
1

 Improving a Distributed Software System’s
Quality of Service via Architecture-Driven

Dynamic Redeployment

Nenad Medvidovic

Center for Systems and Software Engineering
Computer Science Department
Viterbi School of Engineering

University of Southern California
Los Angeles, USA

neno@usc.edu
http://sunset.usc.edu/~neno/

http://viterbi.usc.edu/

2

Outline

 Problem
 Motivation
 Approach
 Contribution

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

3

Software Engineering Trends

 Software systems are becoming more complex
 A wider spectrum of distribution and heterogeneity
 Hardware and software mobility is becoming the norm

4

Software Architecture

aTruck aShip aAirplane theWarehouseCollecti on

theVehicleCollection

UML-A Generated Dependency Class:theRouter Dependency (1.0)

theStorage

aVehicle

UML-A Generated Dependency Class:theRouter Dependency (0.5)

availableVehicleCollection

UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated As sociation C lass: theVe hicleC ollec tion Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)UML- A Generated Ass ociati on Cl ass:theVehi cleCollection Generali zation (1.0)UML-A Generated Association Class:theVehicleCollection Generalization (1.0)

UML-A Generated Dependency Class:theRouter Dependency (1.0)

availableGoods

aPort

aPortC ollec tion

aSurplus aDifficiency

theTimeNeeded

theGoods

UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:availableGoods Association (0.5)

aRouteCollection

UML-A Generated Association Class:aRoute Association (0.25)UML-A Generated Association Class:aRoute Association (0.25)UML-A Generated Association Class:aRoute Association (0.25)
UML-A Generated Association Class:aRoute Association (0.25)

UML-A Generated Dependency Class:theRouter Dependency (0.5)UML-A Generated Dependency Class:theRouter Dependency (1.0)

UML-A Generated Dependency Class:theRouter Dependency (1.0)

theAWT

aVehiceDialog aWarehouseDialog aPortDialog aRouterDialog

aWarehouse

UML-A Generated Association Class:aDifficiency Association (1.0)UML-A Generated Association Class:aDifficiency Association (1.0)
UML-A Generated Association Class:aDifficiency Association (1.0)UML-A Generated Association Class:aDifficiency Association (1.0)

UML-A Generated Association Class:aDifficiency Association (1.0)U ML-A Generated Asso ciation Class:aD ifficie ncy Associ ation (1.0)UML-A Generated Association Class:aDifficiency Association (1.0)UML-A Generated Association Class:aDifficiency Association (1.0)U ML-A Gen erated Asso ciation Class:aD ifficiency Associ ation (1.0)UML-A Generated Association Class:aDifficiency Association (1.0)
UML-A Generated Associ ation C lass:aSurplus Associ ation (1.0)UML-A Generated Association Class:aSurplus Association (0.5)

UML-A Generated Associ ation Class:aRoute Association (0.5)

aLocation

UML-A Generated Association Class:aNavPoint Association (1.0)

UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:aNavPoint Association (0.5)

UML-A Generated Association Class:aNavPoint Association (0.5)
UML-A Generated Association Class:aNavPoint Association (0.5)

UML-A Generated Association Class:aWarehouse Association (0.5)
aNavPoint

UML-A Generated Association Class:aWarehouse Association (1.0)

UML-A Generated Association Class:aWarehouse Association (0.5)UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:aWarehouse Association (0.5)

UML-A Generated Association Class:aRoute Association (0.5)

aRoute

UML-A Generated Depend ency C lass :aRouteCol lection Ass ociation (0.25)

UML-A Generated Association Class:aNavPoint Association (1.0)UML-A Generated Association Class:aNavPoint Association (0.5)

UML-A Generated Association Class:aWarehouse Association (1.0)

UML-A Generated Dependency Class:aRouteCollection Association (0.5)

UML-A Generated Association Class:aNavPoint Association (1.0)UML-A Generated Association Class:aNavPoint Association (1.0)UML-A Generated Association Class:aNavPoint Association (1.0)UML-A Generated Association Class:aNavPoint Association (1.0)UML-A Generated Association Class:aNavPoint Association (1.0)

UML-A Generated Association Class:aNavPoint Association (0.25)
UML-A Generated Association Class:aNavPoint Association (0.25)

UML-A Generated Association Class:aNavPoint Association (0.25)

UML-A Generated Dependency Class:theRouter Association (0.25)

UML-A Generated Association Class:aNavPoint Association (0.25)

theCarg oRouter

UML-A Generated Association Class:theRouter Association (0.25)

UML-A Genera ted As sociation C lass: theWarehou seCollection De pende ncy (0.25)

UML-A Generated Association Class:theRouter Association (0.25)

UML-A Generated Association Class:theRouter Association (0.25)

t heRouter

UML-A Generated Association Class:theWarehouseCollection Dependency (0.5)

UML-A Generated Association Class:theWarehouseCollection Dependency (0.5)

UML-A Genera ted Depend ency Class :aRouteCollection Ass ociation (0.5)UML-A Generated Association Clas s:theWarehouseCollec tion Dependency (0.5)

UML-A Generated Association Class:theVehicleCollection Dependency (0.5)UML-A Generated Association Class:availableVehicleCollection Dependency (0.5)UML- A Generated Generaliz ation Class :avail ableVehicleCollection Dependenc y (1.0)

UML-A Generated Dependency Class:theRouter Association (0.25)

UML-A Generated Dependency Class:theRouter Association (0.5)
UML-A Generated Dependency Class:theRouter Association (1.0)

UML-A Generated Dependency Class:theRouter Association (0.5)

UML-A Generated Dependency Class:theWarehouseCollection Dependency (1.0)

UML-A Generated Dependency Class:theRouter Association (1.0)UML-A Generated Dependency Class:theRouter Association (1.0)

VehicleDeliveryPort

CargoRouter

RouterConn

Gra phicsB inding :
GraphicsBinding

GraphicsConn

Warehouse

ClockConn

Clock :
Clock

10: not ifica tion9: notification

5: re quest

3 : request4: request

2: notification

1: request

7: request

6: notification

8: reque st

 Software Architecture
 A high-level model of a system
 Represents system organization

• Components
• Connectors
• Events
• Configurations

5

Architectural Decisions

 Architectural decisions impact non-functional properties
of the system

 Non-functional property
 Quality level at which an expected functionality is delivered
 a.k.a. Quality of Service (QoS)

 Making optimal architectural decisions has remained an
art form
 Lack of quantification and measurement techniques
 Reliance on domain expert knowledge

6

Deployment Architecture Impacts QoS

 Deployment Architecture: allocation of software components
to hardware hosts

 hc deployment architectures are possible for a given system
 Many provide the same functionality
 but different qualities of service (QoS)

7

Problem in a Nutshell

 Motivating Question
 How could we find and

effect a deployment
architecture that improves
(maximizes) multiple QoS
dimensions?
• Where other possible

solutions such as caching,
hoarding, replication, etc. are
not appropriate or ideal

 Objective
 Devise a solution that is

applicable to many classes
of application scenarios
• No particular definition of QoS

dimensions, class of systems,
etc.

8

Outline

 Problem
 Motivation
 Approach
 Contribution

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

9

Scenario with a Single QoS Dimension

ResourceMonitorModifyResourceMap

Latency

Schedule

 Objective is to minimize latency
 The optimal deployment architecture is deployment 1
 Most all related approaches stop here, but clearly this is

not good enough

10

Conflicting QoS Dimensions

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Objective is to minimize latency and maximize durability
 There is no optimal deployment architecture!
 Phenomenon known as Pareto Optimal in multidimensional

optimization

11

Resolving Trade-Offs between QoS Dimensions

Commander

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Allows expression of multidimensional
optimization in terms of a single scalar
value

 A utility function denotes a user’s
preferences for a given rate of
improvement in a QoS dimension

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

 Guiding Insight
 System users have varying

QoS preferences for the
system services they access

12

Troop

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

Commander

Exchange Plan

CreatePlan

Security

Dispatcher

 18 utility functions would have to be considered across 27 deployments

 Challenge: consider many users’ preferences for the many QoS dimensions
of many services

 “Eyeballing” the solution quickly becomes impossible!

0

10

20

30

40

50

60

70

80

0% 100% 200% 300% 400% 500% 600% 700%

QoS Change Rate

U
ti

lit
y

 x

Troop, Latency, Exchange Plan

Troop, Latency, Schedule

Troop, Durability, Exchange Plan

Troop, Durability, Schedule

Troop, Security, Exchange Plan

Troop, Security, Schedule

Commander, Latency, Exchange Plan

Commander, Latency, Schedule

Commander, Durability, Exchange Plan

Commander, Durability, Schedule

Commander, Security, Exchange Plan

Commander, Security, Schedule

Dispatcher, Latency, Exchange Plan

Dispatcher, Latency, Schedule

Dispatcher, Durability, Exchange Plan

Dispatcher, Durability, Schedule

Dispatcher, Security, Exchange Plan

Dispatcher, Security, Schedule

A Slightly Larger Scenario

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Latency (ms)

D
u
ra

b
ili

ty
 (

h
o
u
rs

)

x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Latency (ms)

S
ec

ur
ity

 x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

Durability (hours)

S
ec

ur
ity

x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

13

Domain Expert

Overall Approach

Software
Architect

Component Repository

Users

Monitor

Deploy

Monitoring Data

Hardware System

Design-time
Analysis

Model

Deployment
Model

Q
o

S
 P

re
f.

Repopulate

Runtime
Analysis

Redeploy

http://images.google.com/imgres?imgurl=http://pigseye.kennesaw.edu/~dbraun/csis4650/A%26D/UML_tutorial/images/uml_logo.gif&imgrefurl=http://pigseye.kennesaw.edu/~dbraun/csis4650/A%26D/UML_tutorial/&h=154&w=216&sz=7&tbnid=GeQETj_9l3u2LM:&tbnh=72&tbnw=101&hl=en&start=6&prev=/images%3Fq%3DUML%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLD,GGLD:2005-14,GGLD:en%26sa%3DN

14

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

15

Outcomes

 Consideration of multiple QoS dimensions and
constraints

 Consideration of multiple user-level services
 Generic formal modeling and analysis that can be

tailored to each application scenario
 Suite of customizable tools

 Extension points for configuring the tools
 Promotes reuse and cross-evaluation of solutions to

this problem

16

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

17

Formal Model of the System

 Define sets that specify the system
elements and their properties
 Set C of software components

• C = {ResourcesMap, SendMessage, DisplayMap, …}
 Set CP of software component properties

• CP = {size, reliability, …}
 Other sets

• H of hardware nodes, N of network links, I of logical
links, S of services, Q of QoS dimensions, U of users

• HP of hardware parameters, NP of network link
parameters, CP of software component parameters,
IP of logical link parameters

 Define functions that quantify system
properties
 Function cParam:C×CP→R

• cParam(ResourcesMap, size) = 150
 Other functions

• hParam:H×HP→R
• nParam:N×NP→R
• IParam:I×IP→R
• sParam:S × {H ∪ C ∪ N ∪ I} × {HP ∪ CP ∪ NP ∪ IP}

→ R

18

Formal Model of QoS & Users’ Preferences

 Define QoS functions
 qValue:S×Q×DepSpace → R

• quantifies the achieved level of QoS
given a deployment

• qValue(Schedule, Latency, Dep 1) =
1ms

 Define users’ preferences in terms
of utility
 qUtil:U×S×Q×R → [MinUtil,MaxUtil]

• represents the accrued utility for a
given rate of change

• qUtil(Commander, Schedule, Latency,
0.25) = -1

19

Model of the Constraints

 A set PC of parameter constraints
 PC={memory, bandwidth,…}

 A function pcSatisfied:PC×DepSpace → [0,1]
 1 if constraint is satisfied
 0 if constraint is not satisfied

 Functions that restrict locations of software components
 loc:C×H → [0,1]

• loc(c,h)=1 if c can be deployed on h

• loc(c,h)=0 if c cannot be deployed on h

 colloc:C×C → [-1,1]
• colloc(c1,c2)=1 if c1 has to be on the same host as c2
• colloc(c1,c2)=-1 if c1 cannot be on the same host as c2
• colloc(c1,c2)=0 if there are no restrictions

20

Problem Definition

Given the current deployment d, find an improved deployment d’ such that the
users’ overall utility defined as the function

where

is maximized and specific conditions are satisfied:

∀c∈C, loc(c,Hc)=1

∀c1∈C, ∀c2∈C, if (colloc(c1,c2)=1)(Hc1= Hc2),
if (colloc(c1,c2)=-1) (Hc1≠ Hc2)

∀constr∈PC pcSatisfied(constr,d)=1

1 1 1

(,) (, , ,)
U S Q

u s q

overallUtil d d qUtil u s q q
  

 

All location constraints are satisfied

All collocation
constraints are satisfied

All system parameter
constraints are satisfied

(, ,) (, ,)

(, ,)

qValue s q d qValue s q d
q

qValue s q d

 

Total utility of changing
d to d’

Impact of changing d to
d’ on a QoS dimension

21

Model Instantiation

 The engineer needs to further refine the “loosely” defined
elements of the model
1. Define the pertinent properties of the application scenario

2. Define QoS dimensions in terms of system properties

3. Define system parameter constraints

 But how is this done practically?
 Via appropriate tool support

∑∑
= =

=
s sC

c

C

c
cHcHcc ,rel)ram(N,freq)*nPasParam(s,Id) ty,availabili qValue(s,

11 12
2,12,1

22

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

23

Algorithms

 A survey of applicable approaches to solving various
classes of application scenarios resulted in five types of
solutions
 Two solutions represent state-of-the-art off-the-shelf solutions to

solving this problem
 The remaining solutions are special-purpose algorithmic solutions

to address the shortcomings of the off-the-shelf solutions

 Why different algorithms?
 Each algorithm is suitable for a particular class of problems

24

Two Off-the-shelf Solvers

1. Mixed Integer Non-linear Programming (MINLP)
 Represent the problem as a set of linear and non-linear constraint

functions
 Two drawbacks

• Does not guarantee to find the optimal solution
• In 20% of large problems, it cannot find any solution

2. Mixed Integer Linear Programming (MIP)
 Transform the MINLP problem to an MIP problem
 Developed heuristics to decrease the complexity from

O(2|H|2|C|2)  O(|H||C|)
 Pros: finds the optimal solution
 Cons: it is an exponentially complex approach  infeasible for

any realistic system

25

Three Optimization Algorithms

 Greedy — Polynomial O(|S|3 (|C| |U| |Q|)2)

 An iterative algorithm that leverages heuristics for
• Ranking elements of the problem (e.g., services, hosts, components)
• Assigning software components to hardware hosts

 Genetic — Linear per generation O(|S| |U| |Q|)
 An individual represents a solution to the problem
 Populations of individuals are evolved via cross-overs and mutations
 The accuracy of the genetic algorithm depends on its representation
 Good representation  promotes genes of good individuals  guided search

 Market-based — Polynomial O(|C|2 |S| |U| |Q|)
 Decentralized
 Autonomous agents on each device auction their local components and bid

on each others’ components
 A good mechanism design (the calculation of auctions and bids) improves the

global objective

Common Theme
Heuristically make local decisions that maximize the global objective

26

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

27

DeSi – Deployment Modeling

 Provides modeling constructs for this problem
 Arbitrary parameters can be associated with these constructs
 A QoS dimension can be defined as a function of the modeling

constructs and their parameters

28

DeSi – User Preference Modeling

 DeSi’s MVC architecture allows for the addition of separate but
synchronized views of the underlying model

29

DeSi – Control Panel

 New algorithms can be plugged into DeSi to analyze and modify
its underlying model

30

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

31

Algorithms in Practice

 Results of running the algorithms on an example scenario of 12 Comps, 5
Hosts, 8 Services, and 8 Users

 Significant improvements for all the four QoS dimensions by all the algorithms
 The more important QoS dimensions of services have improved significantly

more than others

32

Algorithms’ Performance

1

10

100

1000

10000

100000

Problem Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
.

 x

 (
lo

ga
rit

hm
ic

 s
ca

le
)

 x

MIP 17 350 5000

MINLP 7 78 350 7520 25600

Greedy 2 7 8 11 44 124

Genetic 20 28 29 45 62 150

8C, 4H, 4S,
4U

12C, 5H,
5S, 5U

14C, 6H,
6S, 6U

20C, 8H,
8S, 8U

25C, 10H,
10S, 10U

40C, 15H,
15S, 15U

33

Algorithms’ Accuracy

1

10

100

1000

Problem Size

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

x
(lo

ga
rit

hm
ic

 s
ca

le
)

MIP 17 70 147

MINLP 14 64 122 152 235

Greedy 15 64 136 157 226 670

Genetic 14 56 128 136 198 533

8C, 4H,
4S, 4U

12C, 5H,
5S, 5U

14C, 6H,
6S, 6U

20C, 8H,
8S, 8U

25C, 10H,
10S, 10U

40C, 15H,
15S, 15U

34

Algorithmic Trade-Offs

 Architectural style
 MIP for constrained styles (e.g., Client-Server), optimization algorithms

for flexible styles (e.g., Peer-to-Peer)

 Number of QoS dimensions
 Large number of QoS  Genetic outperforms others

 Number of system parameter constraints
 Large number of constraints  Genetic has poor accuracy

 Stable vs. unstable systems
 MIP for stable systems, optimization algorithms for unstable systems

 Available resources
 Resource constrained system  Execute the genetic algorithm in parallel

on multiple devices

 Centralized vs. decentralized systems
 Decentralized system  Market-based algorithm

35

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

36

From Deployment Models to Running System

 Architectural models provide high-level concepts
 Components, hosts, links, configurations , etc.

 Software systems are implemented using low-level PL
constructs
 Variables, pointers, procedures, objects, etc.

 Deployment is ad-hoc
 Shell scripts, make files, system commands, etc.

 Bridging the models to runtime (re)deployment is
challenging
 Middleware can help

 Existing middleware technologies
 Do not support some architectural concepts (e.g., explicit connectors,

configuration)
 Lack support for remote (re)deployment and monitoring facilities

What is needed is “architectural middleware”

37

Prism-MW

 Prism-MW is an
extensible architectural
middleware
 PL-level constructs for

architectural concepts

 Extensible design allows
for the addition of new
facilities

 Developed facilities for
 (Re)Deployment and (Re)Configuration in terms of architectural

constructs
 Monitoring both at system and architecture level

38

Prism-MW Design

IConnector

Abstract
Monitor

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Abstract
Scaffold

Brick

Architecture

Component Connector

Event

Port

IComponent

IPort

java.io.Serializable

IArchitecture

#mutualPort

Extensible Component

AbstractService
Discovery

AbstractDeployment

Admin

ExtensiblePort

Abstract
Distribution

SocketDistribution

IRDistribution

NetworkReliability
Monitor EvtFrequency

Monitor

Extensible
Event

SDEngine

39

Architecture - DEMO

class DemoArch {
 static public void main(String argv[]) {
 Architecture arch = new Architecture ("DEMO");

// create components
Component a = new CompA ("A");
Component b = new CompB ("B");
Component c = new CompC (“C");
// create connectors
Connector d = new Connector(“D");
// add components and connectors
arch.addComponent(a);
arch.addComponent(b);
arch.addComponent(c);
arch.addConnector(d);
// establish the interconnections
arch.attach(a, d);
arch.attach(b, d);
arch.attach(d, c);
}

}

Using Prism-MW

Comp BComp A

Comp C

Connector D

Connector D

Comp A Comp B Comp C

40

Architecture - DEMO

Component B handles the event and sends a response

public void handle(Event e)
{

if (e.equals("Event_C")) {
...
Event e1= new Event("RSP_to_C“, REPLY);
e1.addParameter("response", resp);
send(e1);
}...

 }

S
e
n

d
 (

e
1

)

Using Prism-MW

Component C sends an event

Event e = new Event ("Event_C“, REQUEST);
e.addParameter("param_1", p1);
send (e);

S
e
n

d
 (e

)

Comp BComp A

Comp C

Connector D

41

Network

Connector D

Event Dispatching

Comp BComp A

Comp C

E
1

E
2

E
3

E
4

E
5

se
nd

 E
ve

nt
ha

nd
le

 E
ve

nt

Thread Pool

E

X EX

Scaffold

 Topology-based routing
 Easy redeployment and redistribution of components onto

different hardware configurations

2E

42

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

43
Architecture 1

SD
Engine

DeSi Adapter Arch.

Architecture 2

Deployment and Monitoring Support

Admin

Admin

Monitor

Effector

Repository

Repository

Repository

Comp B

Comp A

Comp C

Connector D

U
n

icas
t C

o
n

n
ecto

r

DLL DLL

DLL

Byte
Array

Comp A

SD
Engine

44

Outline

 Problem
 Motivation
 Approach
 Outcomes

 Deployment analysis
 Formulation
 Algorithms
 Tool support
 Evaluation

 Runtime support
 Prism-MW
 Integration

 Collaborations and future work

45

Collaborations with Industrial Partners

 US Army
 Emergency Deployment

Simulation
 Large scale search and rescue

teams

 Boeing
 Future Combat Systems
 Determine allocation of software

components on virtual hardware
platforms

 NASA’s Jet Propulsion Lab
 Dynamic analysis and adaptation

of space mission software

 Bosch Rsrch. & Tech. Center
 MIDAS
 Sensor-network product family

46

Partial View of MIDAS Architecture

Legend:

NodeInfo
Svc

SDEngine

Session
Administrator

Session
Operator

Component

Request Port Reply Port
Distribution
Request Port

Distribution
Reply Port

Sensor
Processor

GwToHub
Processor

GwToGw
Processor

Gateway Architecture Hub Architecture

SDEngine

Hub
Operator

EventNotificat
ionSvc

Trouble
LogSvc

ServiceMeta-level Comp

PDA
Architecture

EventDisplay

DeployerAdmin

Admin

Effector

Monitor

DeSi Adapter
Architecture

SDEngine

T
o

 o
th

e
r g

a
te

w
ay

s

T
o

 o
th

e
r P

D
A

s

Service-Oriented
Sub-Architecture

Publish-Subscribe
Sub-Architecture

FileInput
Svc

Peer-to-Peer
Sub-Architecture

T
o

 s
e

n
so

rs

T
o

 o
th

e
r g

atew
a

y
s

Prism-MW
Architecture

Pointer

DeSi

Connector

P
u

b
-S

u
b

 C
o

n
n

P
u

b
-S

u
b

 C
o

n
n

P
u

b
-S

u
b

 C
o

n
n

P
u

b
-S

u
b

 C
o

n
n

P
u

b
-S

u
b

 C
o

n
n

U
n

ic
a

s
t C

o
n

n

U
n

ica
s

t
C

o
n

n

Topology
Calculator

47

On-Going Work

 Complement static analysis with dynamic analysis

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0

Admin

22
26

13

27

10

33

7

24

25

32

19

23

11

Deployer

Distributed System

5

Prism -MW
Adapter

DeSi
Monitor

DeSi
Effector

Host A (iPAQ) Battery Power

22000

22500

23000

23500

24000

24500

0 200000 400000 600000

Time (ms)

R
em

ai
n

in
g

 E
n

er
g

y
 (

m
J)

x

Monitoring
Data

 (Re)Configuration
Instructions

C
an

d
id

a
te

A

rc
h

it
ec

tu
re

s

D
e

si
g

n
-T

im
e

E

st
im

a
te

s

Deploy/
Monitor

Static
Analysis

Dynam
ic

Analysis

Results of
Simulation

Code

Gen
er

at
io

n

 XTEAM
 Supports scenario-

driven dynamic
analysis

 Provides temporal
view of variations
in QoS

48

Dependability

Hardware
Properties

Software
Properties

 Availability

 Reliability

 Security

 Safety

Interaction
Frequency

Interaction
 Volume

Component
 Size

Interaction
 Volume

Component
CPU Usage

Available
Memory

Available
 CPU

Network
Reliability

Network
Bandwidth

 Survivability

Component
Failure Rate

H/W Properties

S/W
Properties

Non-Functional Properties

Remaining Challenges
 A comprehensive software architectural trade-off analysis and

implementation framework

Software
Architectural

Decisions

Hardware
Decisions

 What is the impact of
other architectural
decisions? What is
their relationship?

 How should they be
modeled, analyzed,

and implemented?

Replication

DecisionsDeployment

Decisions

