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Introduction to Image Description

An image dataset Z may be represented by (sub)images,
superpixels, or objects, called samples.

A descriptor is an algorithm that extracts a feature vector
x(s) = (x1(s), x2(s), . . . , xn(s)) from any sample s ∈ Z.

The descriptor may also include a distance function (e.g.,
d(s, t) = ‖x(t)− x(s)‖) to compare the dissimilarity between
samples s and t in the feature space.

How can we extract and combine simple image descriptors?

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Introduction to Image Description

An image dataset Z may be represented by (sub)images,
superpixels, or objects, called samples.

A descriptor is an algorithm that extracts a feature vector
x(s) = (x1(s), x2(s), . . . , xn(s)) from any sample s ∈ Z.

The descriptor may also include a distance function (e.g.,
d(s, t) = ‖x(t)− x(s)‖) to compare the dissimilarity between
samples s and t in the feature space.

How can we extract and combine simple image descriptors?

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Introduction to Image Description

An image dataset Z may be represented by (sub)images,
superpixels, or objects, called samples.

A descriptor is an algorithm that extracts a feature vector
x(s) = (x1(s), x2(s), . . . , xn(s)) from any sample s ∈ Z.

The descriptor may also include a distance function (e.g.,
d(s, t) = ‖x(t)− x(s)‖) to compare the dissimilarity between
samples s and t in the feature space.

How can we extract and combine simple image descriptors?

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Introduction to Image Description

An image dataset Z may be represented by (sub)images,
superpixels, or objects, called samples.

A descriptor is an algorithm that extracts a feature vector
x(s) = (x1(s), x2(s), . . . , xn(s)) from any sample s ∈ Z.

The descriptor may also include a distance function (e.g.,
d(s, t) = ‖x(t)− x(s)‖) to compare the dissimilarity between
samples s and t in the feature space.

How can we extract and combine simple image descriptors?

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Agenda

This lecture covers examples of simple image descriptors and their
combination by genetic programming [1].

Color: color histogram and BIC [2].

Texture: LBP [3].

Shape: multiscale fractal dimension [4] and shape
saliences [5].

The subsequent lectures will focus on popular texture descriptors:
HoG, BoVW, and CNN.
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Color histogram

The histogram h(i) of a grayscale image Î = (DI , I ) is defined as

h(i) =
∑
∀p∈DI

δ (I (p)− i) ,

δ (I (p)− i) =

{
1, when i = I (p),
0, otherwise.

For color images Î = (DI , I), where I(p) = (I1(p), I2(p), I3(p)) in
some color space (e.g., RGB, YCbCr, Lab), this definition would
lead to a sparse and, in this case, likely ineffective feature vector
x(s) = h, where s = Î and xi (s) = h(i).
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Color histogram

The problem is addressed by dividing each axis of the color space
into fixed intervals, called bins. For a 64-bin histogram of a
24-bit-RGB image, I1 = R, I2 = G , and I3 = B, the histogram h is

h(i) =
∑
∀p∈DI

δ (V (p)− i) ,

V (p) =
R(p)

64
+ 4

[
G (p)

64

]
+ 16

[
B(p)

64

]
,

where V (p) ∈ [0, 63].

It is also common to create normalized

histograms by setting h(i)← h(i)
|DI | , i = 1, 2, . . . , 64.
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BIC — Border and Interior Classification

The BIC descriptor consists of three components.

A simple and yet effective pixel classification algorithm into
image regions defined as either border (high frequency) or
interior (low frequency).

A compact region representation based on color histograms.

A logarithmic distance function to compare histograms from
two images.
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BIC — Border and Interior Classification

Let L(p) ∈ {0, 1} indicate when p is an interior or border
pixel.

Once V (p) is computed for each pixel p ∈ DI , a pixel p is
classified as follows.

L(p) =

{
1, when ∃q ∈ A1(p) | V (q) 6= V (p), and
0, otherwise.

The normalized color histograms h0 (interior) and h1 (border)
of each region are computed and then quantized from 0 to
255 by setting h0(i)← 255h0(i) and h1(i)← 255h1(i).
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BIC — Border and Interior Classification

Assuming the L1 metric, the logarithmic distance (log2) is
encoded in the histograms by mapping hb(i), b = {0, 1} from
[0, 255] to [0, 9] (4 bits per bin) as follows.

hb(i) ←



0 if hb(i) = 0,
1 if hb(i) < 1,
2 if hb(i) < 2,
3 if hb(i) < 4,
4 if hb(i) < 8,
5 if hb(i) < 16,
6 if hb(i) < 32,
7 if hb(i) < 64,
8 if hb(i) < 128,
9 otherwise.

Finally, the histograms h0 and h1 are concatenated into a
single histogram x.
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Texture: Local Binary Patterns (LBP)

For a given grayscale image Î = (DI , I ) and adjacency set
A√2(p) = {q1, q2, . . . , q8} for p ∈ DI .

A local binary pattern B(p) ∈ [0, 255] is assigned to p by
setting each bit bk(z), k = 1, 2, . . . , 8, of z = B(p) as

bk(z) ←
{

1 if I (p) > I (qk),
0 otherwise.

The histogram of the map B can be used as LBP feature
vector.

Alternatively, DI can be divided into cells of N ×N pixels, one
LBP histogram can be extracted per cells, and the histograms
concatenated into a single feature vector per image.
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Texture: Local Binary Patterns (LBP)

However, the LBP histograms are not rotation invariant,
which has inspired many variants.

Some of them treat rotation in the distance function and
others incorporate rotation invariance in the feature vector.

The problem is also not critical, when the images are aligned.

The extension to color images can simply concatenate the
histograms from each band.
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Shape: Multiscale fractal dimension

The fractal dimension of a 2D point set S (contour, skeleton) by
Minkowski-Bouligand is a number F ∈ [0, 2],

F = 2− lim
r→0

ln(A(r))

ln(r)
,

where A(r) is the number of propagated points (area) when S is
dilated by a disk of radius r .

The fractal dimension represents the self-similarity of S when
r tends to zero.

Note that A can be obtained from the cumulative histogram
of the Euclidean distance map of S upto the distance r .
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Shape: Multiscale fractal dimension

It is known, for instance, that the fractal dimension of a koch star
(on the left) is F ≈ 1.26 [4].
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One can then fit a line to the logarithmic curve of the cumulative
histogram of the EDT (on the right) and use the slope m of the
line to estimate F = 2−m ≈ 1.23.
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Shape: Multiscale fractal dimension

By fitting a polynomial curve (on the left) and computing its first
derivative, the resulting curve F (on the right) is a feature vector
of the shape, called multiscale fractal dimension.
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Note that its maximum value (on the right) is ≈ 1.25 for some
value ln(r) ∈ [3.5, 4].
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Shape: Point/segment saliences

The dilation of a contour S by a disk of small radius r (e.g.,
r = 10) shows that the outside area Aout(p) of the influence zone
of a point p ∈ S is higher than its inside area Ain(p), when p is
convex, and the other way around when it is concave [5].
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Such areas come from the root histogram of the EDT, which can
be normalized for the purpose of shape description.
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Shape: Point/segment saliences

By considering only the salience points p ∈ S, a point-salience
feature vector can encode the respective positive (convex) and
negative (concave) areas.
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Shape: Point/segment saliences

Similar idea works for a segment-salience feature vector, when
replacing points by contour segments around the salience points.

Note that, in any case, the distance function must account for
possible shape rotations.
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Combining descriptors by genetic programming

Let {D1,D2, . . . ,Dk} be a set of descriptors such that
Di = (vi , di ), i = 1, 2, . . . , k , consists of

an algorithm vi that extracts feature vectors vi (s) and vi (t)
from samples s and t, and

a distance function di that assigns a dissimilarity value di (s, t)
in the feature space between samples s and t (e.g.,
‖vi (t)− vi (s)‖).

The distance functions di , i = 1, 2, . . . , k , can be combined
into a single distance function d using, for instance, Genetic
Programming (GP) [1].

The resulting descriptor D is called a composite descriptor.
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Combining descriptors by genetic programming

Illustration of a composite descriptor D∗ with the GP combiner C
(one may use any other optimization technique).
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Combining descriptors by genetic programming

GP is an Artificial Intelligence technique based on biological
principles of heritage and evolution.

Each candidate solution is an individual of a population, as
represented by a data structure (e.g., tree, list, stack) whose
nodes are mathematical operations, rather than a sequence of
numbers, such as in genetic algorithms.

From some initial random population, the most promising
individuals pass through genetic transformations (e.g.,
mutations) that make the population more diverse and
suitable to solve the problem.
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Combining descriptors by genetic programming

Example of individual, where the distances di , i = 1, 2, . . . , k, are
the terminal nodes of a binary tree and the remaining nodes are
other mathematical operations.

* 1d

1d 2d

/

+

sqrt

3d

d
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Combining descriptors by genetic programming

In addition to the mathematical operations (see examples in [6]),

the reproduction selects the most effective individuals to the
next population,

the crossover exchanges subtrees between selected individuals
to increase diversity, generating new trees (sons), and

the mutation replaces a subtree of a selected individual by
another subtree randomly chosen.

The individuals are assessed by a fitness function, which can be the
accuracy of classification in a validation set.
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Combining descriptors by genetic programming

The algorithm can be sketched as follows.

1. Generate an initial random population (first generation).

2. For each generation from a given maximum number do.

3. Evaluate each individual by the fitness function.

4. Select a number of the most effective ones.

5. Generate the next population by reproduction, crossover,

and mutation of the selected individuals.

6. Select the best individual as the final solution.
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