
© 2007 Carnegie Mellon University 1

Evaluating a Service-Oriented Architecture Tutorial

© 2007 Carnegie Mellon University

Evaluating a Service-Oriented 
Architecture

Paulo Merson
Software Engineering Institute

SBCARS, Campinas, 29-August-2007

2
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Goal of this tutorial:

• Offer practical information to help the 
evaluation of the architecture of an SOA 
system



© 2007 Carnegie Mellon University 2

Evaluating a Service-Oriented Architecture Tutorial

3
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Agenda

Introduction

Architecture Representation, Stakeholders, QA Requirements

SOA Architectural Approaches

SOA Design Questions

Closing

4
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

What is Service Oriented Architecture?

SOA is an architectural style where systems consist of service 
users and service providers

A service is
a self-contained, 
distributed component 
with a published interface 
that stresses interoperability,
is discoverable and 
dynamically bound.

But what is 
a service?



© 2007 Carnegie Mellon University 3

Evaluating a Service-Oriented Architecture Tutorial

5
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

SOA and Web Services

SOA is an architectural style

Web Services is a technology used to implement SOA

6
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

How Does It Work?

An example…

Order
Processing
Notification

Package
Tracking
Service

Directory
of

Services

Web store Carrier company
Service user Service provider

1
2

3

4

5

register service
query service

service contract
and address

getPackHistory(#30942)

response

UDDI registry

MS .NET
application

J2EE service

SOAP message 
over http

Key:

service endpoint 
in WSDL



© 2007 Carnegie Mellon University 4

Evaluating a Service-Oriented Architecture Tutorial

7
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Drivers for SOA

Better reuse of IT assets

Corporate mergers and acquisitions

Changing business partnerships (e.g., a new supplier)

Modernization of obsolete systems for financial, functional or technical 
reasons

Integration with legacy systems

8
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Agenda

Introduction

Architecture Representation, Stakeholders, QA Requirements

SOA Architectural Approaches

SOA Design Questions

Closing



© 2007 Carnegie Mellon University 5

Evaluating a Service-Oriented Architecture Tutorial

9
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Architecture Representation

Multiple views document the multiple structures of a software system

There are different types of views, e.g.:

• Module views

• Runtime views

• Deployment views

• Data model The runtime view best 
captures the service-

oriented design

10
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Runtime View – Adventure Builder System



© 2007 Carnegie Mellon University 6

Evaluating a Service-Oriented Architecture Tutorial

11
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Stakeholders (1)

Stakeholders are people with a vested interest in a system

A diverse group of stakeholders decreases the risk of overlooking 
important concerns in the architecture

• Architects, developers, testers, integrators and project managers 

• Sponsors, end users, business analysts, security officers

• System administrators, DBA, operators, network administrators

• And others Don’t forget:
• service users if the system 

is a service provider
• service providers if the 

system is a service user

12
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Stakeholders (2)

Marketing
stakeholder

Behavior,
performance,

security,
reliability,
usability!

Low cost,
keeping people

employed, leveraging 
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Architect

Development
organization’s
management
stakeholder

End-user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

How can I make 
sure the system 

has all that?



© 2007 Carnegie Mellon University 7

Evaluating a Service-Oriented Architecture Tutorial

13
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Quality Attributes in SOAs

Interoperability

Performance

Security

Availability and reliability

Modifiability

Testability

Quality attribute 
requirements (non-

functional requirements) 
can be specified as 

quality attribute scenarios

14
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

SOA General Quality Attribute Scenarios (1)

Interoperability:

• A new business partner that uses platform ‘X’ is able to implement a service user 
module that works with our available services in platform ‘Y’ in two person-days

Performance:

• The service provider can process up to ‘X’ simultaneous requests during normal 
operation keeping the response time on the server less than ‘Y’ seconds

Modifiability:

• The interface of a service that is publicly available changes; the old version is 
maintained for 12 months and existing service users are not affected in that period



© 2007 Carnegie Mellon University 8

Evaluating a Service-Oriented Architecture Tutorial

15
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

SOA General Quality Attribute Scenarios (2)

Security:
• An unauthorized service user attempts to invoke a protected service 

provided by the system; the system rejects the attempt and notifies the 
system administrator

Availability:
• Unscheduled server maintenance is required on server ‘X’; the system 

remains operational in degraded mode during maintenance 

Reliability:
• A external service provider is unavailable; modules that use that service 

respond appropriately regarding the unavailability of the external service 
and the system continues to operate without failures

16
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Agenda

Introduction

Architecture Representation, Stakeholders, QA Requirements

SOA Architectural Approaches

SOA Design Questions

Closing



© 2007 Carnegie Mellon University 9

Evaluating a Service-Oriented Architecture Tutorial

17
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

SOA Architectural Approaches

Communication Approaches

Integration Approaches

BPEL

Static vs. Dynamic Web Services

18
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

SOA Communication Approaches

How’s the communication between service user and provider?

Main alternatives:

• Web Services (SOAP)

• REST

• Messaging systems
The SOA environment may 
involve a mix of these along 

with legacy protocols



© 2007 Carnegie Mellon University 10

Evaluating a Service-Oriented Architecture Tutorial

19
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Web Services – RPC-Encoded SOAP

Service 
user

Component
(service 

implementation)

Wrapper that realizes 
Web services interface

Operation
Method

Operations map to methods

SOAP request: named 
operation with named and 
encoded parameters

SOAP response with 
named and encoded 
return values

Key: Service user component 
(e.g., .NET Windows 
application)

Service provider 
component 
(e.g., EJB)

http Native call-and-
return mechanism

20
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Web Services – Document-Literal SOAP

Validation and 
transformation 

of business 
document

Wrapper that realizes 
Web services interfaceSOAP request: arbitrary 

XML business document

SOAP response: 
arbitrary XML business 
document with 
processing results

Processing 
request

Key: Service user component 
(e.g., .NET Windows 
application)

Service provider 
component 
(e.g., EJB)

http Native call-and-
return mechanism

Service 
user

XML schema
(ex: PlaceOrder.xsd)

Method



© 2007 Carnegie Mellon University 11

Evaluating a Service-Oriented Architecture Tutorial

21
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Document-Literal vs. RPC-Encoded

☺ More flexibility in changing 
definition of business documents

/ Clients more susceptible to 
interface changes

☺ Allows other parsing technologies/ Requires DOM parsing
Modifiability

Performance ☺ No encoding overhead/ Processing overhead to 
encode payloads

/ Harder to implement and debug 
XML schemas, processing and 
transformation code

☺ Service interfaces closer to 
programming language

Interoperability ☺ Recommended by WS-I
Document LiteralRPC-Encoded 

/ Less interoperable due to 
SOAP encoding

22
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Representational State Transfer – REST

Resource. Examples:
• Current weather for zip code 15219

• Temperature averages for city Pittsburgh in May

Resource URI. Examples:
• http://www.weather.com/current/zip/15219

• http://www.weather.com/avg/city/Pittsburgh?month=5

For each resource, there is a representation
• Format is usually XML. Example:
<w:Weather>

<time>Current</time>
<locationType>zip code</locationType>
<locationValue>15219</locationValue>
<temperature unit="Celsius">12</temperature>

</w:Weather>

Operations on resources

http deleteDelete
http putUpdate
http getRetrieve
http postCreate



© 2007 Carnegie Mellon University 12

Evaluating a Service-Oriented Architecture Tutorial

23
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

REST Compared to SOAP-Based Web Services

REST is better:

• Interoperability – requires only http support

• Easier to learn

• Modifiability – only the data contract has to be understood, the interface 
contract is uniform

• Performance – no intermediaries or marshalling required

SOAP-Based Web Services is better:

• Tool support

• Support for security, reliable messaging
and transaction management

• “Network knowledge” and skill base due
to widespread adoption

You can always provide 
both SOAP and REST 

interfaces for your services

24
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Messaging Systems

Based on IBM WebSphere MQ, Microsoft MSMQ, Oracle AQ, SonicMQ
and similar products

Offer asynchronous message exchanges (point-to-point or pub-sub)

Benefits:

• Reliability

• Loose coupling

• Scalability

Challenges:

• Asynchronous model is more complex

• Interoperability – proprietary messaging systems
require bridges to interact

WS-ReliableMessaging or 
WS-Reliability will help with 
the interoperability problem



© 2007 Carnegie Mellon University 13

Evaluating a Service-Oriented Architecture Tutorial

25
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Integration Approach

There are multiple possible integration approaches

Commonly divided into:
• Direct point-to-point 

• Hub-and-spoke or ESB
(Enterprise Service Bus)

26
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Direct Point-to-Point vs. ESB



© 2007 Carnegie Mellon University 14

Evaluating a Service-Oriented Architecture Tutorial

27
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Direct Point-to-Point

Services are directly connected between applications

Each application must adapt to each connected service:

• Service location 

• Interface technology (e.g., asynchronous/synchronous, SOAP vs. REST)

• Security (authentication, authorization and privacy)

• Versioning

28
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

ESB

Services connect to a common backbone using Web services, other standards or 
adapters
Capabilities:

• Web services support
• Connectivity to different technologies through adapters
• Message routing:

— Fixed A-to-B or based on content, availability, load-balancing or other rules 
— One-to-many or many-to-one (message aggregation)

• Data transformation (format, content based on business rule, splitting and merging)
• Advanced tooling (e.g., graphical routing definitions, runtime monitoring)



© 2007 Carnegie Mellon University 15

Evaluating a Service-Oriented Architecture Tutorial

29
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Point-to-Point and ESB Tradeoffs

/ Higher cost and complexity of 
initial implementation

☺ No extra costCost

☺ Supports integration of diverse 
platforms

/ No special support for 
interoperability between 
service users and providers 

Interoperability

☺ Allows independent 
management of security for 
each service

/ Authentication and 
authorization managed case-
by-case by each service

Security

/ Transformation and routing 
overhead

☺ No transformation and routing 
overhead

Performance

Modifiability ☺ Service interfaces may change 
and compatibility is managed in 
the ESB in many cases

ESBPoint-to-Point

/ Changes to a service 
interface induces change to 
all connected applications

30
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Direct Point-to-Point or ESB?

Point-to-Point is most acceptable in environments that are:

• Small in number of services and applications

• Homogenous in technology

• Low pace of change (business and technology)

ESB is most acceptable in environments that are:

• Large

• Technically diverse

• Rapidly changing



© 2007 Carnegie Mellon University 16

Evaluating a Service-Oriented Architecture Tutorial

31
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

BPEL

Business Process Execution Language (BPEL) is an XML-based standard 
language to model business processes

Service users and providers are called “partners” and interact primarily via 
Web Services and messaging 

Includes operations like invoke, receive, reply, throw, wait, switch, while

BPEL tools allow non-technical developers to create workflows visually

BPEL code is deployed to a BPEL engine (aka BPEL server) 

An event triggers the workflow and the BPEL engine coordinates 
invocation of services using the BPEL code as a script

32
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

BPEL Quality Attributes Considerations

Enhanced modifiability

• BPEL allows externalizing process flow logic from source code

• Changing business process workflows is easier in visual BPEL tools

Interoperability

• BPEL engine allows systems in disparate platforms to interoperate

• But BPEL standard is still emerging and interoperability has limitations

Improved reliability due to better constrained sequencing of service 
interactions and error handling (compared to custom-developed workflow)

Performance overhead due to BPEL code interpretation

Higher cost and complexity in initial implementation



© 2007 Carnegie Mellon University 17

Evaluating a Service-Oriented Architecture Tutorial

33
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

BPM, BPMN and BPEL

BPM (business process management) is a generic term related to:

• methods, techniques and tools to design, execute and monitor business 
processes

BPMN (business process modeling notation) is a standard graphical 
notation for drawing business process workflows

BPEL is an XML-based process modeling language 

• BPEL has no standard graphical notation

— Some BPEL tool vendors used their own graphical notations;
others adopted BPMN

— Mapping between BPMN and BPEL is not always straightforward

34
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Static vs. Dynamic Web Services (1)

Static binding of service user and provider

• Service location is known when service user is developed or deployed



© 2007 Carnegie Mellon University 18

Evaluating a Service-Oriented Architecture Tutorial

35
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Static vs. Dynamic Web Services (2)

Dynamic binding:

• Provider must register the service with a registry

36
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Registry Capabilities

Registration, naming and querying of services

• interface descriptions (WSDL) and XML schemas

• security information

• other metadata

History and versioning

Support for standards (e.g., UDDI v3)



© 2007 Carnegie Mellon University 19

Evaluating a Service-Oriented Architecture Tutorial

37
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Quality Attribute Considerations

Positive effects of using a registry:

• loose coupling

• support to versioning of services

Negative effects of using a registry

• performance overhead

• increased complexity of 
service user implementation

• interoperability

Static binding is sufficient 
for most business scenarios 

and design solutions

38
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Agenda

Introduction

Architecture Representation, Stakeholders, QA Requirements

SOA Architectural Approaches

SOA Design Questions

Closing



© 2007 Carnegie Mellon University 20

Evaluating a Service-Oriented Architecture Tutorial

39
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Design Questions

Can be used to probe the architecture and elicit:

• Strengths

• Weaknesses

• Risks

The list of questions and assertions:

• Is not meant to be exhaustive

• Are common tendencies—there will always be exceptions

40
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Design Questions Covered

Target Platform

Synchronous vs. Asynchronous

Security of Messages

Granularity of Services



© 2007 Carnegie Mellon University 21

Evaluating a Service-Oriented Architecture Tutorial

41
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

What Is Known About the Target Platform?

SOA solutions may involve different platforms

• runtime environment of service providers

• runtime environment of service users

• development environment

• network infrastructure

Many quality concerns are primarily handled or strongly affected by the 
platform

42
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Target Platform – Evaluation Questions

What standards or WS-I profiles are supported?

What mechanisms are offered to increase:

• availability/reliability

• security (e.g., VPN, declarative authorization)

• throughput (e.g., load-balancing)

What are known issues and technical limitations of the version in use?

What is the support for logging, measuring and monitoring?



© 2007 Carnegie Mellon University 22

Evaluating a Service-Oriented Architecture Tutorial

43
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Synchronous or Asynchronous Services?

Choice depends on

• Business requirements

• QA requirements

• Existing components capabilities

44
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Synchronous SOAP-Based WS

Validation and 
transformation 

of business 
document

Wrapper that realizes 
Web services interfaceSOAP request: business 

document in XML

SOAP response: 
business document 
with processing results

Processing 
request

Key: Service user component 
(e.g., .NET Windows 
application)

Service provider 
component 
(e.g., EJB)

http Native call-and-
return mechanism

Service 
user



© 2007 Carnegie Mellon University 23

Evaluating a Service-Oriented Architecture Tutorial

45
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Asynchronous SOAP-Based WS

Service 
user

Wrapper that realizes 
Web services interfaceSOAP request: business 

document in XML

SOAP response: 
http 200 only

Back-end
processing

Send client
response

Callback
endpoint

SOAP request: business 
document w/ processing 
results

SOAP response: 
http 200 only

…

Key: Service user component 
(e.g., .NET Windows 
application)

Service provider 
component 
(e.g., EJB)

http Native call-and-
return mechanism

Validation and 
transformation 

of business 
document

46
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Synchronous vs. Asynchronous Tradeoffs

/ More complex logic to deal with waiting, 
callback and correlation

☺ Simpler to implementModifiability

/ More complex error/retry logic☺ Simpler error and exception 
handling designs 

☺ Better independent operation and fault-
tolerance

/ More susceptible to complex 
distributed failures

Reliability

☺ Best scalability for large applications / Poor for large applications Scalability

Asynchronous ServicesSynchronous Services



© 2007 Carnegie Mellon University 24

Evaluating a Service-Oriented Architecture Tutorial

47
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

HTTPS or Message-Level Security? 

Common threats to distributed systems:

• Disclosure threats

— XML documents are sent in the clear by default

• Disruption threats

— Technologies such as SOAP, HTTP and XML are vulnerable to Denial
of Service (DoS) attacks

48
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

HTTPS

HTTPS is HTTP over SSL

• Entire message encrypted from point-to-point

• Reasonable protection from eavesdroppers and “man-in-the middle” attacks

Problem: message lifecycle may be longer than point-to-point

• Multiple hops

• Intermediaries with different policies and controls

• Messages persisted at various points



© 2007 Carnegie Mellon University 25

Evaluating a Service-Oriented Architecture Tutorial

49
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Message-Level Security

Service users and providers bind security tokens to messages using the 
WS-Security standard

• Allows encrypting and signing all or just parts of the message

• Message is protected end-to-end

50
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

HTTPS vs. Message-Level Security Tradeoffs

☺ What parts are encrypted can change; 
what credentials to use can change

/ Inflexible all or nothingFlexibility

/ Emerging standards may not be 
supported by all parties

☺ More interoperableInteroperability

/ Requires careful management of which 
parts of a message need to be secured

☺ Has been around and is well 
understood 

Complexity

☺ Security is enforced end-to-end for the 
entire message lifecycle

/ Security is only enforced point-
to-point

Security

Message-Level Security HTTPS



© 2007 Carnegie Mellon University 26

Evaluating a Service-Oriented Architecture Tutorial

51
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Coarse- or Fine-Grained Services? - 1

A fine-grained service interface contains small operations. Example:

• validateCreditCard(CreditCard cc)

• validateCustomer(Customer customer)

• orderItems(List items)

A coarse-grained service has operations that typically comprise a complete 
transaction. Example: 

• placeOrder(Customer customer, CreditCard cc, List items)

Granularity of operations is a critical design factor. Guidelines:

• Operations should be self-contained and comprise a single database transaction

• Limit the number of operations to reduce performance overhead of multiple calls

• Create operations that can be composed as needed today and in a foreseeable future

52
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Service Granularity Tradeoffs

☺ More flexible in assigning authorization for 
different operations

☺ Gives clients more control over the steps of an 
operation

☺ Enables service reuse and composition

/ Not as flexibleFlexibility

/ Testing is more challenging because the order 
of operations is not controlled

☺ Simplifies testing by limiting the 
number of possible paths

Testability

Performance / Requires more message exchanges

Fine Grained Coarse Grained

☺ Improved by reducing the number of 
messages



© 2007 Carnegie Mellon University 27

Evaluating a Service-Oriented Architecture Tutorial

53
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Service Granularity – Evaluation Questions

What are the bandwidth limitations on the network?

Do operations in the interface map to transactional boundaries?

Are there ordering dependencies between operations?

How stable are the business processes? Is the service likely to change? 

54
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Agenda

Introduction

Architecture Representation, Stakeholders, QA Requirements

SOA Architectural Approaches

SOA Design Questions

Closing



© 2007 Carnegie Mellon University 28

Evaluating a Service-Oriented Architecture Tutorial

55
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Other Important SOA Design Concerns

Service versioning

Legacy systems integration

Service authentication and authorization

XML optimization

Exception handling and fault recovery

56
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Important Takeaways

SOAP is not the only option for SOA communication – REST and 
messaging systems also work

ESB versus direct point-to-point, pros and cons

Consider BPEL when business process is defined and modifiability is more 
important than performance

Once you understand the importance of each QA requirement, you can 
weigh the relevance of each design question

The runtime view of the architecture shows service-orientation

SOAs involve many technical design considerations



© 2007 Carnegie Mellon University 29

Evaluating a Service-Oriented Architecture Tutorial

57
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

For More Information

“Evaluating a Service-Oriented Architecture”
by P. Bianco, R. Kotermanski, P. Merson. CMU/SEI-2007-TR-015.
(in final review stage)

“Quality Attributes for Service-Oriented Architectures”
by L. O’Brien, P. Merson, L. Bass. SDSOA Workshop, 2007.

58
Evaluating SOA
Paulo Merson
© 2007 Carnegie Mellon University

Questions – Now or Later

Paulo Merson – pfm@sei.cmu.edu

• What’s SaaS? 
• Can I use BPMN to document the SOA 

architecture?
• What are the typical risks found in an 

SOA evaluation?
• Is ESB a product, something I have to 

develop, an infrastructure service of my 
application server, or something else?


