
LIFT: Reusing Knowledge LIFT: Reusing Knowledge
from Legacy Systemsfrom Legacy Systems

Kellyton dos Santos BritoKellyton dos Santos Brito

Informatics Center - Federal University of PernambucoInformatics Center - Federal University of Pernambuco
C.E.S.A.R. - Recife Center for Advanced Studies and SystemsC.E.S.A.R. - Recife Center for Advanced Studies and Systems

Kellyton.brito@cesar.org.brKellyton.brito@cesar.org.br

2/28

 Software Reuse
 Initial ideas from McIlroy (1968)

Software reuse is the process of creating software systems
from existing software rather than building them from

scratch (Krueger 1992)

 Reusable Assets
 Products, Processes, Knowledge …

 Reuse Aspects
 Processes, methods, environments, tools and non-technical

aspects

3/28

One (of many) point is...One (of many) point is...

 Legacy Systems
 Well Tested, stable, low bugs and defects
 A lot of embedded knowledge

 Problems
 Obsolete technologies, languages, tools and processes
 Non useful documentation
 Degradation due to maintenance operations
 Few specialized people

 Directions
 Reverse engineer applications
 Knowledge Reuse

Knowledge reuse from legacy systems

LIFT: Legacy Information LIFT: Legacy Information
Retrieval ToolRetrieval Tool

5/28

LIFT: Legacy InFormation retrieval ToolLIFT: Legacy InFormation retrieval Tool

 Objective
 To automate tasks of reverse engineering and

legacy systems knowledge reuse

 The requirements
 Based on the state-of-the-art and practice in

reengineering and reverse engineering

6/28

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Santanu Paul
SCRUPLE Tool

Müller et al .
Rigi Project

Software Understanding

Finnigan
The Software

Bookshelf

Favre
GSEE: a Generic

Software Exploration
EnvironmentStorey et al .

SHriMP Views
Exploration Tool

Singer et al .
TKSEE Software
Exploration Tool

Zayour et al .
DynaSee Reverse
Engineering Tool

Schäfer et al .
SEXTANT
Software

Exploration Tool

Lanza
CodeCrawler

Reverse Engineering ToolsReverse Engineering Tools

7/28

Reverse Engineering ToolsReverse Engineering Tools
 Almost all of them shows a call graph

 Each one implements its proper requirements set
 Some with explorationexploration capabilities
 Some with visualizationvisualization capabilities
 Some with cognitivecognitive capabilities

 All of them highly user dependent: lack of automatic or semi-
automatic code analysis

 Lack of recover and traceability of entire system, from interface to
database

 Discover HOW programs works, instead of WHAT programs do

 Problems dealing with big systemsbig systems

8/28

LIFT Functional RequirementsLIFT Functional Requirements
(FR1) Visualization of entities and relations

(FR2) Abstraction mechanisms

(FR3) High user interactivity

(FR4) Search capabilities

(FR5) User activities trace capabilities

(FR6) Metrics visualization support

(FR7) Recovery of the entire system (interface, design and database)

(FR8) Trace of requirements from interface to database access

(FR9) Possibility of semi-automatic suggestions

Existent Requirements

New Requirements

9/28

LIFT Non Functional RequirementsLIFT Non Functional Requirements
(NFR1) Cross Artifacts support

(NFR2) Extensibility

(NFR3) Integration with other tools

(NFR4) Scalability

(NFR5) Maintainability and Reusability

Existent Requirements

New Requirements

10/28

LIFT ArchitectureLIFT Architecture

Pre Processing

Persistence Layer

Legacy
Code

Parser Analyzer Visualizer

Parser Cluster
Visualization

Patterns
Detection

Normal
Visualization

Understanding Environment

Paths
Visualization

Patterns
Visualization

Paths
Calculation

Cluster
Analysis

11/28

Implementation: Parser ComponentImplementation: Parser Component

 Parser Module
 Parses NATURAL/ADABAS source code
 First version developed by Pitang team
 Uses C# technology
 Integrated as a component

 Pre-Processing Module
 Works with parser output
 Store useful information in the database

 SQL ANSI
 Performs the system slice
 Deduction of database layer

12/28

Implementation: Analyzer ComponentImplementation: Analyzer Component
 Call Graph Generation
 Paths Calculations

 Full paths
 Minimal paths

 Using Dijkstra shortest path algorithm
 Running time O(n.log n)

 Cluster analysis
 Hierarchical Clustering
 Mark Newman's “edge betweenness clustering algorithm”

 Running time O(k.m.n)

 Patterns detection (second interaction)
 Text pattern detection
 Graph pattern detection
 Clone detection

13/28

Implementation: Visualizer ComponentImplementation: Visualizer Component

 Based on JUNG: Java Universal Network/Graph
Framework

 Visualizations of call graph and Analyzer modules
 Normal visualization
 Cluster visualization
 Paths visualization
 Patterns visualization

 Uses Polimetric-Views concept

14/28

Understanding EnvironmentUnderstanding Environment

 Graphical interface
 Integrate the other components
 Shows source code
 Works with views concept

 Isolate subgraphs
 Allow comments

 Views comments
 Modules comments
 Source code comments

15/28

LIFT Usage: Initial StepsLIFT Usage: Initial Steps

 Parser and Organizer
 Called by simple menu commands

16/28

LIFT Usage: Initial GraphLIFT Usage: Initial Graph

17/28

LIFT Usage: Isolating GraphsLIFT Usage: Isolating Graphs

18/28

LIFT Usage: Detecting ClustersLIFT Usage: Detecting Clusters

19/28

Case StudyCase Study

21/28

The ContextThe Context
 Pitang Software Factory

 Infra-structure
 Experienced staff
 Real demands for reverse engineering

 NATURAL/ADABAS systems of a financial institution
 Previous experience with reverse engineering: Almost 2 million

LOC

Questions
 Does the tool provides effort reduction in

reverse engineering projects?
 Does the tool is scalable to be used in large

projects?
 Do the subjects have difficulties to use the

tool?

22/28

The PlanningThe Planning
 Method of comparison

 Comparison with two sibling projects
 Same technologies: NATURAL/ADABAS
 Same domain: Financial
 Same customer
 Same understanding process
 Same number of participants
 Similar engineers experience: more than 10 years

 Different tools

 The Projects
 LIFT Project: 210 KLOC system
 Sibling projects: 65 KLOC and 131KLOC systems

23/28

The Quantitative AnalysisThe Quantitative Analysis

 Lines/Hour Productivity
 66% higher than Project 1 and 41% higher than Project 2

24/28

The Quantitative AnalysisThe Quantitative Analysis

 Modules/Hour Productivity
 12% higher than Project 1 and 127% higher than Project 2

25/28

Increase Rate

0

0,5

1

1,5

2

Size (KLOC) Parse Time
(s)

Pre-
Processing

Time (s)

Minimal
Paths Time

(s)

Full Analysis
and Graph
Creation (s)

R
at

e Increase Rate

The Quantitative AnalysisThe Quantitative Analysis
 Scalability

 LIFT project and “Project 2” evaluation
Pentium IV / 512MB Database Server x Dual Core 2 / 2GB Client

26/28

The Qualitative AnalysisThe Qualitative Analysis

 Based on a questionnaire

 Tool effectivity
 Effort reduction of about 20%
 Easy to locate system features and to generate system

documentation

 Weak Point
 Delay to load the application (Full Analysis and Graph

Creation)

27/28

Case Study SummaryCase Study Summary

Questions
 Does the tool provides effort reduction in reverse

engineering projects?
 YesYes

 Does the tool is scalable to be used in large
projects?
 YesYes

 Do the subjects have difficulties to use the tool?
 NoNo

LIFT: Reusing Knowledge LIFT: Reusing Knowledge
from Legacy Systemsfrom Legacy Systems

Kellyton dos Santos BritoKellyton dos Santos Brito

Informatics Center - Federal University of PernambucoInformatics Center - Federal University of Pernambuco
C.E.S.A.R. - Recife Center for Advanced Studies and SystemsC.E.S.A.R. - Recife Center for Advanced Studies and Systems

Kellyton.brito@cesar.org.brKellyton.brito@cesar.org.br

