)− Lpx(c), case (1) occurs when ∆ ≥ n −∆,
and case (2) occurs otherwise.

We use a sign s ∈ {−1, 1} to indicate (1) and (2), and find a

by computing δ ← Lpx(R(c)) + s S(c)
2 as the point with

Lpx(a) = δ, when δ ∈ [1, n],
Lpx(a) = δ − n, when δ > n, and
Lpx(a) = δ + n, when δ ≤ 0.
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Salience points

Once salience points on the contour are determined, their influence
zones on the contour define segments, which have influence zones
using a small distance (e.g., 10) higher outside than inside the
shape when they are convex, and the other way around when they
are concave.
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