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Shape-based image representation

An image may be represented by the internal and external
contours (boundaries) of its objects, being an external contour
often referred to as an object’s shape.

In 2D, each contour is a closed, connected, and oriented curve
(a Jordan curve).

Closed curve because it separates the interior from the exterior
of the object.

Connected curve because it can be represented by a sequence
(path) of 8-adjacent pixels (arcs).

Oriented curve because when it is followed in clockwise
orientation, its interior stays on the right side of the curve.

Each contour encodes important shape properties for object
description.
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Agenda

Challenges in contour extraction and labeling.

Algorithm for contour extraction and labeling.

Geodesic length of a contour.
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Challenges in contour extraction and labeling

Noise in binary images might create (A) an open curve, (B) a
contour with branches, and (C) a contour with bottleneck pixels.
(D) Two contours might touch each other and (E) a contour
might touch its opposite side.
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Challenges for contour pixel labeling

A morphological dilation of the object in the binary image
Î = (DI , I ) can reduce some of these problems.

The dilation creates an image Ĵ = (DI , J) such that

J(p) = max
q∈Ar (p)

{I (q)},

where Ar is from now on defined as

Ar : {(p, q) ∈ DI × DI | ‖q − p‖ ≤ r}.

In any case, the algorithm must eliminate open curves,
branches, ears at bottleneck pixels, and assign labels to pixels
of touching contours and of contours that touches their
opposite side.
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Contour pixel labeling

For a given binary image Î = (DI , I ), the algorithm must be
constrained to the border set B.

B : {p ∈ DI | I (p) = 1 and ∃q ∈ A1(p) | I (q) = 0}.

For each contour, the algorithm must return a path πp1→pn ,
wherein (pi , pi+1) ∈ A√2, i = 1, 2, . . . , n − 1, being n the size
of the contour.

It must also avoid arcs 〈p, q〉 which pass through the
object/background and take into account the anti-clockwise
orientation (i.e., I (le(p, q)) = 1 and I (ri(p, q)) = 0).
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For a given binary image Î = (DI , I ), the algorithm must be
constrained to the border set B.

B : {p ∈ DI | I (p) = 1 and ∃q ∈ A1(p) | I (q) = 0}.

For each contour, the algorithm must return a path πp1→pn ,
wherein (pi , pi+1) ∈ A√2, i = 1, 2, . . . , n − 1, being n the size
of the contour.

It must also avoid arcs 〈p, q〉 which pass through the
object/background and take into account the anti-clockwise
orientation (i.e., I (le(p, q)) = 1 and I (ri(p, q)) = 0).

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Contour pixel labeling

It starts from pixels that define valid arcs and visits the border
pixels in depth search using clockwise adjacency relation A√2.
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Contour pixel labeling

The first two lines of the algorithm are dedicated to define the
border set B (initially empty), initialize a predecessor map P, and a
label map Lpx .

1. For each p ∈ DI , set P(p)← nil and Lpx(p)← 0.

2. If I (p) = 1 and ∃q ∈ A1(p) | I (q) = 0, insert p in B.
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Contour pixel labeling

Two conditions are used for a border pixel p and an arc 〈p, q〉
be considered a valid starting pixel and a valid arc,
respectively.

Valid starting pixel p: p ∈ B, P(p) = nil , and ∃q ∈ A√
2(p) |

〈p, q〉 is a valid arc and q could also be a starting pixel.

Valid arc 〈p, q〉: q ∈ A√
2(p), q ∈ B, P(q) = nil ,

I (le(p, q)) = 1, and I (ri(p, q)) = 0.

Let’s indicate these events by Valid(p) and Valid(p, q).

Such rules cannot prevent the algorithm to start labeling silly
contours, such as (x , y)→ (x + 1, y)→ (x , y − 1),
(x , y)→ (x , y − 1)→ (x − 1, y), etc.
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Contour pixel labeling

Silly contour with a last invalid arc at the top. Labels should not
be assigned when (a) the path starts but never finishes and (b) it
finishes as a silly contour. (c)-(d) A valid contour and its pixel
labels.
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Contour pixel labeling

Therefore, once a pixel p has the starting pixel q as its
neighbor and P(p) 6= q, the contour is about to close.

At this moment, if it is not a silly contour, we can start the
labeling process.

A silly contour is detected when P(P(p)) is the starting pixel.

Therefore, the algorithm visits pixels in B in anti-clockwise
until the starting pixel is reached again. If the path is not a
silly contour, its pixels are labeled clockwise using P.
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Contour pixel labeling

03. For each s ∈ DI | Valid(s), do.

04. Set P(s)← s and insert s in Q.

05. While Q 6= ∅, do.

06. Remove p from Q.

07. For each q ∈ A√2(p), do.

08. If q = s and P(p) 6= s, then

09. If P(P(p)) 6= s, then go to 13, else go to 17.

10. If Valid(p, q), then.

11. Set P(q)← p.

12. Insert q in Q.

13. Set i ← 1.

14. While P(p) 6= p, do.

15. Set Lpx(p)← i , p ← P(p) and i ← i + 1.

16. Set Lpx(p)← i .

17. Set Q ← ∅.

One can easily change it to assign a distinct contour label.
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Contour pixel labeling

An example of the shape of a fish (left) and its contour pixels
labeled from 1 to n in clockwise orientation (right) — brighter the
pixel lower is the label.
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Geodesic length of a contour

Let (pn, p1) be a valid arc in a border set B and ΠB be the set
of all possible paths in a graph (B,A√2).

Let π∗p1;pn = 〈p1, p2, . . . , pn〉 be the shortest path from p1 to
pn in ΠB, excluding arc (p1, pn).

The length fgeo(π∗p1;pn) of π∗p1;pn is called geodesic [1].

The geodesic length of a contour in B is defined as
fgeo(π∗p1;pn) + w(pn, p1), where

fgeo(π∗p1;pn) = min
πp1;pn∈ΠB\〈p1,pn〉

{
n−1∑
k=1

w(pk , pk+1)},

w(pk , pk+1) =

{
0.9016 if ‖pk+1 − pk‖ = 1,

1.2890 if ‖pk+1 − pk‖ =
√

2.
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Geodesic length of a contour

The shorest path formulation can label each pixel pk ,
k ∈ [1, n], of a contour π∗p1;pn · 〈pn, p1〉 by the geodesic
length fgeo(π∗p1;pk

).

We will see how useful is this formulation to obtain smooth
multiscale skeletons from the shape.

As exercise, elaborate an IFT-based algorithm to extract and
label all contours in a binary image by the geodesic length
assigned to each pixel with respect to an arbitrary pixel p1 and
a valid arc (pn, p1) ∈ A√2.
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