Fundamentals of Image Processing (part II)

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MC940/MO445 - Image Analysis

ヘロト ヘロト ヘヨト

Adjacency-based image transformations

• We presented some point-based and adjacency-based transformations in the previous lecture.

ヘロト ヘ団ト ヘヨト ヘヨト

Adjacency-based image transformations

- We presented some point-based and adjacency-based transformations in the previous lecture.
- This lecture covers another important adjacency-based transformation: convolution.

イロト イヨト イヨト

Adjacency-based image transformations

- We presented some point-based and adjacency-based transformations in the previous lecture.
- This lecture covers another important adjacency-based transformation: convolution.
- The convolution between an image and a kernel defines a linear filtering.

イロト イヨト イヨト

- We presented some point-based and adjacency-based transformations in the previous lecture.
- This lecture covers another important adjacency-based transformation: convolution.
- The convolution between an image and a kernel defines a linear filtering.
- One may use multiple linear filters for image feature extraction in deep learning.

- Simple kernel and multi-band kernel.
- Convolution with a multi-band kernel.
- Kernel bank.
- Convolution with a kernel bank.

・ロト ・回 ト ・ ヨト ・ ヨト …

For a given adjacency A, a kernel (A, W) is a moving image, where W(q_k − p) = w_k ∈ ℜ is a weight assigned to the adjacent q_k ∈ A(p) of any pixel p, k = 1, 2, ..., K.

イロト 不得 トイヨト イヨト 三日

- For a given adjacency A, a kernel (A, W) is a moving image, where W(q_k − p) = w_k ∈ ℜ is a weight assigned to the adjacent q_k ∈ A(p) of any pixel p, k = 1, 2, ..., K.
- For images with *m* bands (e.g., color images), the kernel is a multi-band image (A, W), where W(q_k − p) = w_k ∈ ℜ^m is a weight vector assigned to the adjacent q_k ∈ A(p).

イロト 不得 トイヨト イヨト 二日

- For a given adjacency A, a kernel (A, W) is a moving image, where W(q_k − p) = w_k ∈ ℜ is a weight assigned to the adjacent q_k ∈ A(p) of any pixel p, k = 1, 2, ..., K.
- For images with *m* bands (e.g., color images), the kernel is a multi-band image (A, W), where W(q_k − p) = w_k ∈ ℜ^m is a weight vector assigned to the adjacent q_k ∈ A(p).
- For filtering an image Î = (D_I, I) with m bands, a kernel slides from (-∞, -∞) to (+∞, +∞) (top-to-bottom,left-to-right), but the filtered image is computed only for p ∈ D_J ⊆ D_I.

イロト 不得 トイヨト イヨト 三日

A 3 \times 3 \times *m* filter sliding from top to bottom and left to right over the image domain D_I .

э

A 3 \times 3 \times *m* filter sliding from top to bottom and left to right over the image domain D_I .

Different choices of kernel weights imply distinct filters.

The convolution between an image $\hat{I} = (D_I, I)$ and a filter (A, W) creates a gray-scale image $\hat{J} = (D_J, J)$,

$$J(p) = \sum_{k=1}^{K} \langle I(q_k), w_k \rangle,$$

$$I(q_k), w_k \rangle = \sum_{i=1}^{m} I_i(q_k) w_{ki},$$

for all $p \in D_I$, with D_J forced to be $\subseteq D_I$.

▲御▶ ▲陸▶ ▲陸▶

Convolution

Image function I							
	3	2	2	5			
	2	2	5	1			
	2	3	5	0			
	0	4	4	1			

Zero-padding in red

Kernel 3 x 3

-1	0	1
-2	0	2
-1	0	1

Image function J

6	1	7	-9
9	8	-2	-17
12	13	-10	-19
11	11	-9	-13

same image domain

・ロト ・回ト ・ヨト ・ヨト

æ

The convolution algorithm

• Input:
$$\hat{l} = (D_I, I)$$
 and $\{dx_k, dy_k, w_k\}$, $k = 1, 2, ..., K$.
• Output: $\hat{J} = (D_J, J)$.
1. For each $p = (x_p, y_p) \in D_J$, do
2. $J(p) \leftarrow 0$.
3. For $k \leftarrow 1, 2, ..., K$, do
4. $q = (x_q, y_q) \leftarrow (x_p + dx_k, y_p + dy_k)$
5. If $q = (x_q, y_q) \in D_I$, then
6. $J(p) \leftarrow J(p) + \langle I(q) \cdot w_k \rangle$.

・ロト ・回ト ・ヨト ・ヨト

æ

• The Sobel filters, for example, can enhance vertical and horizontal edges of \hat{l} . The corresponding moving images, in which the origin p is the central pixel, are

• • = • • = •

Image filtering for feature extraction

The Sobel-vertical-edge kernel can enhance the characters of a car plate and, as we will see later, the integral image can be exploited to assign higher scores to the best candidate locations.

Convolution with a kernel bank

The convolution between an image $\hat{I} = (D_I, I)$ and a set (bank) of b kernels $\{(A, W_j)\}_{j=1}^b$ produces an image $\hat{J} = (D_J, J)$ with b bands $J_j, j \in [1, b]$,

$$J_j(p) = \sum_{k=1}^{K} \langle I(q_k), w_{k,j} \rangle.$$

▲御▶ ▲注▶ ▲注▶

Convolution with a kernel bank

The convolution between an image $\hat{I} = (D_I, I)$ and a set (bank) of b kernels $\{(A, W_j)\}_{j=1}^b$ produces an image $\hat{J} = (D_J, J)$ with b bands $J_j, j \in [1, b]$,

$$J_j(p) = \sum_{k=1}^{K} \langle I(q_k), w_{k,j} \rangle.$$

The adjacency A is usually fixed for all kernels because the convolution can be very efficiently computed by matrix multiplication using parallel programming.

Convolution with a kernel bank

The convolution between an image $\hat{I} = (D_I, I)$ and a set (bank) of b kernels $\{(A, W_j)\}_{j=1}^b$ produces an image $\hat{J} = (D_J, J)$ with b bands $J_j, j \in [1, b]$,

$$J_j(p) = \sum_{k=1}^K \langle I(q_k), w_{k,j} \rangle.$$

The adjacency \mathcal{A} is usually fixed for all kernels because the convolution can be very efficiently computed by matrix multiplication using parallel programming.

One can also reduce the number of bands from *m* to b < m by convolving an image with *b* filters of size $1 \times 1 \times m$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A kernel bank $\{(\mathcal{A}, W_j)\}_{j=1}^{b}$ may be organized such that the weights $w_{k,j}$ of each kernel (\mathcal{A}, W_j) are placed along column j, forming a kernel matrix \mathcal{K} .

$$\mathcal{K} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,b} \\ w_{2,1} & w_{2,2} & \dots & w_{2,b} \\ \vdots & \vdots & \vdots & \vdots \\ w_{K,1} & w_{K,2} & \dots & w_{K,b} \end{bmatrix}_{mK \times b}$$

where each vector $\mathbf{w}_{k,j} \in \Re^m$ is a column matrix.

For an image (D_I, I) and adjacency \mathcal{A} , the vectors $I(q_{i,k}) \in \mathbb{R}^m$ of $q_{i,k} \in \mathcal{A}(p_i), k \in [1, K]$, adjacent to each pixel $p_i \in D_I$, $i \in \{1, 2, \ldots, |D_I|\}$, are organized along the rows of a data matrix \mathcal{X}_I .

$$\mathcal{X}_{I} = \begin{bmatrix} \mathsf{I}(q_{1,1}) & \mathsf{I}(q_{1,2}) & \dots & \mathsf{I}(q_{1,K}) \\ \mathsf{I}(q_{2,1}) & \mathsf{I}(q_{2,2}) & \dots & \mathsf{I}(q_{2,K}) \\ \vdots & \vdots & \vdots & \vdots \\ \mathsf{I}(q_{|D_{I}|,1}) & \mathsf{I}(q_{|D_{I}|,2}) & \dots & \mathsf{I}(q_{|D_{I}|,K}) \end{bmatrix}_{|D_{I}| \times mK}$$

where each vector $I(q_{i,k}) \in \Re^m$ is a row matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

The multiplication $\mathcal{X}_I \mathcal{K}$ outputs a matrix \mathcal{X}_J ,

$$\mathcal{X}_{J} = \begin{bmatrix} J(p_{1}) \\ J(p_{2}) \\ \vdots \\ J(p_{|D_{l}|}) \end{bmatrix}_{|D_{l}| \times b}$$

where each vector $J(p_i) \in \Re^b$, $i = 1, 2, ..., |D_l|$, is a row matrix.

That is, \mathcal{X}_J is the matrix organization of the filtered image (D_J, J) , $D_J = D_I$.

イロト 不得 トイヨト イヨト 三日

Let's see Convolution.ipynb in notebooks.tar.gz

э