
LIFT: Reusing Knowledge LIFT: Reusing Knowledge
from Legacy Systemsfrom Legacy Systems

Kellyton dos Santos BritoKellyton dos Santos Brito

Informatics Center - Federal University of PernambucoInformatics Center - Federal University of Pernambuco
C.E.S.A.R. - Recife Center for Advanced Studies and SystemsC.E.S.A.R. - Recife Center for Advanced Studies and Systems

Kellyton.brito@cesar.org.brKellyton.brito@cesar.org.br

2/28

 Software Reuse
 Initial ideas from McIlroy (1968)

Software reuse is the process of creating software systems
from existing software rather than building them from

scratch (Krueger 1992)

 Reusable Assets
 Products, Processes, Knowledge …

 Reuse Aspects
 Processes, methods, environments, tools and non-technical

aspects

3/28

One (of many) point is...One (of many) point is...

 Legacy Systems
 Well Tested, stable, low bugs and defects
 A lot of embedded knowledge

 Problems
 Obsolete technologies, languages, tools and processes
 Non useful documentation
 Degradation due to maintenance operations
 Few specialized people

 Directions
 Reverse engineer applications
 Knowledge Reuse

Knowledge reuse from legacy systems

LIFT: Legacy Information LIFT: Legacy Information
Retrieval ToolRetrieval Tool

5/28

LIFT: Legacy InFormation retrieval ToolLIFT: Legacy InFormation retrieval Tool

 Objective
 To automate tasks of reverse engineering and

legacy systems knowledge reuse

 The requirements
 Based on the state-of-the-art and practice in

reengineering and reverse engineering

6/28

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Santanu Paul
SCRUPLE Tool

Müller et al .
Rigi Project

Software Understanding

Finnigan
The Software

Bookshelf

Favre
GSEE: a Generic

Software Exploration
EnvironmentStorey et al .

SHriMP Views
Exploration Tool

Singer et al .
TKSEE Software
Exploration Tool

Zayour et al .
DynaSee Reverse
Engineering Tool

Schäfer et al .
SEXTANT
Software

Exploration Tool

Lanza
CodeCrawler

Reverse Engineering ToolsReverse Engineering Tools

7/28

Reverse Engineering ToolsReverse Engineering Tools
 Almost all of them shows a call graph

 Each one implements its proper requirements set
 Some with explorationexploration capabilities
 Some with visualizationvisualization capabilities
 Some with cognitivecognitive capabilities

 All of them highly user dependent: lack of automatic or semi-
automatic code analysis

 Lack of recover and traceability of entire system, from interface to
database

 Discover HOW programs works, instead of WHAT programs do

 Problems dealing with big systemsbig systems

8/28

LIFT Functional RequirementsLIFT Functional Requirements
(FR1) Visualization of entities and relations

(FR2) Abstraction mechanisms

(FR3) High user interactivity

(FR4) Search capabilities

(FR5) User activities trace capabilities

(FR6) Metrics visualization support

(FR7) Recovery of the entire system (interface, design and database)

(FR8) Trace of requirements from interface to database access

(FR9) Possibility of semi-automatic suggestions

Existent Requirements

New Requirements

9/28

LIFT Non Functional RequirementsLIFT Non Functional Requirements
(NFR1) Cross Artifacts support

(NFR2) Extensibility

(NFR3) Integration with other tools

(NFR4) Scalability

(NFR5) Maintainability and Reusability

Existent Requirements

New Requirements

10/28

LIFT ArchitectureLIFT Architecture

Pre Processing

Persistence Layer

Legacy
Code

Parser Analyzer Visualizer

Parser Cluster
Visualization

Patterns
Detection

Normal
Visualization

Understanding Environment

Paths
Visualization

Patterns
Visualization

Paths
Calculation

Cluster
Analysis

11/28

Implementation: Parser ComponentImplementation: Parser Component

 Parser Module
 Parses NATURAL/ADABAS source code
 First version developed by Pitang team
 Uses C# technology
 Integrated as a component

 Pre-Processing Module
 Works with parser output
 Store useful information in the database

 SQL ANSI
 Performs the system slice
 Deduction of database layer

12/28

Implementation: Analyzer ComponentImplementation: Analyzer Component
 Call Graph Generation
 Paths Calculations

 Full paths
 Minimal paths

 Using Dijkstra shortest path algorithm
 Running time O(n.log n)

 Cluster analysis
 Hierarchical Clustering
 Mark Newman's “edge betweenness clustering algorithm”

 Running time O(k.m.n)

 Patterns detection (second interaction)
 Text pattern detection
 Graph pattern detection
 Clone detection

13/28

Implementation: Visualizer ComponentImplementation: Visualizer Component

 Based on JUNG: Java Universal Network/Graph
Framework

 Visualizations of call graph and Analyzer modules
 Normal visualization
 Cluster visualization
 Paths visualization
 Patterns visualization

 Uses Polimetric-Views concept

14/28

Understanding EnvironmentUnderstanding Environment

 Graphical interface
 Integrate the other components
 Shows source code
 Works with views concept

 Isolate subgraphs
 Allow comments

 Views comments
 Modules comments
 Source code comments

15/28

LIFT Usage: Initial StepsLIFT Usage: Initial Steps

 Parser and Organizer
 Called by simple menu commands

16/28

LIFT Usage: Initial GraphLIFT Usage: Initial Graph

17/28

LIFT Usage: Isolating GraphsLIFT Usage: Isolating Graphs

18/28

LIFT Usage: Detecting ClustersLIFT Usage: Detecting Clusters

19/28

Case StudyCase Study

21/28

The ContextThe Context
 Pitang Software Factory

 Infra-structure
 Experienced staff
 Real demands for reverse engineering

 NATURAL/ADABAS systems of a financial institution
 Previous experience with reverse engineering: Almost 2 million

LOC

Questions
 Does the tool provides effort reduction in

reverse engineering projects?
 Does the tool is scalable to be used in large

projects?
 Do the subjects have difficulties to use the

tool?

22/28

The PlanningThe Planning
 Method of comparison

 Comparison with two sibling projects
 Same technologies: NATURAL/ADABAS
 Same domain: Financial
 Same customer
 Same understanding process
 Same number of participants
 Similar engineers experience: more than 10 years

 Different tools

 The Projects
 LIFT Project: 210 KLOC system
 Sibling projects: 65 KLOC and 131KLOC systems

23/28

The Quantitative AnalysisThe Quantitative Analysis

 Lines/Hour Productivity
 66% higher than Project 1 and 41% higher than Project 2

24/28

The Quantitative AnalysisThe Quantitative Analysis

 Modules/Hour Productivity
 12% higher than Project 1 and 127% higher than Project 2

25/28

Increase Rate

0

0,5

1

1,5

2

Size (KLOC) Parse Time
(s)

Pre-
Processing

Time (s)

Minimal
Paths Time

(s)

Full Analysis
and Graph
Creation (s)

R
at

e Increase Rate

The Quantitative AnalysisThe Quantitative Analysis
 Scalability

 LIFT project and “Project 2” evaluation
Pentium IV / 512MB Database Server x Dual Core 2 / 2GB Client

26/28

The Qualitative AnalysisThe Qualitative Analysis

 Based on a questionnaire

 Tool effectivity
 Effort reduction of about 20%
 Easy to locate system features and to generate system

documentation

 Weak Point
 Delay to load the application (Full Analysis and Graph

Creation)

27/28

Case Study SummaryCase Study Summary

Questions
 Does the tool provides effort reduction in reverse

engineering projects?
 YesYes

 Does the tool is scalable to be used in large
projects?
 YesYes

 Do the subjects have difficulties to use the tool?
 NoNo

LIFT: Reusing Knowledge LIFT: Reusing Knowledge
from Legacy Systemsfrom Legacy Systems

Kellyton dos Santos BritoKellyton dos Santos Brito

Informatics Center - Federal University of PernambucoInformatics Center - Federal University of Pernambuco
C.E.S.A.R. - Recife Center for Advanced Studies and SystemsC.E.S.A.R. - Recife Center for Advanced Studies and Systems

Kellyton.brito@cesar.org.brKellyton.brito@cesar.org.br

