

Improving a Distributed Software System's Quality of Service via Architecture-Driven Dynamic Redeployment

Nenad Medvidovic

Center for Systems and Software Engineering Computer Science Department Viterbi School of Engineering University of Southern California Los Angeles, USA

> neno@usc.edu http://sunset.usc.edu/~neno/

- Problem
 - Motivation
 - Approach
 - Contribution
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Software Engineering Trends

- Software systems are becoming more complex
- A wider spectrum of distribution and heterogeneity
- Hardware and software mobility is becoming the norm

Software Architecture

- Software Architecture
 - A high-level model of a system
 - Represents system organization
 - Components
 - Connectors
 - Events
 - Configurations

Architectural Decisions

- Architectural decisions impact non-functional properties of the system
- Non-functional property
 - \succ Quality level at which an expected functionality is delivered
 - \succ a.k.a. Quality of Service (QoS)
- Making optimal architectural decisions has remained an art form
 - \succ Lack of quantification and measurement techniques
 - Reliance on domain expert knowledge

Deployment Architecture Impacts QoS

- Deployment Architecture: allocation of software components to hardware hosts
- h^c deployment architectures are possible for a given system
 - \blacktriangleright Many provide the same functionality
 - but different qualities of service (QoS)

Problem in a Nutshell

Motivating Question

- How could we find and effect a deployment architecture that improves (maximizes) multiple QoS dimensions?
 - Where other possible solutions such as caching, hoarding, replication, etc. are not appropriate or ideal

Objective

- Devise a solution that is applicable to many classes of application scenarios
 - No particular definition of QoS dimensions, class of systems, etc.

- Problem
 - Motivation
 - Approach
 - Contribution

Deployment analysis

- Formulation
- Algorithms
- Tool support
- Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Scenario with a Single QoS Dimension

- Objective is to minimize latency
- The optimal deployment architecture is deployment 1
- Most all related approaches stop here, but clearly this is not good enough

Conflicting QoS Dimensions

- Objective is to minimize latency and maximize durability
- There is no optimal deployment architecture!
- Phenomenon known as *Pareto Optimal* in multidimensional optimization

Resolving Trade-Offs between QoS Dimensions

- **Guiding Insight**
 - System users have varying QoS preferences for the system services they access

A *utility function* denotes a user's preferences for a given rate of improvement in a QoS dimension

Deployment Architecture

Allows expression of multidimensional optimization in terms of a single scalar value

A Slightly Larger Scenario

Overall Approach

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Outcomes

- Consideration of multiple QoS dimensions and constraints
- Consideration of multiple user-level services
- Generic formal modeling and analysis that can be tailored to each application scenario
- Suite of customizable tools
 - \succ Extension points for configuring the tools
 - Promotes reuse and cross-evaluation of solutions to this problem

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Formal Model of the System

- Define sets that specify the system elements and their properties
 - Set C of software components
 - C = {ResourcesMap, SendMessage, DisplayMap, ...}
 - Set CP of software component properties
 - CP = {size, reliability, ...}
 - Other sets
 - *H* of hardware nodes, N of network links, I of logical links, S of services, Q of QoS dimensions, U of users
 - *HP* of hardware parameters, NP of network link parameters, CP of software component parameters, IP of logical link parameters
- Define functions that quantify system properties
 - Function *cParam*: $C \times CP \rightarrow R$
 - cParam(ResourcesMap, size) = 150
 - Other functions
 - $hParam:H \times HP \rightarrow R$
 - $nParam:N \times NP \rightarrow R$
 - $IParam:I \times IP \rightarrow R$
 - sParam:S × { $H \cup C \cup N \cup I$ } × { $HP \cup CP \cup NP \cup IP$ } $\rightarrow R$

Formal Model of QoS & Users' Preferences

- Define QoS functions
 - \blacktriangleright qValue:S×Q×DepSpace \rightarrow R
 - quantifies the achieved level of QoS given a deployment
 - qValue(Schedule, Latency, Dep 1) = 1ms

- Define users' preferences in terms of utility
 - - represents the accrued utility for a given rate of change
 - qUtil(Commander, Schedule, Latency, 0.25) = -1

Model of the Constraints

- A set PC of parameter constraints
 PC={memory, bandwidth,...}
- A function *pcSatisfied:PC*×*DepSpace* \rightarrow [0,1]
 - 1 if constraint is satisfied
 - ➢ 0 if constraint is not satisfied
- Functions that restrict locations of software components
 - \blacktriangleright loc:C×H \rightarrow [0,1]
 - loc(c,h)=1 if c can be deployed on h
 - loc(c,h)=0 if c cannot be deployed on h
 - $\succ \text{ colloc:} C \times C \rightarrow [-1,1]$
 - colloc(c1,c2)=1 if c1 has to be on the same host as c2
 - colloc(c1,c2)=-1 if c1 cannot be on the same host as c2
 - colloc(c1,c2)=0 if there are no restrictions

Problem Definition

Given the current deployment *d*, find an improved deployment *d*' such that the users' overall utility defined as the function

$$overallUtil(d,d) = \bigcup_{u=1}^{|U|} |s| |Q| \qquad \text{Total utility of changing} \\ u=1 \ s=1 \ q=1 \qquad \text{Total utility of changing} \\ \text{where} \quad \Delta q = \frac{qValue(s,q,d) - qValue(s,q,d)}{qValue(s,q,d)} \qquad \text{Impact of changing d to} \\ d' \text{ on a QoS dimension} \\ \text{is maximized and specific conditions are satisfied:} \end{cases}$$

■ $\forall c \in C$, $loc(c, H_c) = 1$ All location constraints are satisfied

■ $\forall c1 \in C, \forall c2 \in C, if (colloc(c1,c2)=1) \rightarrow (H_{c1}=H_{c2}),$ if (colloc(c1,c2)=-1) $\rightarrow (H_{c1}\neq H_{c2})$ All collocation constraints are satisfied

✓constr∈PC pcSatisfied(constr,d)=1

All system parameter constraints are satisfied

Model Instantiation

- The engineer needs to further refine the "loosely" defined elements of the model
 - 1. Define the pertinent properties of the application scenario
 - 2. Define QoS dimensions in terms of system properties

 $qValue(s, availability, d) = \sum_{c_1=1}^{C_s} \sum_{c_2=1}^{C_s} sParam(s, I_{c_1, c_2}, freq) * nParam(N_{H_{c_1}, H_{c_2}}, rel)$

- 3. Define system parameter constraints
- But how is this done practically?
 - \succ Via appropriate tool support

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Algorithms

- A survey of applicable approaches to solving various classes of application scenarios resulted in five types of solutions
 - Two solutions represent state-of-the-art off-the-shelf solutions to solving this problem
 - The remaining solutions are special-purpose algorithmic solutions to address the shortcomings of the off-the-shelf solutions
- Why different algorithms?
 - \succ Each algorithm is suitable for a particular class of problems

Two Off-the-shelf Solvers

- 1. Mixed Integer Non-linear Programming (MINLP)
 - Represent the problem as a set of linear and non-linear constraint functions
 - Two drawbacks
 - Does not guarantee to find the optimal solution
 - In 20% of large problems, it cannot find any solution
- 2. Mixed Integer Linear Programming (MIP)
 - \succ Transform the MINLP problem to an MIP problem
 - ► Developed heuristics to decrease the complexity from $O(2^{|H|^2|C|^2}) \rightarrow O(|H|^{|C|})$
 - \blacktriangleright Pros: finds the optimal solution

Three Optimization Algorithms

- Greedy Polynomial $O(|S|^3(|C||U||Q|)^2)$
 - \blacktriangleright An iterative algorithm that leverages heuristics for
 - Ranking elements of the problem (e.g., services, hosts, components)
 - Assigning software components to hardware hosts
- Genetic Linear per generation O(|S| |U| |Q|)
 - \succ An individual represents a solution to the problem
 - Populations of individuals are evolved via cross-overs and mutations

Common Theme

Heuristically make local decisions that maximize the global objective

- Market-based Polynomial $O(|C|^2 |S| |U| |Q|)$
 - Decentralized
 - Autonomous agents on each device auction their local components and bid on each others' components
 - A good mechanism design (the calculation of auctions and bids) improves the global objective

ch

- Problem
 - Motivation
 - Approach
 - Outcomes

Deployment analysis

- Formulation
- Algorithms
- Tool support
- \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

DeSi – Deployment Modeling

- Provides modeling constructs for this problem
- Arbitrary parameters can be associated with these constructs
- A QoS dimension can be defined as a function of the modeling constructs and their parameters

DeSi – User Preference Modeling

 DeSi's MVC architecture allows for the addition of separate but synchronized views of the underlying model

DeSi – Control Panel

e R	Resource - DESI Editor - Eclipse Platform														
Eile	<u>E</u> dit Zoom <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject	<u>R</u> un <u>W</u> indow <u>H</u> elp													
È															
Ê	USC *DESI Editor ×														
	Input														
	Number of components:	10													
	Number of hosts:	4	-Constraints					Algorithms							
	Minimum comp, memory (in KB):	2	Components	н	losts			What do you want to do: Just run							
	Maximum comp. memory (in KB):	8	Component-0		Host-0	On t	he same host	Just run Run and preview							
	Minimum host memory (in KB):	10	Component-2		Host-2	Notion	the came boot	Run and preview							
	Maximum host memory (in KB):	40	Component-3	Host-3		Not on the same host		Unbiased Stochastic							
	Minimum comp. frequency (in events/s):	U	Component-4			Fix to host		Number of iterations: 1000							
	Maximum comp. frequency (in events/s):	10	Component-6			_									
	Minimum host reliability:	0	Component-7	Components can l		be		Discod Stachastic							
	Maximum host reliability:	1	Component-8 Component-9	collo	cated or										
	Minimum comp. event size (in KB):	0.01		rostr	ricted to/from			Greedy Approximation							
	Maximum comp. event size (in KB):	10		nesti oorto	in bests										
	Minimum host bandwidth (in KB/s):	1000		certa	ain nosts.										
	Level of bost discoppect	1000	ц -							Here	algorit	thms a	re		
	Now sv	stoms							Level of awareness run and their						
	Mod New Sy					UseMapping			Decentralized Iteration performance can be						
	Central host Can be	generated							Benchmarked.						
	Enable Centr accordi	ng to													
	Minimum handwidth/in k specifie	ed properties.													
	Maximum bandwidth(in KB(s)) 500														
	Minimum reliability: 6														
	Maximum reliability: 1														
							Revert to current deployment								
	Generate														
		0 404269	·		· · · · · · · · · · · · · · · · · · ·										
	Availability:	0.491308													
	- Tables of parameters				Boculto										
	Hosts: reliability and memory Comps: fre	equency and memory Host	s: bandwidth Com	ips: avg. e <u> </u>		Initial	Id Exact	Unbias	Blased	Greedy	Decent	Clustered			
	Hosts				1	0)						_		
	Host/Host 0 1	2 3	-		▲ 2 2	0)								
	1 0.0 1.0	0.808 0.0	Here we	e can s	see the	0)								
	2 0.0 0.889	1.0 0.0	details of our system												
	3 0.808 0.0	0.0 1.0	and the	2											
	<u></u>														
	Graphical Viewer Tabular View Selection		system	availa	bility.										
	- there is a set of the set of th		-												

 New algorithms can be plugged into DeSi to analyze and modify its underlying model

- Problem
 - Motivation
 - Approach
 - Outcomes

Deployment analysis

- Formulation
- Algorithms
- Tool support
- \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Algorithms in Practice

	MIP				MINLP				Greedy				Genetic			
QoS	Avail.	Latency	Comm. Security	Energy Cons.	Avail.	Latency	Comm. Security	Energy Cons.	Avail.	Latency	Comm. Security	Energy Cons.	Avail.	Latency	Comm. Security	Energy Cons.
service 1	56%	-8%	18%	-8%	33%	2%	-5%	14%	24%	-8%	4%	-4%	16%	-2%	18%	-8%
service 2	93%	94%	97%	24%	91%	41%	32%	24%	83%	91%	62%	15%	93%	84%	35%	18%
service 3	39%	30%	22%	49%	32%	38%	11%	69%	39%	30%	22%	49%	19%	30%	22%	49%
service 4	215%	97%	302%	7%	215%	97%	302%	7%	165%	50%	220%	12%	180%	91%	150%	10%
service 5	59%	7%	25%	26%	23%	5%	39%	21%	43%	7%	19%	18%	29%	5%	35%	33%
service 6	99%	55%	37%	44%	83%	35%	45%	32%	99%	55%	37%	44%	99%	55%	37%	44%
service 7	91%	57%	20%	47%	97%	29%	44%	25%	91%	37%	14%	23%	91%	43%	4%	49%
service 8	43%	22%	7%	56%	41%	11%	-5%	72%	32%	21%	-10%	58%	13%	51%	7%	72%
Average	86%	44%	66%	30%	76%	32%	57%	33%	72%	35%	46%	26%	67%	44%	38%	33%
overallUtil	overallUtil 64			57				55				52				

- Results of running the algorithms on an example scenario of 12 Comps, 5 Hosts, 8 Services, and 8 Users
- Significant improvements for all the four QoS dimensions by all the algorithms
- The more important QoS dimensions of services have improved significantly more than others

Algorithms' Performance

Problem Size

Algorithms' Accuracy

Problem Size

Algorithmic Trade-Offs

- Architectural style
 - MIP for constrained styles (e.g., Client-Server), optimization algorithms for flexible styles (e.g., Peer-to-Peer)
- Number of QoS dimensions
 - ▶ Large number of QoS \rightarrow Genetic outperforms others
- Number of system parameter constraints
 - \succ Large number of constraints \rightarrow Genetic has poor accuracy
- Stable vs. unstable systems
 - \blacktriangleright MIP for stable systems, optimization algorithms for unstable systems
- Available resources
- Centralized vs. decentralized systems
 - \succ Decentralized system \rightarrow Market-based algorithm

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

From Deployment Models to Running System

- Architectural models provide *high-level* concepts
 - \succ Components, hosts, links, configurations, etc.
- Software systems are implemented using *low-level* PL constructs
 - \succ Variables, pointers, procedures, objects, etc.
- Deployment is ad-hoc
 - \succ Shell scripts, make files, system commands, etc.
- Bridging the models to runtime (re)deployment is challenging
 - Middleware can help
- Existing middleware technologies
 - Do not support some architectural concepts (e.g., explicit connectors, configuration)
 - Lack support for remote (re)deployment and monitoring facilities

What is needed is "architectural middleware"

Prism-MW

- Prism-MW is an extensible architectural middleware
 - PL-level constructs for architectural concepts
- Extensible design allows for the addition of new facilities

- Developed facilities for
 - (Re)Deployment and (Re)Configuration in terms of architectural constructs
 - \blacktriangleright Monitoring both at system and architecture level

Prism-MW Design

Using Prism-MW

}

class DemoArch { static public void main(String argv[]) { Architecture arch = new Architecture ("DEMO"); // create components Component a = new CompA ("A"); Component b = new CompB ("B"); Component c = new CompC ("C"); // create connectors Connector d = new Connector("D"); // add components and connectors arch.addComponent(a); arch.addComponent(b); arch.addComponent(c); arch.addConnector(d); // establish the interconnections arch.attach(a, d); arch.attach(b, d); arch.attach(d, c); Connector D

Using Prism-MW

Component C sends an event

```
Event e = new Event ("Event_C", REQUEST);
e.addParameter("param_1", p1);
send (e);
```

Component B handles the event and sends a response

public void handle(Event e)

ł

}

```
if (e.equals("Event_C")) {
```

```
...
Event e1= new Event("RSP_to_C", REPLY);
e1.addParameter("response", resp);
send(e1);
}...
```

Event Dispatching

- Topology-based routing
- Easy redeployment and redistribution of components onto different hardware configurations

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Deployment and Monitoring Support

- Problem
 - Motivation
 - Approach
 - Outcomes
- Deployment analysis
 - Formulation
 - Algorithms
 - Tool support
 - \succ Evaluation
- Runtime support
 - Prism-MW
 - Integration
- Collaborations and future work

Collaborations with Industrial Partners

- US Army
 - Emergency Deployment Simulation
 - Large scale search and rescue teams
- Boeing
 - Future Combat Systems
 - Determine allocation of software components on virtual hardware platforms
- NASA's Jet Propulsion Lab
 - Dynamic analysis and adaptation of space mission software
- Bosch Rsrch. & Tech. Center
 - MIDAS
 - Sensor-network product family

Partial View of MIDAS Architecture

On-Going Work

- Complement static analysis with dynamic analysis
- XTEAM
 - Supports scenariodriven dynamic analysis
 - Provides temporal view of variations in QoS

Remaining Challenges

 A comprehensive software architectural trade-off analysis and implementation framework

