Image Description: Histogram of Oriented Gradients

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO445(MC940) - Image Analysis

• In object detection, for instance, each sample is a subimage (called window) around a candidate object.

- In object detection, for instance, each sample is a subimage (called window) around a candidate object.
- The candidate objects reduce the number of windows for analysis and they can be obtained by segmentation and simple component analysis.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- In object detection, for instance, each sample is a subimage (called window) around a candidate object.
- The candidate objects reduce the number of windows for analysis and they can be obtained by segmentation and simple component analysis.
- An example is the detection of car license plates in a grayscale image $\hat{I} = (D_I, I)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In object detection, for instance, each sample is a subimage (called window) around a candidate object.
- The candidate objects reduce the number of windows for analysis and they can be obtained by segmentation and simple component analysis.
- An example is the detection of car license plates in a grayscale image $\hat{l} = (D_I, I)$.
- The problem can be reduced to extract a HoG feature vector (or its concatenation with LBP) inside each window for pattern classification as car license plate or background.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

- In object detection, for instance, each sample is a subimage (called window) around a candidate object.
- The candidate objects reduce the number of windows for analysis and they can be obtained by segmentation and simple component analysis.
- An example is the detection of car license plates in a grayscale image $\hat{l} = (D_I, I)$.
- The problem can be reduced to extract a HoG feature vector (or its concatenation with LBP) inside each window for pattern classification as car license plate or background.
- The extension to color images can simply concatenate the HoG feature vectors of each band inside the window.

The Histogram of Oriented Gradients (HoG) is a texture descriptor, which consists of the following steps.

э

The Histogram of Oriented Gradients (HoG) is a texture descriptor, which consists of the following steps.

- Intensity normalization, gradient computation, and window definition.
- Cell definition.
- HoG computation per cell and pixel votes.
- Vote distribution.
- Coding feature vector definition.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Intensity normalization and gradient computation

 As first step, the image intensities are normalized within an interval [0 - L] (e.g., by gamma correction).

$$I'(p) = K \left[rac{I(p)}{I_{\max}}
ight]^{\gamma},$$

where $I_{\max} = \max_{\forall p \in D_I} \{I(p)\}, \gamma > 0$, and $K = 2^b - 1$.

イロト 不得 トイヨト イヨト 三日

Intensity normalization and gradient computation

 As first step, the image intensities are normalized within an interval [0 - L] (e.g., by gamma correction).

$$I'(p) = K \left[rac{I(p)}{I_{\max}}
ight]^{\gamma},$$

where $I_{\max} = \max_{\forall p \in D_I} \{I(p)\}, \gamma > 0$, and $K = 2^b - 1$.

Now, for each window of size n₁ × m₁ pixels around a candidate object, the HoG feature vector requires the estimation of a gradient vector g
 (p) at each pixel p.

$$\vec{g}(p) = \sum_{\forall q \in \mathcal{A}_r(p)} [I(q) - I(p)] \exp\left(-\frac{\|q-p\|^2}{2\sigma^2}\right) \vec{pq},$$

where $\sigma = r/3$, $\vec{pq} = \frac{q-p}{\|q-p\|}$ and $r \ge 1$.

イロト 不得 トイヨト イヨト 三日

Intensity normalization and gradient computation

 As first step, the image intensities are normalized within an interval [0 - L] (e.g., by gamma correction).

$$I'(p) = K \left[rac{I(p)}{I_{\max}}
ight]^{\gamma},$$

where $I_{\max} = \max_{\forall p \in D_I} \{I(p)\}, \gamma > 0$, and $K = 2^b - 1$.

Now, for each window of size n₁ × m₁ pixels around a candidate object, the HoG feature vector requires the estimation of a gradient vector g
 (p) at each pixel p.

$$ec{g}(p) = \sum_{\forall q \in \mathcal{A}_r(p)} \left[I(q) - I(p) \right] \exp \left(- \frac{\|q - p\|^2}{2\sigma^2} \right) ec{pq},$$

where $\sigma = r/3$, $\vec{pq} = \frac{q-p}{\|q-p\|}$ and $r \ge 1$.

• The magnitude $\|\vec{g}(p)\|$ and orientation $\theta(p)$ (angle between $\vec{g}(p)$ and x) are used as follows.

The window is further divided into an integer number of cells containing $n_2 \times m_2$ pixels each.

candidate

イロト イヨト イヨト イヨト

э

HoG computation per cell and pixel votes

• One histogram of gradient orientations per cell is obtained with *n_b* bins.

HoG computation per cell and pixel votes

- One histogram of gradient orientations per cell is obtained with *n_b* bins.
- For $n_b = 9$ bins, for instance, the bin 0 may be used to accumulate votes from pixels whose $\|\vec{g}(p)\| = 0$ and the remaining bins store votes from pixels whose $\theta(p)$ falls within $[0 44], [45 89], \ldots, [315 359]$, respectively.

イロト 不得 トイヨト イヨト 二日

HoG computation per cell and pixel votes

- One histogram of gradient orientations per cell is obtained with *n_b* bins.
- For n_b = 9 bins, for instance, the bin 0 may be used to accumulate votes from pixels whose ||g(p)|| = 0 and the remaining bins store votes from pixels whose θ(p) falls within [0 44], [45 89], ..., [315 359], respectively.
- The orientation $\theta(p)$ for $h_x(p) = \frac{g_x(p)}{\|\vec{g}(p)\|}$ and $h_y(p) = \frac{g_y(p)}{\|\vec{g}(p)\|}$ is defined as

$$heta(p) = \left\{ egin{array}{c} rac{180}{\pi}\cos^{-1}(h_{X}(p)) & ext{if } h_{y}(p) \geq 0, \ 360 - rac{180}{\pi}\cos^{-1}(h_{X}(p)) & ext{if } h_{y}(p) < 0. \end{array}
ight.$$

 Each pixel p distributes ||g(p)|| votes by trilinear interpolation between adjacent bins b₁ and b₂ of its four adjacent cells q₁, q₂, q₃, and q₄.

Window

イロト イボト イヨト イヨト

э

 Each pixel p distributes ||g(p)|| votes by trilinear interpolation between adjacent bins b₁ and b₂ of its four adjacent cells q₁, q₂, q₃, and q₄.

For θ = 30, for instance, b₁ = 22 and b₂ = 67, since the center of the 8 bins with non-zero gradient magnitude are represented by 22, 67, 112, 157, 202, 247, 292, and 337.

• The distribution of votes aims to treat relevant pixels with high gradient magnitude that might fall in adjacent cells.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- The distribution of votes aims to treat relevant pixels with high gradient magnitude that might fall in adjacent cells.
- Let (x_p, y_p, z_p), z_p = θ(p), be the coordinate of p in a 3D space.

イロト イポト イヨト イヨト

- The distribution of votes aims to treat relevant pixels with high gradient magnitude that might fall in adjacent cells.
- Let (x_p, y_p, z_p), z_p = θ(p), be the coordinate of p in a 3D space.
- Let (x_i, y_i) be the center of the cell q_i , i = 1, 2, 3, 4 and (q_1, b_1) , (q_2, b_1) , (q_3, b_1) , (q_4, b_1) , (q_1, b_2) , (q_2, b_2) , (q_3, b_2) , and (q_4, b_2) be the 8 vertices (x_i, y_i, z_i) , i = 1, 2, ..., 8, around p.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The distribution of votes aims to treat relevant pixels with high gradient magnitude that might fall in adjacent cells.
- Let (x_p, y_p, z_p), z_p = θ(p), be the coordinate of p in a 3D space.
- Let (x_i, y_i) be the center of the cell q_i , i = 1, 2, 3, 4 and (q_1, b_1) , (q_2, b_1) , (q_3, b_1) , (q_4, b_1) , (q_1, b_2) , (q_2, b_2) , (q_3, b_2) , and (q_4, b_2) be the 8 vertices (x_i, y_i, z_i) , i = 1, 2, ..., 8, around p.
- The gradient magnitude $w = \|\vec{g}(p)\|$ is a weight distributed among the 8 vertices by trilinear interpolation.

The weight $w = \|\vec{g}(p)\|$ is first distributed between points p_1 and p_2 on opposite faces, then the weights on the faces are distributed among points p_3 , p_4 , p_5 , p_6 of opposite edges, and finally the edge weights are distributed to the vertices p_7 , p_8 , p_9 , p_{10} , p_{11} , p_{12} , p_{13} , and p_{14} of the corresponding edges.

The weights w_i of each point $p_i = (x_{p_i}, y_{p_i}, z_{p_i})$, i = 1, 2, ..., 14, are computed as

$$w_{1} = w \frac{(x_{p_{2}} - x_{p})}{(x_{p_{2}} - x_{p_{1}})}$$

$$w_{2} = w \frac{(x_{p} - x_{p_{1}})}{(x_{p_{2}} - x_{p_{1}})}$$

$$w_{3} = w_{1} \frac{(y_{p_{1}} - y_{p_{4}})}{(y_{p_{3}} - y_{p_{4}})}$$

$$w_{4} = w_{1} \frac{(y_{p_{3}} - y_{p_{1}})}{(y_{p_{3}} - y_{p_{4}})}$$

イロト 不得 トイヨト イヨト 三日

$$w_{5} = w_{2} \frac{(y_{p_{2}} - y_{p_{6}})}{(y_{p_{5}} - y_{p_{6}})}$$

$$w_{6} = w_{2} \frac{(y_{p_{5}} - y_{p_{2}})}{(y_{p_{5}} - y_{p_{6}})}$$

$$w_{7} = w_{3} \frac{(z_{p_{11}} - z_{p_{3}})}{(z_{p_{11}} - z_{p_{7}})}$$

$$w_{11} = w_{3} \frac{(z_{p_{3}} - z_{p_{7}})}{(y_{p_{11}} - z_{p_{7}})}$$

$$w_{8} = w_{4} \frac{(z_{p_{12}} - z_{p_{4}})}{(z_{p_{12}} - z_{p_{8}})}$$

$$w_{12} = w_{4} \frac{(z_{p_{4}} - z_{p_{8}})}{(z_{p_{12}} - z_{p_{8}})}$$

Alexandre Xavier Falcão MO445(MC940) - Image Analysis

ヘロト ヘ団ト ヘヨト ヘヨト

æ

$$w_{10} = w_5 \frac{(z_{p_{14}} - z_{p_5})}{(z_{p_{14}} - z_{p_{10}})}$$

$$w_{14} = w_5 \frac{(z_{p_5} - z_{p_{10}})}{(z_{p_{14}} - z_{p_{10}})}$$

$$w_9 = w_6 \frac{(z_{p_{13}} - z_{p_6})}{(z_{p_{13}} - z_{p_9})}$$

$$w_{13} = w_6 \frac{(z_{p_6} - z_{p_9})}{(z_{p_{13}} - z_{p_9})}$$

Finally the weights w_i are accumulated in the corresponding bin of the cell represented by p_i , i = 7, 8, 9, 10, 11, 12, 13, 14.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

• Now, each group of $n_3 \times m_3$ cells constitutes a block.

・ロト ・回ト ・ヨト ・ヨト

э

- Now, each group of $n_3 \times m_3$ cells constitutes a block.
- Adjacent blocks are defined by stride (displacement in x and y).

Window

Block of 2x2 cells

stride of one cell

<ロト <回 > < 回 > < 回 > < 回 > <

The cell histograms in each block are concatenated from left to right, top to bottom, and normalized, to treat contrast variations. Similarly, the block feature vectors are concatenated to output a HoG feature vector for the window.

∃⇒

• Let $h_k(i)$, $i = 0, 1, ..., n_b - 1$ and $k = 1, 2, ..., n_3 \times m_3$, be the cell histograms in a block with $n_3 \times m_3$ cells.

イロト イロト イヨト イヨト 三日

- Let $h_k(i)$, $i = 0, 1, ..., n_b 1$ and $k = 1, 2, ..., n_3 \times m_3$, be the cell histograms in a block with $n_3 \times m_3$ cells.
- Their concatenation from left to right, top to bottom, generates a vector with features v_j, j = 1, 2, ..., n_b × n₃ × m₃.

イロト 不得 トイヨト イヨト 二日

- Let h_k(i), i = 0, 1, ..., n_b − 1 and k = 1, 2, ..., n₃ × m₃, be the cell histograms in a block with n₃ × m₃ cells.
- Their concatenation from left to right, top to bottom, generates a vector with features v_j, j = 1, 2, ..., n_b × n₃ × m₃.

• These features are normalized as

$$v_j = \frac{v_j}{\sqrt{\sum_{j=1}^{n_b \times n_3 \times m_3} v_j v_j} + \epsilon}$$

where ϵ is a small number.

イロト 不得 トイヨト イヨト 二日

• For instance, for a window with 126×36 pixels and cells with 6×6 pixels, each window contains 21×6 cells.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- For instance, for a window with 126×36 pixels and cells with 6×6 pixels, each window contains 21×6 cells.
- If each block is defined by 2 × 2 cells and the stride is 1 cell in x and y, each window generates 20 × 5 blocks.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- For instance, for a window with 126×36 pixels and cells with 6×6 pixels, each window contains 21×6 cells.
- If each block is defined by 2 × 2 cells and the stride is 1 cell in x and y, each window generates 20 × 5 blocks.
- The four cell histograms of 9 bins in each block are concatenated and normalized to compose a vector of 36 features per block.

・ 同 ト ・ ヨ ト ・ ヨ ト

- For instance, for a window with 126×36 pixels and cells with 6×6 pixels, each window contains 21×6 cells.
- If each block is defined by 2 × 2 cells and the stride is 1 cell in x and y, each window generates 20 × 5 blocks.
- The four cell histograms of 9 bins in each block are concatenated and normalized to compose a vector of 36 features per block.
- The feature vectors of the blocks are then concatenated to form a HoG vector with $20 \times 5 \times 36$ features.

• □ ▶ • □ ▶ • □ ▶ • □ ▶