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Software Engineering Trends

 Software systems are becoming more complex 
 A wider spectrum of distribution and heterogeneity
 Hardware and software mobility is becoming the norm
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Software Architecture
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 Software Architecture
 A high-level model of a system
 Represents system organization

• Components
• Connectors
• Events
• Configurations
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Architectural Decisions

 Architectural decisions impact non-functional properties 
of the system

 Non-functional property
 Quality level at which an expected functionality is delivered
 a.k.a. Quality of Service (QoS)

 Making optimal architectural decisions has remained an 
art form
 Lack of quantification and measurement techniques
 Reliance on domain expert knowledge
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Deployment Architecture Impacts QoS

 Deployment Architecture: allocation of software components 
to hardware hosts 

 hc deployment architectures are possible for a given system
 Many provide the same functionality
 but different qualities of service (QoS)
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Problem in a Nutshell

 Motivating Question
 How could we find and 

effect a deployment 
architecture that improves 
(maximizes) multiple QoS 
dimensions?
• Where other possible 

solutions such as caching, 
hoarding, replication, etc. are 
not appropriate or ideal

 Objective
 Devise a solution that is 

applicable to many classes 
of application scenarios
• No particular definition of QoS 

dimensions, class of systems, 
etc.
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Scenario with a Single QoS Dimension

ResourceMonitorModifyResourceMap

Latency

Schedule

 Objective is to minimize latency
 The optimal deployment architecture is deployment 1
 Most all related approaches stop here, but clearly this is 

not good enough
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Conflicting QoS Dimensions

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Objective is to minimize latency and maximize durability
 There is no optimal deployment architecture!
 Phenomenon known as Pareto Optimal in multidimensional 

optimization
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Resolving Trade-Offs between QoS Dimensions

Commander

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Allows expression of multidimensional 
optimization in terms of a single scalar 
value

 A utility function denotes a user’s 
preferences for a given rate of 
improvement in a QoS dimension

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Guiding Insight
 System users have varying 

QoS preferences for the 
system services they access
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Troop
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 18 utility functions would have to be considered across 27 deployments

 Challenge: consider many users’ preferences for the many QoS dimensions 
of many services

 “Eyeballing” the solution quickly becomes impossible!
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Domain Expert

Overall Approach
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Outcomes

 Consideration of multiple QoS dimensions and 
constraints

 Consideration of multiple user-level services
 Generic formal modeling and analysis that can be 

tailored to each application scenario
 Suite of customizable tools

 Extension points for configuring the tools 
 Promotes reuse and cross-evaluation of solutions to 

this problem
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Formal Model of the System

 Define sets that specify the system 
elements and their properties
 Set C of software components

• C = {ResourcesMap, SendMessage, DisplayMap, …}
 Set CP of software component properties

• CP = {size, reliability, …}
 Other sets

• H of hardware nodes, N of network links, I of logical 
links, S of services, Q of QoS dimensions, U of users

• HP of hardware parameters, NP of network link 
parameters, CP of software component parameters, 
IP of logical link parameters

 Define functions that quantify system 
properties
 Function cParam:C×CP→R

• cParam(ResourcesMap, size) = 150
 Other functions

• hParam:H×HP→R
• nParam:N×NP→R
• IParam:I×IP→R
• sParam:S × {H ∪ C ∪ N ∪ I} × {HP ∪ CP ∪ NP ∪ IP} 

→ R
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Formal Model of QoS & Users’ Preferences

 Define QoS functions
 qValue:S×Q×DepSpace → R 

• quantifies the achieved level of QoS 
given a deployment

• qValue(Schedule, Latency, Dep 1) = 
1ms

 Define users’ preferences in terms 
of utility
 qUtil:U×S×Q×R → [MinUtil,MaxUtil] 

• represents the accrued utility for a 
given rate of change

• qUtil(Commander, Schedule, Latency, 
0.25) = -1
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Model of the Constraints

 A set PC of parameter constraints
 PC={memory, bandwidth,…}

 A function pcSatisfied:PC×DepSpace → [0,1]
 1 if constraint is satisfied
 0 if constraint is not satisfied

 Functions that restrict locations of software components
 loc:C×H → [0,1]

• loc(c,h)=1 if c can be deployed on h

• loc(c,h)=0 if c cannot be deployed on h

 colloc:C×C → [-1,1]
• colloc(c1,c2)=1 if c1 has to be on the same host as c2
• colloc(c1,c2)=-1 if c1 cannot be on the same host as c2
• colloc(c1,c2)=0 if there are no restrictions
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Problem Definition

Given the current deployment d, find an improved deployment d’ such that the 
users’ overall utility defined as the function

where

is maximized and specific conditions are satisfied:

∀c∈C, loc(c,Hc)=1

∀c1∈C, ∀c2∈C, if (colloc(c1,c2)=1)(Hc1= Hc2),    
if (colloc(c1,c2)=-1) (Hc1≠ Hc2)

∀constr∈PC pcSatisfied(constr,d)=1

1 1 1
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Model Instantiation

 The engineer needs to further refine the “loosely” defined 
elements of the model
1. Define the pertinent properties of the application scenario

2. Define QoS dimensions in terms of system properties

3. Define system parameter constraints

 But how is this done practically?
 Via appropriate tool support

∑∑
= =

=
s sC

c

C

c
cHcHcc ,rel)ram(N,freq)*nPasParam(s,Id) ty,availabili qValue(s,

11 12
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Algorithms

 A survey of applicable approaches to solving various 
classes of application scenarios resulted in five types of 
solutions
 Two solutions represent state-of-the-art off-the-shelf solutions to 

solving this problem
 The remaining solutions are special-purpose algorithmic solutions 

to address the shortcomings of the off-the-shelf solutions 

 Why different algorithms?
 Each algorithm is suitable for a particular class of problems
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Two Off-the-shelf Solvers

1. Mixed Integer Non-linear Programming (MINLP)
 Represent the problem as a set of linear and non-linear constraint 

functions
 Two drawbacks

• Does not guarantee to find the optimal solution
• In 20% of large problems, it cannot find any solution

2. Mixed Integer Linear Programming (MIP)
 Transform the MINLP problem to an MIP problem
 Developed heuristics to decrease the complexity from 

O(2|H|2|C|2)  O(|H||C|)
 Pros: finds the optimal solution
 Cons: it is an exponentially complex approach  infeasible for 

any realistic system
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Three Optimization Algorithms

 Greedy — Polynomial O( |S|3 (|C| |U| |Q|)2 )

 An iterative algorithm that leverages heuristics for 
• Ranking elements of the problem (e.g., services, hosts, components)
• Assigning software components to hardware hosts

 Genetic — Linear per generation O(|S| |U| |Q|)
 An individual represents a solution to the problem
 Populations of individuals are evolved via cross-overs and mutations
 The accuracy of the genetic algorithm depends on its representation
 Good representation  promotes genes of good individuals  guided search

 Market-based — Polynomial O(|C|2 |S| |U| |Q|)
 Decentralized
 Autonomous agents on each device auction their local components and bid 

on each others’ components
 A good mechanism design (the calculation of auctions and bids) improves the 

global objective

Common Theme
Heuristically make local decisions that maximize the global objective
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DeSi – Deployment Modeling

 Provides modeling constructs for this problem
 Arbitrary parameters can be associated with these constructs
 A QoS dimension can be defined as a function of the modeling 

constructs and their parameters
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DeSi – User Preference Modeling

 DeSi’s MVC architecture allows for the addition of separate but 
synchronized views of the underlying model
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DeSi – Control Panel

 New algorithms can be plugged into DeSi to analyze and modify 
its underlying model
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Algorithms in Practice

 Results of running the algorithms on an example scenario of 12 Comps, 5 
Hosts, 8 Services, and 8 Users

 Significant improvements for all the four QoS dimensions by all the algorithms
 The more important QoS dimensions of services have improved significantly 

more than others
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Algorithms’ Performance
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Algorithms’ Accuracy
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Algorithmic Trade-Offs

 Architectural style
 MIP for constrained styles (e.g., Client-Server), optimization algorithms 

for flexible styles (e.g., Peer-to-Peer)

 Number of QoS dimensions
 Large number of QoS  Genetic outperforms others

 Number of system parameter constraints
 Large number of constraints  Genetic has poor accuracy

 Stable vs. unstable systems
 MIP for stable systems, optimization algorithms for unstable systems

 Available resources
 Resource constrained system  Execute the genetic algorithm in parallel 

on multiple devices

 Centralized vs. decentralized systems
 Decentralized system  Market-based algorithm
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From Deployment Models to Running System

 Architectural models provide high-level concepts
 Components, hosts, links, configurations , etc.

 Software systems are implemented using low-level PL 
constructs
 Variables, pointers, procedures, objects, etc.

 Deployment is ad-hoc
 Shell scripts, make files, system commands, etc.

 Bridging the models to runtime (re)deployment is 
challenging
 Middleware can help

 Existing middleware technologies
 Do not support some architectural concepts (e.g., explicit connectors, 

configuration)
 Lack support for remote (re)deployment and monitoring facilities

What is needed is “architectural middleware”
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Prism-MW

 Prism-MW is an 
extensible architectural 
middleware
 PL-level constructs for 

architectural concepts

 Extensible design allows 
for the addition of new 
facilities

 Developed facilities for 
 (Re)Deployment and (Re)Configuration in terms of architectural 

constructs
 Monitoring both at system and architecture level
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Prism-MW Design
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Architecture - DEMO

class DemoArch {
     static public void main(String argv[]) {
    Architecture arch = new Architecture ("DEMO");

// create components
Component a = new CompA ("A");
Component b = new CompB ("B");
Component c = new CompC (“C");
// create connectors
Connector d = new Connector(“D");
// add components and connectors 
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(c);
arch.addConnector(d);
// establish the interconnections
arch.attach(a, d);
arch.attach(b, d);
arch.attach(d, c);
}

}

Using Prism-MW

Comp BComp A

Comp C 

Connector D

Connector D

Comp A Comp B Comp C 
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Architecture - DEMO

Component B handles the event and sends a response

public void handle(Event e)
{

if (e.equals("Event_C")) {
...   
Event e1= new Event("RSP_to_C“, REPLY);
e1.addParameter("response", resp);
send(e1);
}...

     }

S
e
n

d
 (

e
1

)

Using Prism-MW

Component C sends an event

Event e = new Event ("Event_C“, REQUEST);
e.addParameter("param_1", p1);
send (e);

S
e
n

d
 (e

)

Comp BComp A

Comp C 

Connector D
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Network

Connector D
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 Topology-based routing
 Easy redeployment and redistribution of components onto 

different hardware configurations

2E
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Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work
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Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work
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Collaborations with Industrial Partners

 US Army
 Emergency Deployment 

Simulation
 Large scale search and rescue 

teams

 Boeing
 Future Combat Systems
 Determine allocation of software 

components on virtual hardware 
platforms

 NASA’s Jet Propulsion Lab
 Dynamic analysis and adaptation 

of space mission software

 Bosch Rsrch. & Tech. Center
 MIDAS
 Sensor-network product family
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Partial View of MIDAS Architecture
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On-Going Work

 Complement static analysis with dynamic analysis
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 XTEAM
 Supports scenario-

driven dynamic 
analysis

 Provides temporal 
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in QoS
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Dependability

Hardware
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Remaining Challenges
 A comprehensive software architectural trade-off analysis and 

implementation framework 

Software 
Architectural 

Decisions

Hardware 
Decisions

 What is the impact of 
other architectural 
decisions? What is 
their relationship?

 How should they be 
modeled, analyzed, 

and implemented? 

Replication

DecisionsDeployment

Decisions


