

Moving
Architectural Description

from Under the
Technology Lamppost

Nenad Medvidovic
University of Southern California

Los Angeles, USA
neno@usc.edu

http://sunset.usc.edu/~neno/

(joint work with Richard N. Taylor of the University of California, Irvine
and Eric M. Dashofy of the Aerospace Corporation)

mailto:neno@usc.edu
http://sunset.usc.edu/~neno/

A Brief History of ADLs
• Software architecture emerged as a research

discipline in the early 1990s
• Soon thereafter, many notations were either

invented, recast, and/or argued for as architecture
description languages
– Wright, UniCon, Aesop, Acme, Rapide, Darwin, SADL, C2,

Weaves, CHAM, LILEAnna, MetaH, Demeter, UML 1.x, …
– It seemed very important to have, or at least know, one

• Each provided modeling capabilities geared at
software design
– Though not necessarily architecture!

• They saw varying degrees of adoption and use

Enter the “Funny” Questions
• Is UML really an ADL?
• Is Statecharts an ADL?
• What makes LILEAnna an ADL?

• Is Demeter a software design philosophy or a
language? And why is it an ADL?

• Is Aesop an environment or an ADL?

• Why is Rapide an ADL but its close cousin
VHDL is not?

• Aren’t C2 and Weaves architectural styles?
• Why isn’t Java na ADL?

And the Most Important Question

What is an ADL?

Trying to Answer the Question
• Conducted a study of ADLs in the late-1990s
• Defined what an ADL is

– Eliminated several candidate notations in the process

• Suggested multiple dimensions for ADL
understanding and classification

• Provided a detailed comparison of ADLs
• Expanded and updated the study several times

• Two principal publications came out of this work
– ESEC/FSE 1997
– IEEE TSE 2000

So, What Was the Answer?

• An ADL is a language that provides
features for modeling a software system’s
conceptual architecture, distinguished
from the system’s implementation.

• An ADL must support the building blocks
of an architectural description
– Components

• Interfaces

– Connectors
– Configurations

The Study in Retrospect – Benefits

• Improved the understanding of ADLs
• The two papers became a commonly

accepted references in the SA community
– After some grumbling, even the ADLs’ authors

accepted that the study was ultimately
unbiased

• The definition became a “litmus test” for
determining whether a particular notation
is an ADL

The Study in Retrospect – Shortcomings
• The “litmus test” was not always effective

– It took a 3-year study and a 60-page paper to “prove” that
UML 1.x is not an ADL

– It took another 2-year study to demonstrate that, e.g.,
Darwin does, in fact, support (limited) connector modeling

• Still did not answer the question of what
“conceptual architecture” means

• Did not provide any help with understanding deeper
questions
– What is a model?
– What is architecture?
– What are differences among styles, domain-specific

architectures, application families, product lines, product
populations… ?

Wanted

answers

Once and for all

No Monetary Reward

Why Bother?
• These questions have been personally “bugging”

me
• The discipline has matured enough to require them

– Research
– Practice
– Pedagogy

• One added, specific impetus

Why Bother?
• These questions have been personally “bugging”

me
• The discipline has matured enough to require them

– Research
– Practice
– Pedagogy

• One added, specific impetus

Software Architecture:
Foundations, Theory, and Practice
Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy

 (To appear, 2008)

What Happened to the ADLs?
• The 1st generation (“1G”) did not catch on

– Although there are some 2G ADLs in use

• Almost no broader adoption
– (slight) Exceptions are MetaH, Weaves, and Rapide

• What are some of the obvious reasons?
– Often targeted at research environments
– Awkward syntax and/or semantics
– Modeling rigidity

– Limited and idiosyncratic analysis support
– Inadequate tool support
– UML

• Video killed the radio star…

A Deeper Reason
• 1G ADLs focused exclusively on technology

– So did our study

• The broader context was completely missing
– Relation to system requirements
– Constraints imposed by implementation platforms
– Characteristics of application domains
– Organizational structure and politics
– Business model

– Position in the marketplace
– …

What’s Out There?

Softw
are

Arch
ite

ctu
re

What’s Out There?

Technology

Softw
are

Arch
ite

ctu
re

What’s Out There?

Technology

Softw
are

Arch
ite

ctu
re

Domain

What’s Out There?

Technology

Softw
are

Arch
ite

ctu
re

Domain Business

The Three Lampposts
(“3L”)

• Excessive or exclusive focus on technology is a
critical failing of early ADLs

• 3L provides the needed answer
– Illuminates the space of ADLs appropriately

– Provides the necessary broad perspective on ADLs
and their role in product development

– Helps to classify and evaluate ADLs
– Explains ADLs’ successes and failures
– Provides guidance for ADL developers

Different lamps can still “shine” at different
intensities

Technology

Domain Business

Technology
Technology

Domain Business

• Concerned with
– Recurring technical challenges of engineering systems
– Means for representing and reasoning about

architectures
– Critical abstractions and conceptual foundations of SA

• Results in
– Most all 1G ADLs
– Focus on analysis

• Often using pre-existing analytical formalisms
– Esoteric discussions

• Relative merits of declarative vs. imperative ADLs
• ADL interoperability

– And some important ones
• How do we transform architectures into implementations

A Technology-Driven ADL
Technology

Domain Business

Domain
Technology

Domain Business

• Concerned with
– Exploiting domain characteristics to aid system

development
– Means for representing and reasoning about problems

in a given domain

• Results in
– Successful 1G ADLs

• MetaH, Weaves, GenVoca

– Specialized, deeper solutions
– Reusable assets

• Including the architecture!

– Engineers speaking the language of the users

How Domains Help
Technology

Domain Business

• Traditional software development

How Domains Help
Technology

Domain Business

• Architecture-based software
development

SE Problem Space
Technology

Domain Business

How Domains Really Help
Technology

Domain Business

• Domain-specific architecture-based
software development

Business
Technology

Domain Business

• Concerned with
– Capturing and exploiting knowledge of the business

context
– Core competencies
– Processes
– Costs

• Includes valuation of assets

• Results in
– No 1G ADLs
– Product strategy
– Means for capturing multiple stakeholder perspectives
– Characterization of desired product qualities

• Tied to marketplace performance
– What specifically, in an ADL?

• Product relationships within a product line
• Cost data per component

Example of Business
Concerns Modeled in a 1G ADL

Technology

Domain Business

Example of Business
Concerns Modeled in a 1G ADL

Technology

Domain Business

Technology + Domain
Technology

Domain Business

Technology

Domain

• Concerned with
– Technological concerns specific to a domain
– System generation from models

• Results in
– Application-family architectures
– Domain-specific languages

A 1G DSSA
Technology

Domain Business

Technology

Domain

Technology + Business
Technology

Domain Business

Technology

Business

• Concerned with
– Linking business issues with system

construction
– Investment in infrastructure

• Winning “technology wars”

• Results in
– Relationship of process steps to software

elements
– CM systems
– Architecture-centric cost estimation tools

• COCOMO, COSYSMO, COCOTS

Domain + Business
Technology

Domain BusinessDomain Business

• Concerned with
– Core competencies

• What you know how to do well and profitably

• Results in
– Domain models
– Business models

– Processes
– Customer profiles and requirements
– No technology!

Technology + Domain + Business
Technology

Domain BusinessDomain Business

Technology

• Concerned with
– Being a successful software development outfit

• Results in
– Software product lines

Putting It All Together

 Domain
 underlying
 knowledge,
human needs,
domain
 characteristics

Business
Finance,

accounting,
marketing,

sales

Technology
Generic Tools,

OTS apps,
computing/communications

infrastructure

Core
Competencies

Application-
Family

Architecture

Domain-
Independent

Infrastructure

Idealized/context-
non-specific knowledge
and architecture, not

shaped/driven/informed
by business insights

An organization’s
domain-independent

technical assets

Domain expertise and knowledge
that is not captured or implemented

Domain-Specific
Engineering

Product-Line
Architectures

2G ADLs
• Only a handful of 1G ADLs have “stuck

around”…
– …but, boy, have they changed

• They evolved into 2G ADLs
– UML 2.0 UML 1.x
– AADL MetaH

– Koala Darwin Conic
– xADL 2.0 xADL 1.0 C2

• All have strong technological foci
– Yet they are very different from each other

Technology

Domain Business

UML 2.0

• De facto standard software design
language
– Developed by OMG

• A “Swiss Army Knife” of notations

• Has a number of architectural constructs

• Ubiquitous
Primary focus – to conquer the world

UML 2.0 in Action

UML 2.0 in Action

UML 2.0 in Action

UML 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

UML 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

UML 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Technology

Business

UML 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Technology

BusinessDomain Business

AADL
• Architecture Analysis and Design Language

– Initially stood for “Avionics ADL”

• Primarily textual

• Very detailed
– An AADL component runs on a processor, which runs

one or more processes, each of which contains one or
more threads of control, all of which can receive
instructions through in ports and send data through out
ports over a bus…

Primary focus – embedded, real-time, hybrid
systems

AADL in Action
system implementation sensor_type.temperature
subcomponents
 the_sensor_processor :
 processor sensor_processor_type;
 the_sensor_process : process
 sensor_process_type.one_thread;
connections
 bus access network -> the_sensor_processor.network;
 event data port sensed ->
 the_sensor_process.sensed;
 event data port control ->
 the_sensor_process.control;
properties
 Actual_Processor_Binding => reference
 the_sensor_processor applies to
 the_sensor_process;
end sensor_type.temperature;

AADL Under the Lampposts

Softw
are

Arch
ite

ctu
re

AADL Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

AADL Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

AADL Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

BusinessBusiness

Koala
• Developed at Philips

– In collaboration with Imperial College London

• Used in the consumer electronics domain
• Both graphical and textual
Primary focus – management of product

populations
– Modeling
– Analysis
– Implementation generation
– Deployment

Koala in Action

Koala in Action

Koala Under the Lampposts

Softw
are

Arch
ite

ctu
re

Koala Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

Koala Under the Lampposts

Softw
are

Arch
ite

ctu
re

Technology

Business

Koala Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

Business

xADL 2.0

• Developed at UC Irvine
– In use at Boeing

• XML substrate

• Both graphical and textual
Primary focus – extensibility

xADL 2.0 in Action

xADL 2.0 in Action

<component id="dbComp">
 <description>Database</description>
 <interface id="sql-in">
 <description>SQL</description>
 <direction>in</direction>
 </interface>
 <datasource>
 <vendor>Oracle Corp.</vendor>
 <location>db.example.com:1234/db1</location>
 <username>webUser</username>
 <password>secret</password>
 </datasource>
</component>

xADL 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

xADL 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Domain

Technology

xADL 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Technology

Business

xADL 2.0 Under the Lampposts

Softw
are

Arch
ite

ctu
re

Technology

Domain Business

Softw
are

Arch
ite

ctu
re

DomainDomain

Technology

BusinessBusiness

Softw
are

Archite
ctu

re

TechnologyTechnology

Domain BusinessBusiness

2G ADLs Side-by-Side
Softw

are

Arch
ite

ctu
re

DomainDomain

TechnologyTechnology

BusinessBusinessBusiness

Softw
are

Arch
ite

ctu
re

TechnologyTechnology

BusinessBusinessDomain Business

UML 2.0 AADL

xADL 2.0Koala

Some Observations

• Architecture embraces many concerns

• More mature and successful ADLs
incorporate concerns from 3L

• Multiple views are a must

• No single set of modeling features is
sufficient for every project

• Extensibility is a key property of ADLs

• Tools are often as important as notations

Questions

