i

s

LES

r _______JF
_,

GenArch (Generative Architectures):
A Model-Based Product Derivation Tool

Elder Cirilo, Uira Kulesza, Carlos Lucena

(]
S
®
2
=
=]
/7]
(]
)
3
[
®
=
=
o
<))
w
Q
)
9
[
‘0
-
1]
S
o
2
1]
- |

Software Engineering Laboratory
Computer Science Department
Pontifical Catholic University of Rio de Janeiro (PUC-Rio0)

Motivation LES

o Software Product Line (SPL) approaches motivate the
definition of a flexible and adaptable architecture which
addresses the common and variable SPL features;

e SPL architectures are implemented by defining or
reusing a set of different artifacts, such as OO
frameworks and software libraries;

e Recently, new programming techniques have been
explored to modularize the SPL features, such as,
aspect-oriented programming, feature-oriented
programming and code generation.

© LES/PUC-Rio

Motivation LES

e Product Derivation refers to the process of constructing
a product from the set of assets specified or
implemented for a SPL;

» Over the last years, instantiation/derivation tools have
been proposed to facilitate the selection, composition
and configuration of SPL code assets and their
respective variabilities;

e Examples of tools:
— Gears
— Pure::variants

© LES/PUC-Rio

Problem LES

* These tools are in general complex and heavyweight to
be used by the mainstream developer community.

e Some problems/deficiencies from the existing tools:

- they incorporate a lot of new concepts from the SPL
development area;

- definition of many complex models and/or
functionalities;

- they are in general more adequate to work with
proactive approaches.

© LES/PUC-Rio

Our work LES

This work proposes GenArch, a model-driven product
derivation tool.

It is centered on the definition of three models:

(i) Feature model
(ii) Architecture model
(iii) Configuration model

e Our approach motivates:

- the generation of initial versions of these models based on a
set of code annotations;

- the refinement and adaptation of these initial versions to
enable the automatic product derivation.

© LES/PUC-Rio

Agenda LES

e Introduction / Motivation
e Approach Overview
e Approach in Action

e Tool Architecture / Adopted Technologies
e Discussion and Lessons Learned
e Conclusions and Future Work

© LES/PUC-Rio

Approach Overview

Domain Application
Engineering Engineering
Implementation Elements
Classes/Aspects/Templates/Files

v

Import 9

Y

Product 1 Product2 Product 3

{

Derivation

i

Feature Configuration
Model

Templates

S

Architecture
Model

13/

~ ———g

LES

Approach Overview LES

e The purpose of each model of our approach

Feature Model

— Represent variabilities from the SPL architecture.

Architecture Model

— Offer a visual representation of code artifacts from the
SPL architecture.

e Configuration Model

— Define the mapping between features and code artifacts.
It represents the configuration knowledge from a
generative approach.

© LES/PUC-Rio

Agenda LES

e Introduction / Motivation
e Approach Overview
e Approach in Action

e Tool Architecture / Adopted Technologies
e Discussion and Lessons Learned
e Conclusions and Future Work

© LES/PUC-Rio

Approach in Action LES

o Illustrate the tool functionalities through an example.

e Approach Steps:
I. Annotating Java Code with Feature and Variabilities
II. Generating and Refining the Approach Models
ITI. Implementing Variabilities with Templates
IV. Generating SPL Instances

© LES/PUC-Rio

Framework JUnit

o Specification of unit and integration tests.

o Implementation of Variabilities:
- Framework OO > polimorphism
— Aspect-Oriented Programming

o Existing variabilities:
— Test suites and test cases
— Graphical User Interface (Swing, AWT, Txt)

— Test cases extensions (repetition, concurrent
execution) >> Aspects

© LES/PUC-Rio

LES

11

I. Annotating Java Code with Feature and Variabilities LES

e Two kinds of annotations: @Feature e @Variability
e Examples:
@Feature(name="TestCase",
parent="TestSuite",
type=FeatureType.mandatory)
@Variability(type=VariabilityType.hotSpot,
feature="TestCase”)

e They are processed by a parser to generate initial
versions of the models

© LES/PUC-Rio

de Software

de Engenhari

ye

orio

Laborat

Example: TestCase class annotated LES

EFeature (name="TestCase",parent="TeztSuite", cype=FeatureType.mandatory)
EVariability(type=VariabilityType. hotSpot, feature="TestCase")
public ab=stract claszs Testlas=se extend=s Ls=zert implements Test {
L
* the name of the test case
*/

private String fHName:

L
* No-arg constructor to enable serialization. This method
* 1= not intended to be used by mere mortals without calling setHame |
*f
public TestCase() {
fHame= null;
}
L
* Constructs a test case with the given name.
*f
public TestCase (String name) {
fHame= name;

© LES/PUC-Rio 13

Laboratério de Engenharia de Software

II. Generating and Refining the Approach Models

LES

v "i".g."i" Architecture
v f# Component junit
v f# Component framework
(% Class TestSuite java
(9 Class TestResultjava
(9 Class TestCase java
(9 Class Testjava
E Template TestSuiteTemplate. xpt
E Template TestCaseTemplate. xpt
v f# Component runner
3 E Component swingui
p -8 Component textui
p B8 Component awtui
v Component extensions
E} Aspect RepeatedTestCeneric.aj
Ei Aspect ActiveTestSuiteGeneric.aj
E Template ActiveTestsuiteGeneric.xpt

E Template ActiveRepeatedTestCeneric. xpt

© LES/PUC-Rio

Laboratério de Engenharia de Software

II. Generating and Refining the Approach Models LES
v A Unit v A JUnit
w.. @ Testing . @® Testing
v &% TestSuite v @ [1.*] TestSuite (STRING)
#® TestCase #® [1.“] TestCase (STRING)
v @ Extensions v # Runner
p - O Repeat v ﬁ\
& Concurrent Execution o AWT
o 5wing
o TXT
Before . O Extensions
p &% [0.*] Repeat (STRING)
& [0.*] Concurrent Execution
After
© LES/PUC-Rio 15

Laboratério de Engenharia de Software

II. Generating and Refining the Approach Models LES

v %8 Configuration
v 8 Component junit
I Comporent framevork
E Template TestsuiteTemplate.xpt (TestSuite)
E Template TestCaseTemplate.xpt (TestCase)
v @8 Component runner
p -8 Component textui (TXT)
p -8 Component awtui (AWT)
p -H8 Component swingui [SWING)
v Component extensions
(% Aspect RepeatedTestCeneric.aj (Repeat)
E.’!' Aspect ActiveTestSuiteGeneric.aj (Concurrent Execution)
E Template RepeatedTestGeneric.xpt (Repeat)

E Template ActiveTestSuiteCeneric.xpt (Concurrent Execution)

© LES/PUC-Rio 16

III. Implementing Variabilities with Templates LEs

==hot-spot== ==hot-spot==
TestSuite TestCase
@Feature {}1 - @Feature
@ Variability - | @Variability
P Fa
==Template== ==Template==

TestSuteTemplate TestCaseTemplate

III. Implementing Variabilities with Templates LEs

«IMPORT featuremodel»
«DEFINE Main FOR Feature»
«FILE attribute + ".java"»
package junit.framework;
public class «attribute» extends TestSuite {
b
«ENDFILE»
«ENDDEFINE>»

Before

III. Implementing Variabilities with Templates LES

«IMPORT featuremodel»
«DEFINE Main FOR Feature»
«FILE attribute + ".java"»
package junit.framework;
public class «attribute» extends TestSuite {
public static Test suite() {
TestSuite suite = new TestSuite();
«FOREACH features AS child»
suite.addTestSuite(«child.attribute».class);
«ENDFOREACH»
return suite;

¥
«ENDFILE>

«ENDDEFINE>»

After

© LES/PUC-Rio

IV. Generating SPL Instances LES

e Choose the Variable Features (Feature Model Instance)

4 'ij._ Configuration 1 of JUnitFramework (3 configuration(s))
4 ® Testing
4@ [0..7] Test Suite {'TestSuitel' : STRING)
& [0..*] Test Case ('TestCasell' : STRIMNG)
Test Case ('TestCasel?' : STRIMG)
: # Tecst Casze ('TestCasel3': STRIMG])
4 @ Test Suite (' TestSuited' : STRING)
[1.%] Test Case ('TestCase2l' : STRING)
Test Case (' TestCasedd : STRIMNG)
: # Test Case (TestCased3': STRIMG]
4. #% Runner
.Y
: EﬂﬁH¥T
E %] Swing
-] TXT

[Extensions

Laboratério de Engenharia de Software

- © LES/PUC-Rio

I IV. Generating SPL Instances

Laboratério de Engenharia de Software

LES

e Load the Product Code in a Eclipse Project

..:l ff'j' ProductProject
a4 src
-8 junitawtui

b 48 junitframework

b 8 junit.runner

4 3 producttest

o [J] TestCasell java

J| TestCasel2 java
|4 TestCasel3.java
J| TestCase?l java
J| TestCase?2 java
J| TestCase?3.java
4] TestSuitel java
- b [J] TestSuite2 java
*:- =, JRE Systemn Library [jrel 5.0 11]
i Ey Aspect) Runtime Library

v T e T T e T e T e T,

© LES/PUC-Rio

I Agenda

Laboratério de Engenharia de Software

LES

Introduction / Motivation
Approach Overview

Approach in Action

Architecture Overview
Discussions and Lessons Learned
Conclusions and Future Work

© LES/PUC-Rio

Architecture Overview

LES

Genarch Plugin

Importing Component

Derivation Component

Feature
Model
Configuration
FMP Model

@
lemplates

OAW

Architectural
Model !

EMF

Laboratério de Engenharia de Software

Eclipse Plataform

© LES/PUC-Rio

I Agenda

Laboratério de Engenharia de Software

LES

Introduction / Motivation
Approach Overview

Approach in Action

Architecture Overview
Discussions and Lessons Learned
Conclusions and Future Work

© LES/PUC-Rio

Synchronization between Annotations & Models LEs

e In the current version, there is no available functionality to
synchronize the SPL annotations and respective models.

o We are starting to work on the following functionalities:

(i) removing of features which are not longer used by the
configuration model or annotation;

(i) removing of mapping relationships in the configuration
model which refer to non-existing features or implementation
elements;

(iii) removing of implementation elements from the
architecture model which do not exist anymore;

(iv) automatic creation of annotations in implementation
elements based on information provided by the configuration
model.

© LES/PUC-Rio

Integration with Refactoring Tools LES

e The integration of GenArch with existing refactoring tools
involves several challenges, such as, for example:

(i) to allow the creation of @Feature annotations to every
refactoring that exposes or creates a new variable
feature in order to present it in the SPL feature model to
enable its automatic instantiation; and

(ii) refactorings that introduce new extension points
(such as, abstract classes or aspects or an interface)
must be integrated with GenAch to allow the automatic
insertion of @Variability annotations.

© LES/PUC-Rio

Architecture Model Specialization LES

o We are working on the definition of specializations of the
architecture model.

e The specializations have the purpose to support other
abstractions and mechanisms of specific technologies.

e The first specialization will support abstractions provided
by the Spring framework, such as Spring beans, Spring
aspects and their respective configuration files.

© LES/PUC-Rio

I Agenda

Laboratério de Engenharia de Software

LES

Introduction / Motivation
Approach Overview

Approach in Action

Architecture Overview
Discussions and Lessons Learned
Conclusions and Future Work

© LES/PUC-Rio

Conclusions and Future Work LES

e Our tool combines the use of models and code
annotations in order to enable the automatic product
derivation of existing SPL architectures.

e The current version of GenArch will work as a base to
provide a set of new and interesting SPL functionalities:

— Customization of aspect libraries using feature models
- Synchronization of Models

- Composition with other different DSLs

— Integration with refactoring tools

- Specialization of the Architecture Model

© LES/PUC-Rio

LES

Questions? Suggestions?
Comments?

Laboratério de Engenharia de Software

- © LES/PUC-Rio

i

s

LES

r _______JF
_,

GenArch (Generative Architectures):
A Model-Based Product Derivation Tool

Elder Cirilo, Uira Kulesza, Carlos Lucena

(]
S
®
2
=
=]
/7]
(]
)
3
[
®
=
=
o
<))
w
Q
)
9
[
‘0
-
1]
S
o
2
1]
- |

Software Engineering Laboratory
Computer Science Department
Pontifical Catholic University of Rio de Janeiro (PUC-Rio0)

I Instantiation of Aspect Libraries LES

e Specification of features <<crosscutting >> and
<<joinpoint>>.

e Specification of mapping between joinpoint features and
concrete aspect joinpoints

Laboratério de Engenharia de Software

- © LES/PUC-Rio

