Fundamentals of Image Processing (part III)

Alexandre Xavier Falcão
Institute of Computing - UNICAMP
afalcao@ic.unicamp.br

Connectivity-based image transformations

- In connectivity-based image transformations, the output value of a pixel p depends on the input values of a sequence of adjacent pixels with the terminus at p, named path.

Connectivity-based image transformations

- In connectivity-based image transformations, the output value of a pixel p depends on the input values of a sequence of adjacent pixels with the terminus at p, named path.
- A path connects p to the first pixel in the sequence, called root.

Connectivity-based image transformations

- In connectivity-based image transformations, the output value of a pixel p depends on the input values of a sequence of adjacent pixels with the terminus at p, named path.
- A path connects p to the first pixel in the sequence, called root.
- The root pixel is not always important, it is important the property that is propagated from it.

Connectivity-based image transformations

- In connectivity-based image transformations, the output value of a pixel p depends on the input values of a sequence of adjacent pixels with the terminus at p, named path.
- A path connects p to the first pixel in the sequence, called root.
- The root pixel is not always important, it is important the property that is propagated from it.
- It is also convevient to interpret the input image as a graph.
- Images as weighted graphs.

Agenda

- Images as weighted graphs.
- Paths, connectivity relation, and connected components.
- Images as weighted graphs.
- Paths, connectivity relation, and connected components.
- Labeling of connected components.

Images as weighted graphs

Let $\hat{l}=\left(D_{l}, \mathrm{I}\right)$ be an image and \mathcal{A} be an adjacency relation.

Images as weighted graphs

Let $\hat{l}=\left(D_{l}, \mathrm{I}\right)$ be an image and \mathcal{A} be an adjacency relation.

- A set of nodes may be a subset $\mathcal{N} \subseteq D_{\text {l }}$ of the image domain.

Images as weighted graphs

Let $\hat{l}=\left(D_{l}, \mathrm{I}\right)$ be an image and \mathcal{A} be an adjacency relation.

- A set of nodes may be a subset $\mathcal{N} \subseteq D_{\text {l }}$ of the image domain.
- $(\mathcal{N}, \mathcal{A}, \mathrm{I})$ is a graph with nodes weighted by I and arcs defined by \mathcal{A}.

Images as weighted graphs

Let $\hat{l}=\left(D_{l}, \mathrm{I}\right)$ be an image and \mathcal{A} be an adjacency relation.

- A set of nodes may be a subset $\mathcal{N} \subseteq D_{\text {I }}$ of the image domain.
- $(\mathcal{N}, \mathcal{A}, \mathrm{I})$ is a graph with nodes weighted by I and arcs defined by \mathcal{A}.
- The arcs $(p, q) \in \mathcal{A}$ may also be weighted, for instance, by $\|I(q), I(p)\|_{2}$.

Images as weighted graphs

Let $\hat{l}=\left(D_{l}, I\right)$ be an image and \mathcal{A} be an adjacency relation.

- A set of nodes may be a subset $\mathcal{N} \subseteq D_{\text {l }}$ of the image domain.
- $(\mathcal{N}, \mathcal{A}, \mathrm{I})$ is a graph with nodes weighted by I and arcs defined by \mathcal{A}.
- The $\operatorname{arcs}(p, q) \in \mathcal{A}$ may also be weighted, for instance, by $\|I(q), I(p)\|_{2}$.

By choice of \mathcal{A}, there are several ways to interpret an image as a weighted graph.

Images as weighted graphs

Let the set of nodes be $\mathcal{N}:\left\{p \in D_{I} \mid I(p) \geq 4\right\}$ and $\mathcal{A}:\left\{(q, p) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq 1\right\}$ (4-neighborhood).

An image graph does not have to include all image pixels as nodes.

Paths and connectivity relation

- A path $\pi_{p}=\left\langle p_{1}, p_{2}, \ldots, p_{K}\right\rangle$ is a sequence of adjacent pixels $\left(p_{k}, p_{k+1}\right) \in \mathcal{A}, k \in[1, K-1]$, root p_{1}, and terminus $p=p_{K}$, being $\pi_{p}=\langle p\rangle$ a trivial path.

Paths and connectivity relation

- A path $\pi_{p}=\left\langle p_{1}, p_{2}, \ldots, p_{K}\right\rangle$ is a sequence of adjacent pixels $\left(p_{k}, p_{k+1}\right) \in \mathcal{A}, k \in[1, K-1]$, root p_{1}, and terminus $p=p_{K}$, being $\pi_{p}=\langle p\rangle$ a trivial path.
- The pixel q is said connected to a pixel p if exists a path π_{q} with root at p.

Connected components

A connected component is a maximal subset $\mathcal{C} \subseteq \mathcal{N}$ in which all nodes are connected.

The graph contains two connected components.

Labeling of connected components

Let $\hat{I}=\left(D_{l}, I\right)$ be a binary image $I(p) \in\{0,1\}$ of a text, in which we would like to separate letters, words, and lines.

Hella! This is a test tロ separate letters, wards, and lines.

We may define $\mathcal{N}:\left\{p \in D_{I} \mid I(p)=1\right\}$.

Labeling of connected components

For \mathcal{A} (8-neighborhood) defined as

$$
\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq \sqrt{2}\right\}
$$

we can label each letter as a separated connected component.

$$
\begin{aligned}
& \text { Hello! This is a test } \\
& \text { to separate letters, } \\
& \text { words, and lines. }
\end{aligned}
$$

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

For \mathcal{A} (8-neighborhood) defined as

$$
\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq \sqrt{2}\right\}
$$

we can label each letter as a separated connected component.

$$
\begin{aligned}
& \text { Helo! Th s is a t st } \\
& \text { t separate letters, } \\
& \text { words, a d lie }
\end{aligned}
$$

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

For \mathcal{A} defined as

$$
\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq 5\right\}
$$

we can label each word as a separated connected component.

$$
\begin{aligned}
& \text { Hella! This is a test } \\
& \text { ta separate letters, } \\
& \text { wards, and lines. }
\end{aligned}
$$

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

For \mathcal{A} defined as

$$
\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq 5\right\}
$$

we can label each word as a separated connected component.

Hello! This to separate letters words. and lines.

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

For \mathcal{A} defined as

$$
\begin{aligned}
\mathcal{A}: \quad & \left\{(p, q) \in \mathcal{N} \times \mathcal{N}| | x_{p}-x_{q} \left\lvert\, \leq \frac{a}{2}\right.,\right. \\
& \left.\left|y_{p}-y_{q}\right| \leq \frac{b}{2}\right\},
\end{aligned}
$$

we can assign distinct labels to the lines of a text, when $a=30$ and $b=5$.

> Hello! This is a test
> ta separate letters, wards, and lines

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

For \mathcal{A} defined as

$$
\begin{aligned}
\mathcal{A}: \quad & \left\{(p, q) \in \mathcal{N} \times \mathcal{N}| | x_{p}-x_{q} \left\lvert\, \leq \frac{a}{2}\right.,\right. \\
& \left.\left|y_{p}-y_{q}\right| \leq \frac{b}{2}\right\},
\end{aligned}
$$

we can assign distinct labels to the lines of a text, when $a=30$ and $b=5$.

to separate words, and lines.

The background is not labeled, but the code assigns a random color to regions with label 0 .

Labeling of connected components

This algorithm creates a label map $L: \mathcal{N} \rightarrow\{1,2, \ldots, c\}$ of the graph components.

1. Set $I \leftarrow 1$ and, $\forall p \in \mathcal{N}$, set $L(p) \leftarrow 0$.
2. For each $r \in \mathcal{N} \mid L(r)=0$, do.
3. \quad Set $L(r) \leftarrow I$ and insert r in \mathcal{Q}.
4. While $\mathcal{Q} \neq \emptyset$, do.
5. Remove p from \mathcal{Q}.
6. For each $q \in \mathcal{A}(p) \mid L(q)=0$, do.
7. Set $L(q) \leftarrow I$ and insert q in \mathcal{Q}.
8. \quad Set $I \leftarrow I+1$.

Labeling of connected components

This algorithm creates a label map $L: \mathcal{N} \rightarrow\{1,2, \ldots, c\}$ of the graph components.

1. Set $I \leftarrow 1$ and, $\forall p \in \mathcal{N}$, set $L(p) \leftarrow 0$.
2. For each $r \in \mathcal{N} \mid L(r)=0$, do.
3. \quad Set $L(r) \leftarrow I$ and insert r in \mathcal{Q}.
4. While $\mathcal{Q} \neq \emptyset$, do.
5. Remove p from \mathcal{Q}.
6. For each $q \in \mathcal{A}(p) \mid L(q)=0$, do.
7. Set $L(q) \leftarrow I$ and insert q in \mathcal{Q}.
8. \quad Set $I \leftarrow I+1$.

A pixel q receives label $L(r)$ of its root r when it is reached by a path π_{q} from a predecessor node p.

Exercise

A rooted spanning forest P is an acyclic map that assigns to very node $q \in \mathcal{N}$ its predecessor node $P(q)=p$ in the path π_{q}, or a marker $P(q)=$ nil $\notin \mathcal{N}$ when q is a root in the map. P stores in backward all paths from the root set to every other node in \mathcal{N}.

Exercise

A rooted spanning forest P is an acyclic map that assigns to very node $q \in \mathcal{N}$ its predecessor node $P(q)=p$ in the path π_{q}, or a marker $P(q)=$ nil $\notin \mathcal{N}$ when q is a root in the map. P stores in backward all paths from the root set to every other node in \mathcal{N}.

- Change the previous algorithm to create a predecessor map P.

Exercise

A rooted spanning forest P is an acyclic map that assigns to very node $q \in \mathcal{N}$ its predecessor node $P(q)=p$ in the path π_{q}, or a marker $P(q)=$ nil $\notin \mathcal{N}$ when q is a root in the map. P stores in backward all paths from the root set to every other node in \mathcal{N}.

- Change the previous algorithm to create a predecessor map P.
- Present an algorithm to find the root r of a node p from P.

Labeling of connected components

Now, if $\mathcal{N}=D_{\text {I }}$ and \mathcal{A} is defined as
$\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq \rho\right.$ and $\left.|I(q)-I(R(p))| \leq T\right\}$,
where $T \geq 0, \rho \geq 1$, and $R(p)=r$ is the root node in π_{q} that reaches q, then the algorithm results

The root information requires to include $R(r) \leftarrow r$ in Line 3 and $R(q) \leftarrow R(p)$ in Line 7.

Labeling of connected components

Now, if $\mathcal{N}=D_{\text {I }}$ and \mathcal{A} is defined as
$\mathcal{A}: \quad\left\{(p, q) \in \mathcal{N} \times \mathcal{N} \mid\|q, p\|_{2} \leq \rho\right.$ and $\left.|I(q)-I(R(p))| \leq T\right\}$,
where $T \geq 0, \rho \geq 1$, and $R(p)=r$ is the root node in π_{q} that reaches q, then the algorithm results

The root information requires to include $R(r) \leftarrow r$ in Line 3 and $R(q) \leftarrow R(p)$ in Line 7.

Labeling of connected components

Other examples of component labeling in real images.

Labeling of connected components

Other examples of component labeling in real images.

Examples

Let's see Labeling.ipynb in notebooks.tar.gz

