
GenArch (Generative Architectures):                                                          
A Model-Based Product Derivation Tool

Elder Cirilo, Uirá Kulesza, Carlos Lucena

Software Engineering Laboratory

Computer Science Department

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)



Motivation

• Software Product Line (SPL) approaches motivate the 

definition of a flexible and adaptable architecture which 

addresses the common and variable SPL features;

• SPL architectures are implemented by defining or 

reusing a set of different artifacts, such as OO 

© LES/PUC-Rio

reusing a set of different artifacts, such as OO 

frameworks and software libraries; 

• Recently, new programming techniques have been 

explored to modularize the SPL features, such as, 

aspect-oriented programming, feature-oriented 

programming and code generation.



Motivation

• Product Derivation refers to the process of constructing 

a product from the set of assets specified or 

implemented for a SPL;

• Over the last years, instantiation/derivation tools have 

been proposed to facilitate the selection, composition

and configuration of SPL code assets and their 

© LES/PUC-Rio

and configuration of SPL code assets and their 

respective variabilities;

• Examples of tools:

– Gears

– Pure::variants



Problem

• These tools are in general complex and heavyweight to 

be used by the mainstream developer community. 

• Some problems/deficiencies from the existing tools:

– they incorporate a lot of new concepts from the SPL 

© LES/PUC-Rio

– they incorporate a lot of new concepts from the SPL 

development area;

– definition of many complex models and/or 

functionalities; 

– they are in general more adequate to work with 

proactive approaches.



Our work

• This work proposes GenArch, a model-driven product 

derivation tool.

• It is centered on the definition of three models:

(i) Feature model

(ii) Architecture model

© LES/PUC-Rio

(ii) Architecture model

(iii) Configuration model

• Our approach motivates:

- the generation of initial versions of these models based on a 

set of code annotations;

- the refinement and adaptation of these initial versions to 

enable the automatic product derivation. 



Agenda

• Introduction / Motivation

• Approach Overview

• Approach in Action

• Tool Architecture / Adopted Technologies

• Discussion and Lessons Learned

© LES/PUC-Rio

• Discussion and Lessons Learned

• Conclusions and Future Work



Approach Overview

© LES/PUC-Rio



Approach Overview

• The purpose of each model of our approach

• Feature Model 

– Represent variabilities from the SPL architecture.

• Architecture Model

– Offer a visual representation of code artifacts from the 

© LES/PUC-Rio

– Offer a visual representation of code artifacts from the 

SPL architecture.

• Configuration Model

– Define the mapping between features and code artifacts. 

It represents the configuration knowledge from a 

generative approach.



Agenda

• Introduction / Motivation

• Approach Overview

• Approach in Action

• Tool Architecture / Adopted Technologies

• Discussion and Lessons Learned

© LES/PUC-Rio

• Discussion and Lessons Learned

• Conclusions and Future Work



Approach in Action

• Illustrate the tool functionalities through an example.

• Approach Steps:

I. Annotating Java Code with Feature and Variabilities

II. Generating and Refining the Approach Models

© LES/PUC-Rio

II. Generating and Refining the Approach Models

III. Implementing Variabilities with Templates

IV. Generating SPL Instances



Framework JUnit

• Specification of unit and integration tests.

• Implementation of Variabilities:

– Framework OO > polimorphism

– Aspect-Oriented Programming

11© LES/PUC-Rio

• Existing variabilities:

– Test suites and test cases

– Graphical User Interface (Swing, AWT, Txt)

– Test cases extensions (repetition, concurrent 

execution) >> Aspects



I. Annotating Java Code with Feature and Variabilities

• Two kinds of annotations: @Feature e @Variability

• Examples:

@Feature(name="TestCase",

parent="TestSuite",

type=FeatureType.mandatory)

@Variability(type=VariabilityType.hotSpot,

© LES/PUC-Rio

@Variability(type=VariabilityType.hotSpot,

feature=“TestCase”)

• They are processed by a parser to generate initial 

versions of the models



Example: TestCase class annotated

13© LES/PUC-Rio



II. Generating and Refining the Approach Models

© LES/PUC-Rio



II. Generating and Refining the Approach Models

15© LES/PUC-Rio

Before

After



II. Generating and Refining the Approach Models

16© LES/PUC-Rio



III. Implementing Variabilities with Templates

@Feature

@Variability

@Feature

@Variability



III. Implementing Variabilities with Templates

«IMPORT featuremodel»

«DEFINE Main FOR Feature»

«FILE attribute + ".java"»

package junit.framework;

public class «attribute» extends TestSuite {

}}

«ENDFILE»

«ENDDEFINE»

Before



III. Implementing Variabilities with Templates

«IMPORT featuremodel»

«DEFINE Main FOR Feature»

«FILE attribute + ".java"»

package junit.framework;

public class «attribute»  extends TestSuite {

public static Test suite() {

TestSuite suite = new TestSuite();

«FOREACH features AS child»

© LES/PUC-Rio

«FOREACH features AS child»

suite.addTestSuite(«child.attribute».class);

«ENDFOREACH»

return suite;

}

}

«ENDFILE»

«ENDDEFINE»

After



IV. Generating SPL Instances

• Choose the Variable Features (Feature Model Instance)

© LES/PUC-Rio



IV. Generating SPL Instances

• Load the Product Code in a Eclipse Project

© LES/PUC-Rio



Agenda

• Introduction / Motivation

• Approach Overview

• Approach in Action

• Architecture Overview 

• Discussions and Lessons Learned

© LES/PUC-Rio

• Discussions and Lessons Learned

• Conclusions and Future Work



Architecture Overview

© LES/PUC-Rio



Agenda

• Introduction / Motivation

• Approach Overview

• Approach in Action

• Architecture Overview 

• Discussions and Lessons Learned

© LES/PUC-Rio

• Discussions and Lessons Learned

• Conclusions and Future Work



Synchronization between Annotations & Models

• In the current version, there is no available functionality to 

synchronize the SPL annotations and respective models.

• We are starting to work on the following functionalities:

(i) removing of features which are not longer used by the 

configuration model or annotation; 

(ii) removing of mapping relationships in the configuration 

© LES/PUC-Rio

(ii) removing of mapping relationships in the configuration 

model which refer to non-existing features or implementation 

elements; 

(iii) removing of implementation elements from the 

architecture model which do not exist anymore; 

(iv) automatic creation of annotations in implementation 

elements based on information provided by the configuration 

model.



Integration with Refactoring Tools

• The integration of GenArch with existing refactoring tools 

involves several challenges, such as, for example: 

(i) to allow the creation of @Feature annotations to every 

refactoring that exposes or creates a new variable 

feature in order to present it in the SPL feature model to 

© LES/PUC-Rio

feature in order to present it in the SPL feature model to 

enable its automatic instantiation; and 

(ii) refactorings that introduce new extension points 

(such as, abstract classes or aspects or an interface) 

must be integrated with GenAch to allow the automatic 

insertion of @Variability annotations.



Architecture Model Specialization

• We are working on the definition of specializations of the 

architecture model.

• The specializations have the purpose to support other 

abstractions and mechanisms of specific technologies. 

© LES/PUC-Rio

• The first specialization will support abstractions provided 

by the Spring framework, such as Spring beans, Spring 

aspects and their respective configuration files.



Agenda

• Introduction / Motivation

• Approach Overview

• Approach in Action

• Architecture Overview 

• Discussions and Lessons Learned

© LES/PUC-Rio

• Discussions and Lessons Learned

• Conclusions and Future Work



Conclusions and Future Work

• Our tool combines the use of models and code 

annotations in order to enable the automatic product 

derivation of existing SPL architectures.

• The current version of GenArch will work as a base to 

provide a set of new and interesting SPL functionalities:

© LES/PUC-Rio

provide a set of new and interesting SPL functionalities:

– Customization of aspect libraries using feature models

– Synchronization of Models

– Composition with other different DSLs

– Integration with refactoring tools

– Specialization of the Architecture Model



Questions? Suggestions?
Comments?

© LES/PUC-Rio



GenArch (Generative Architectures):                                                          
A Model-Based Product Derivation Tool

Elder Cirilo, Uirá Kulesza, Carlos Lucena

Software Engineering Laboratory

Computer Science Department

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)



Instantiation of Aspect Libraries

• Specification of features <<crosscutting >> and 

<<joinpoint>>.

• Specification of mapping between joinpoint features and 

concrete aspect joinpoints

© LES/PUC-Rio


