Fundamentals of Image Processing (part I)

Alexandre Xavier Falcão
Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Fundamentals of Image Processing

Image processing [1] is the area of Computer Science that transforms images from one representation to another for

- quality enhancement,
- geometric transformations,
- reconstruction from projections,
- coding (compression), decoding,
- representation, description,
- segmentation, ...

Fundamentals of Image Processing

Most image transformations may be divided into three categories.

Fundamentals of Image Processing

Most image transformations may be divided into three categories.

- point-based transformations: the value of a pixel p in the ouput image depends only on the value of p in the input image(s).
- adjacency-based transformations: the value of a pixel p in the ouput image depends on the values of its adjacent pixels in the input image.
- connectivity-based transformations: the value of a pixel p in the ouput image depends on the values of a sequence of adjacent pixels in the input image(s) with terminus at p.

Fundamentals of Image Processing

Most image transformations may be divided into three categories.

- point-based transformations: the value of a pixel p in the ouput image depends only on the value of p in the input image(s).
- adjacency-based transformations: the value of a pixel p in the ouput image depends on the values of its adjacent pixels in the input image.
- connectivity-based transformations: the value of a pixel p in the ouput image depends on the values of a sequence of adjacent pixels in the input image(s) with terminus at p.

The initial lectures will provide concepts and examples from the above categories that are important for this course.

- Digital Images: definition and representation.
- Point-based transformations.
- Adjacency relations and simple morphological operations.

Gray-scale image

A gray-scale image may be acquired from an array of sensors that measure light reflection on visible object points (sampling), transforming those measures into integer numbers (quantization).

Gray-scale image

A gray-scale image may be acquired from an array of sensors that measure light reflection on visible object points (sampling), transforming those measures into integer numbers (quantization).

Sampling and quantization

- Sampling: A continuous function $f(x, y)$ of light reflection is measured on the 2D array of sensors at $p=(x, y)$ positions (pixels) separated by $\left(d_{x}, d_{y}\right)$ (spatial resolution) to form a discrete function $I(x, y)$.

$$
\begin{aligned}
I(x, y) & =f(x, y) \sum_{j=0}^{n_{y}-1} \sum_{i=0}^{n_{x}-1} \delta\left(x-i d_{x}, y-j d_{y}\right) \\
\delta\left(x-i d_{x}, y-j d_{y}\right) & = \begin{cases}1 & \text { if } x=i d_{x} \text { and } y=j d_{y}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

- Quantization: The values $I(x, y)$ are quantitized into integer values $I(p) \in\left[0,2^{b}-1\right]$ of b bits (image depth).

Digital image

- Images may be acquired using multiple filters of distinct wavelengths, which creates a grayscale image for each channel (band).
- By image processing, the image values can also be transformed into real values.
- Formally, a 2D multi-band image \hat{l} is a pair $\left(D_{l}, I\right)$ in which $I(p) \in \Re^{m}$ assigns m scalar values to each pixel $p \in D_{l} \subset \mathcal{Z}^{2}$.
- The image domain D_{I} may also have more than 2 dimensions, but this is out of the scope of this course.

Digital image

For $m=3$ bands, each pixel p is represented by a point $I(p)=\left(I_{1}(p), I_{2}(p), I_{3}(p)\right) \in \Re^{3}$.

A color image with its three color components (gray-scale images).

Representation

A gray-scale image (or each band of a color image) may be stored in a 2 D array $I\left(x_{p}, y_{p}\right)$ or a vector $I(p)$,

$$
\begin{aligned}
p & =x_{p}+y_{p} n_{x} \\
x_{p} & =p \% n_{x} \\
y_{p} & =\left\lfloor p / n_{x}\right\rfloor
\end{aligned}
$$

Point-based operations

Examples of point-based operations are mathematical operations between images.

- Let $\hat{I}=\left(D_{l}, I\right)$ and $\hat{\jmath}=\left(D_{l}, J\right)$ be two gray-scale images with the same domain and \odot be any logical/arithmetical operation.
- The resulting image $\hat{K}=\left(D_{l}, K\right)=\hat{l} \odot \hat{\jmath}$ is obtained by applying the operation pixel by pixel.
- Adition and subtraction: $K(p)=I(p)+J(p)$ and $K(p)=I(p)-J(p)$.
- Union and intersection: $K(p)=\max \{I(p), J(p)\}$ and $K(p)=\min \{I(p), J(p)\}$.

Point-based operations

Mathematical operations might also involve \hat{I} and a scalar or a function to create \hat{K}.

- Square root $\hat{K}=\sqrt{\hat{I}}: K(p)=\sqrt{I(p)}$.
- Logarithm $\hat{K}=\log \hat{I}: K(p)=\log I(p)$.
- Module of the difference $\hat{K}=|\hat{I}-\hat{J}|: K(p)=|I(p)-J(p)|$.

Point-based operations

- Point-based operations may involve color space transformations for image representation.
- From RGB to YCbCr color space, an RGB image \hat{I} can be transformed into a YCbCr image \hat{K} pixel by pixel as follows.

$$
\left[\begin{array}{l}
K_{1}(p) \\
K_{2}(p) \\
K_{3}(p)
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
-0.169 & -0.331 & 0.500 \\
0.500 & -0.419 & -0.081
\end{array}\right]\left[\begin{array}{c}
I_{1}(p) \\
I_{2}(p) \\
I_{3}(p)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{2^{b}}{2} \\
\frac{2^{b}}{2}
\end{array}\right]
$$

where b is the depth of image \hat{l}.

Adjacency relation

An adjacency relation $\mathcal{A} \subseteq D_{\text {I }} \times D_{\text {l }}$ may be defined in the image domain and/or feature space as a binary relation.

- $\mathcal{A}_{1}:\left\{(p, q) \in D_{I} \times D_{l} \mid\|q-p\| \leq \alpha_{1}\right\}$,
- $\mathcal{A}_{2}:\left\{(p, q) \in D_{I} \times D_{I} \mid\|I(q)-I(p)\| \leq \alpha_{2}\right\}$,
- $\mathcal{A}_{3}:\left\{(p, q) \in D_{I} \times D_{I} \mid\|q-p\| \leq \alpha_{1}\right.$ and $\left.\|I(q)-\mathrm{I}(p)\| \leq \alpha_{2}\right\}$, $\alpha_{1}, \alpha_{2} \in \Re^{+}$, such that $\mathcal{A}(p)$ is the set of pixels q adjacent to p.

Adjacency relation

An adjacency relation $\mathcal{A} \subseteq D_{\text {I }} \times D_{\text {I }}$ may be defined in the image domain and/or feature space as a binary relation.

- $\mathcal{A}_{1}:\left\{(p, q) \in D_{I} \times D_{I} \mid\|q-p\| \leq \alpha_{1}\right\}$,
- $\mathcal{A}_{2}:\left\{(p, q) \in D_{I} \times D_{I} \mid\|I(q)-I(p)\| \leq \alpha_{2}\right\}$,
- $\mathcal{A}_{3}:\left\{(p, q) \in D_{I} \times D_{I} \mid\|q-p\| \leq \alpha_{1}\right.$ and $\left.\|I(q)-\mathrm{I}(p)\| \leq \alpha_{2}\right\}$, $\alpha_{1}, \alpha_{2} \in \Re^{+}$, such that $\mathcal{A}(p)$ is the set of pixels q adjacent to p.

For the image on the right, what is the adjacency set of $p=(2,3)$ for $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3}, when
$\alpha_{1}=\sqrt{5}$ and $\alpha_{2}=0$?

Adjacency relation

- It is said translation-invariant when $\mathcal{A}:\left\{\left(p, q_{k}\right) \in D_{I} \times D_{l} \mid\right.$ $\left.\left(x_{q_{k}}, y_{q_{k}}\right)-\left(x_{p}, y_{p}\right)=\left(d x_{k}, d y_{k}\right), k=1,2, \ldots, K\right\}$, where $\left\{\left(d x_{k}, d y_{k}\right)\right\}$ is a set of K displacements.

Adjacency relation

- It is said translation-invariant when $\mathcal{A}:\left\{\left(p, q_{k}\right) \in D_{I} \times D_{l} \mid\right.$ $\left.\left(x_{q_{k}}, y_{q_{k}}\right)-\left(x_{p}, y_{p}\right)=\left(d x_{k}, d y_{k}\right), k=1,2, \ldots, K\right\}$, where $\left\{\left(d x_{k}, d y_{k}\right)\right\}$ is a set of K displacements.
- One can store the displacements and generate the set $\mathcal{A}(p)=\left\{q_{k}\right\}, q_{k}=\left(x_{q_{k}}, y_{q_{k}}\right)=\left(x_{p}+d x_{k}, y_{p}+d y_{k}\right)$, $k=1,2, \ldots, K$, for any $p \in D_{l}$.

Adjacency relation

- It is said translation-invariant when $\mathcal{A}:\left\{\left(p, q_{k}\right) \in D_{I} \times D_{I} \mid\right.$ $\left.\left(x_{q_{k}}, y_{q_{k}}\right)-\left(x_{p}, y_{p}\right)=\left(d x_{k}, d y_{k}\right), k=1,2, \ldots, K\right\}$, where $\left\{\left(d x_{k}, d y_{k}\right)\right\}$ is a set of K displacements.
- One can store the displacements and generate the set $\mathcal{A}(p)=\left\{q_{k}\right\}, q_{k}=\left(x_{q_{k}}, y_{q_{k}}\right)=\left(x_{p}+d x_{k}, y_{p}+d y_{k}\right)$, $k=1,2, \ldots, K$, for any $p \in D_{l}$.
For fixed displacements $\{(-2,-1),(0,2)\}$, examples of sets $\mathcal{A}(p)=\left\{q_{1}, q_{2}\right\}$ are

Adjacency relation

Rectangular adjacency relations \mathcal{A} are very popular.

$$
\mathcal{A}(p)=\left\{q \in D_{l}|\quad| x_{q}-x_{p} \left\lvert\, \leq \frac{w}{2} \quad\right. \text { and } \quad\left|y_{q}-y_{p}\right| \leq \frac{h}{2}\right\}
$$

Which are the neighbors of $p=(2,3)$ when $w=3$ and $h=5$?

Simple morphological operations

- A dilation $\hat{\jmath}=\hat{\jmath} \oplus \mathcal{A}$ is obtained pixel by pixel as

$$
J(p)=\max _{q \in \mathcal{A}(p)}\{I(q)\}
$$

Simple morphological operations

- A dilation $\hat{\jmath}=\hat{\jmath} \oplus \mathcal{A}$ is obtained pixel by pixel as

$$
J(p)=\max _{q \in \mathcal{A}(p)}\{I(q)\}
$$

- It reduces dark regions, increases bright ones, and is also known as max-pooling.

Simple morphological operations

- A dilation $\hat{\jmath}=\hat{\imath} \oplus \mathcal{A}$ is obtained pixel by pixel as

$$
J(p)=\max _{q \in \mathcal{A}(p)}\{I(q)\}
$$

- It reduces dark regions, increases bright ones, and is also known as max-pooling.
- Compute $\hat{\jmath}=\hat{\imath} \oplus \mathcal{A}$ when \mathcal{A} is a 4-neighborhood relation.

-2	3	7	8
-8	-2	6	-9
8	1	2	7
7	9	-8	0

3	7	8	8
8	6	7	8
8	9	7	7
9	9	9	7

Dilation algorithm

Input: $\hat{I}=\left(D_{l}, I\right)$ and \mathcal{A}.
Output: $\hat{\jmath}=\left(D_{l}, J\right)$.
(1) For each $p \in D_{l}$, do
(2) $J(p) \leftarrow I(p)$.
(3) For every $q \in \mathcal{A}(p) \backslash\{p\}$, such that $q \in D_{l}$, do
(9) If $I(q)>J(p)$, then
(6) $J(p) \leftarrow I(q)$.
(0) Return $\hat{\jmath}$.

Dilation algorithm

Input: $\hat{I}=\left(D_{l}, I\right)$ and \mathcal{A}.
Output: $\hat{\jmath}=\left(D_{l}, J\right)$.
(1) For each $p \in D_{l}$, do
(2) $J(p) \leftarrow I(p)$.
(3) For every $q \in \mathcal{A}(p) \backslash\{p\}$, such that $q \in D_{l}$, do
(9) If $I(q)>J(p)$, then
(6) $J(p) \leftarrow I(q)$.
(0) Return $\hat{\jmath}$.

When combined with its dual operation, named erosion, they can create several types of morphological filters.

Examples

Let's see MathMorphology.ipynb in notebooks.tar.gz
[1] Rafael C. Gonzalez and Richard E. Woods.
Digital Image Processing (4th Edition).
Pearson, 2018.
www.imageprocessingplace.com.

