
Construction of Analytic Frameworks
for Component-Based Architectures

George Edwards, Chiyoung Seo, Nenad Medvidovic

University of Southern California
Los Angeles, CA 90089-0781 U.S.A.

{gedwards,cseo,neno}@usc.edu

Abstract. Prediction of non-functional properties of software architectures
requires technologies that enable the application of analytic theories to compo-
nent models. However, available analytic techniques generally operate on for-
mal models specified in notations that cannot flexibly and intuitively capture the
architectures of large-scale distributed systems. The construction of model inter-
preters that transform architectural models into analysis models has proved to
be a time-consuming and difficult task. This paper describes (1) how a reusable
model interpreter framework can reduce the complexity involved in this task, and
(2) how such a framework can be designed, implemented, utilized, and verified.

1. Introduction
Modern-day component technology provides software architects with powerful mecha-
nisms for designing, implementing, deploying, and evolving large-scale distributed sys-
tems. In particular, component technology encompasses both highly effective strategies
for reuse and integration of existing software (e.g., off-the-shelf components), as well as
run-time platforms (e.g., component-based middleware) that hide low-level complexity
beneath high-level design abstractions. Perhaps more subtly, component-based software
engineering also offers a basis for the construction of analysis models that enable the dis-
covery and prediction of critical system properties, such as performance, reliability, and
resource consumption. Although techniques for analyzing software systems with respect
to such properties are not new, the assembly of systems from independently deployable
and executable units makes these techniques more relevant and practical.

Analysis of non-functional properties is critical in weighing design alternatives.
Nearly all non-trivial architectural decisions come down to trade-offs between multiple
desirable properties, and a software architect is required to engineer the right balance
between conflicting goals. Furthermore, subtle interactions between components can
result in unforeseeable and unpredictable system behaviors. Quantitative evaluation of
non-functional properties therefore provides an architect with concrete rationale for fun-
damental design decisions and reduces the risk associated with a large-scale develop-
ment and/or integration project [2].

To effectively analyze the non-functional properties of a component-based sys-
tem, methods and tools are needed that support the integration of component technolo-
gies and analysis technologies [1]. A component technology consists of a component
model along with a development environment and/or run-time platform. The component
model imposes rules that define the well-formedness of component instances and assem-
blies. Component technologies (such as Enterprise Java Beans) provide the basis for the
modeling, implementation, and deployment of software architectures. An analysis tech-
nology consists of a system analysis technique and tools that support the utilization of
that technique. An analysis technique is a process for applying a computational theory to

SBCARS 2007

147



system models (such as Layered Queuing Networks, or LQNs) to enable automated pre-
diction of system properties and behaviors. Software and system analysis techniques are
required to make assumptions about the systems to which they are applied. For example,
a LQN assumes that each software server accepts requests from a single queue [13].
Such an assumption can be enforced by a component middleware platform at system
construction-time and at run-time. Component technologies and analysis technologies
are well-suited to integration because a component technology can be used during sys-
tem construction to enforce the assumptions required by an analysis technology.

Unfortunately, the integration of component and analysis technologies is any-
thing but straightforward in practice. Component-based architectures are generally spec-
ified using high-level design languages that emphasize abstraction and flexibility, while
analysis techniques operate on formal models that are frequently specified in much
lower-level, more rigid notations. The consequence of this is that software architects are
frequently required to construct multiple system models for different purposes. For
example, the safety experts on an architecture team may build and analyze fault trees,
while energy management experts construct and execute specialized power simulations.

This paper presents an approach to achieving the seamless integration of compo-
nent technologies and analysis technologies. At the core of our approach is the develop-
ment of highly flexible model interpreter frameworks, which implement semantic
mappings between a component model and an analysis model, yet lend themselves to a
wide variety of non-functional analyses. A model interpreter framework can be reused
by a software architect to rapidly construct analyzable models from domain-specific
architectures. To illustrate the approach, we describe our implementation of a model
interpreter framework in XTEAM, a modeling and analysis framework targeted at
mobile and resource-constrained software systems. Our evaluation of XTEAM demon-
strates that (1) an interpreter framework can provide accurate predictions of the non-
functional properties of a software architecture, and (2) a single interpreter framework
can be used to rapidly and successfully implement a broad range of analysis techniques.

The remainder of this paper is organized as follows. Section 2 further motivates
this work. Section 3 describes our approach, while Section 4 discusses in detail our
implementation of the XTEAM model interpreter framework. Section 5 evaluates the
framework quantitatively and illustrates its benefits through the use of an example. Over-
views of related work and conclusions round out the paper.

2. Background and Motivation
Model-driven engineering (MDE) [4] offers an attractive strategy for analyzing the non-
functional properties of software architectures. MDE technologies enable the construc-
tion of domain-specific modeling languages (DSMLs) through the use of metamodels.
Metamodels capture the elements, attributes, relationships, views, and constraints
present in a modeling language, and can be easily modified, adapted, composed,
enhanced, and evolved [5]. In this way, MDE offers an intuitive way to incorporate the
parameters of an analytic theory into both general-purpose and domain-specific compo-
nent models. MDE technologies provide access to the information contained in architec-
tural models through well-defined interfaces. Customized model interpreters can then be
constructed that perform system analysis and visualization, automated synthesis of
implementation artifacts, etc. Figure 1 delineates the main MDE concepts and processes.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

148



Model interpreters can be
used to implement semantic map-
pings, or transformations, between
high-level architectural models
and the low-level analysis models
amenable to rigorous prediction of
component assembly properties.
However, numerous practical chal-
lenges remain. In order to motivate
the discussion in the remainder of this paper and illustrate the need for a new approach to
the construction of model interpreters, this section describes a typical MDE-based pro-
cess for modeling and analyzing a software architecture, and demonstrates how this pro-
cess can be simplified and improved.

Consider a large-scale software development project. The software architecture
team has decided to employ an MDE-based modeling and analysis process, and has con-
sequently constructed an architectural model that includes some domain-specific ele-
ments (such as hardware and middleware) in addition to the canonical architectural
constructs (component, connector, etc.). The team now plans to analyze the performance
of the system through the use of a LQN model. Applying the standard MDE strategy, the
team constructs a model interpreter that transforms the architectural model into a LQN,
which is then analyzed to determine a set of performance-related metrics, such as system
throughput and service utilization, under various loading conditions.

As the development program progresses, the need for additional analyses
becomes apparent. For example, as the system’s deployment of software components to
hardware hosts is further refined, questions arise about how deploying certain compo-
nents to mobile hosts will impact the system’s energy consumption. The architecture
team is instructed to study deployment alternatives with respect to energy consumption.
To do so, they implement a new model interpreter that transforms the architecture model
into the input to a cycle-accurate energy consumption simulator.

As other forms of analysis are requested, the team is forced to expend significant
resources implementing model interpreters. For each new interpreter, the team must:
• Find a computational theory that derives the relevant properties from a system model.
• Determine the syntax and semantics of the modeling constructs on which the computa-

tional theory operates.
• Discover the semantic relationships between the constructs present in the architectural

models and those present in the analysis models.
• Determine the compatibility between the assumptions and constraints of the architec-

tural models and the analysis models, and resolve conflicts between the two.
• Implement a model interpreter that executes a sequence of operations to transform an

architectural model into an analysis model.
• Verify the correctness of the transformation implemented by the interpreter.

This paper demonstrates how the use of a model interpreter framework allows an
architecture team to perform the above tasks only once for a broad family of analysis
techniques, rather than repeating the process for each analysis technique. The use of
interpreter frameworks can significantly improve the utility and appeal of MDE-based
architectural development.

Figure 1. High-level view of the MDE process.

Domain Specific
Modeling Environment

Metamodeling
Environment
Metamodeling 

Language
Domain Specific 

Modeling Languages

Metamodels Models

Metamodel 
Interpreter

Model 
Interpreters

SBCARS 2007

149



3. Model Interpreter Frameworks
Applying MDE to the analysis of component-based systems requires software architects
to construct semantic mappings between component models and analysis models. The
primary contribution of this paper is a novel approach that can greatly reduce the com-
plexity involved in this task. Our approach is to leverage general purpose architectural
modeling constructs and a widely applicable analytic representation to construct a model
interpreter framework that abstracts most of the semantic mapping required for analysis,
while still providing the extensibility to accommodate both domain-specific modeling
elements and analyses. This section, therefore, focuses on defining specifically what an
interpreter framework is, what the requirements of one are, and what capabilities an
interpreter framework provides. In the next section, we focus on how an interpreter
framework can be implemented and give concrete examples of how one can be used.

3.1. Definition

In the model-driven engineering paradigm, a model interpreter is a software component
that operates on the information captured in a system model to produce some useful arti-
fact. Model interpreters invoke an API provided by a modeling environment to extract
the model structure and properties. A model interpreter codifies the semantics of the
modeling constructs on which it operates by defining the consequences of the use of
those constructs within a given context.

A model interpreter framework, then, is an infrastructure for constructing a fam-
ily of model interpreters. In order to be useful, such a framework must encapsulate logic
or algorithms that are useful in a wide variety of contexts. However, an interpreter
framework is not a library of functions; rather, it is an active component that can be
extended and enhanced in specific, predefined ways. Furthermore, an interpreter frame-
work necessarily makes assumptions about the models on which it operates, and is there-
fore only applicable to a certain class of models. In the context of MDE, which advocates
the inclusion of domain-specific constructs in modeling languages, this implies that a
common base of domain-independent constructs exists on which the framework can
operate; domain-specific constructs are then handled by framework extensions.

One example of a model interpreter framework is a component that synthesizes
“glue-code” for a given middleware platform from a model of a software application.
Such a model likely includes both domain-independent constructs, such as objects or
components, and domain-specific constructs, such as the representation of the applica-
tion business logic. A model interpreter framework can be constructed that utilizes the
component interface specifications and topology to generate middleware glue-code, but
leaves open extension mechanisms to insert logic that interprets the domain-specific
behavior (e.g., to generate component implementations).

When applied to the analysis of component-based systems, a model interpreter
framework enables a family of analytic techniques to be applied to a component model
by constructing from a high-level architectural model a more directly analyzable repre-
sentation of a system, such as a discrete event simulation or Markov chain. In this con-
text, the domain-independent elements of the model are those concepts common to all
component-based architectures. The domain-specific elements of the model are the
parameters of a relevant analytic theory, plus any additional domain- and platform-spe-
cific extensions and constraints. The model interpreter framework abstracts the semantic

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

150



mapping from architectural constructs to analysis constructs, while providing the exten-
sibility to accommodate the logic that measures and records non-functional properties
according to an analytic technique. The role of a model interpreter framework in the
analysis of component-based software architectures is illustrated in Figure 2.

3.2. Assumptions and Requirements

As alluded to in the previous subsec-
tion, a model interpreter framework
must make several important assump-
tions about the models to which it will
be applied. It also must satisfy several
requirements in order to be effective.
In this subsection, we enumerate these
assumptions and requirements and
describe their consequences in terms
of model interpreter frameworks in
general. We also describe, for each
assumption and requirement, the specific implications for model interpreter frameworks
that provide non-functional analysis of application architectures.

3.2.1.Assumptions

Assumption 1. System models contain domain-independent elements that are suf-
ficient to implement an interpretation. Interpreter frameworks encapsulate logic that
operates on domain-independent constructs. It therefore follows that models must con-
tain a sufficient set of domain-independent constructs to implement some useful inter-
pretation. Modeling languages that consist exclusively of domain-specific constructs are
not amenable to an interpreter framework. This assumption is clearly satisfied in the case
of architecture models: the set of domain-independent elements common to most compo-
nent-based architectures includes components, connectors, interfaces, and events.

Assumption 2. The interpretation of domain-independent elements is not depen-
dent on the interpretation of domain-specific elements. The implementor of a model
interpreter framework cannot know the types of domain-specific extensions that will be
present in system models. Consequently, the framework logic must operate exclusively
on domain-independent modeling elements, and the semantics of those elements cannot
change within different domain-specific contexts. This assumption is not a significant
problem for architectural models: the domain-specific modeling elements in this case are
generally either the parameters of an analytic theory that will be applied to the model or
platform-specific constraints on components and connectors.

Assumption 3. Domain-specific constraints do not violate domain-independent
constraints. Constraints on the set of well-formed models are fundamental to every mod-
eling language, and a model interpreter framework relies on these constraints in applying
semantics to a model. Within a given domain, additional constraints are present; captur-
ing these constraints is a crucial part of creating a domain-specific modeling language.
Clearly, for a model interpreter framework to execute, these domain-specific constraints
cannot contradict any domain-independent constraints.

This last assumption can, in some cases, constitute a major challenge when

Model Interpreter Framework

Domain-Independent 
Interpretation

Extensible Modeling
Environment

Architecture and 
Design ModelsArchitecture and 

Design ModelsAnalysis Models

Analytic Theory 
Parameters

Domain-Specific 
InterpretationsDomain-Specific 

InterpretationsDomain-Specific 
Interpretations

Platform-Specific 
Extensions and 

Constraints

Domain-Independent 
Component Model

Figure 2. The role of a model interpreter
framework in the analysis of component-
based architectures.

SBCARS 2007

151



applying an interpreter framework to architectural models. The constraints of a compo-
nent model may be irreconcilable with the assumptions required by an analytic theory.
However, more commonly, these constraints and assumptions can be brought into align-
ment by co-refinement, a process proposed by Wallnau et al. [1]. Co-refinement may
weaken or strengthen the constraints of a component model, which either expands or
reduces the set of well-formed models, respectively, in order to accommodate the
assumptions of an analytic theory. Similarly, the assumptions of a analytic theory can be
strengthened or weakened in order to reconcile conflicting component constraints.

3.2.2.Requirements

Requirement 1. The model interpreter framework abstracts the details of domain-
independent interpretation. The manipulations performed by an interpreter framework
are necessarily at least somewhat complex (otherwise, the reuse of the framework would
be of little value). An interpreter framework should insulate architects from the details of
these manipulations in order to enable reuse without forcing the architect to understand
or modify the framework logic. This requirement, can, however, be relaxed in some
cases, in order to increase the flexibility of the framework. Exposing the details of the
interpretation process increases the complexity of utilizing the framework, but also
allows the architect to implement certain analyses that would not otherwise be possible.

Requirement 2. The model interpreter framework produces an artifact useful in a
wide variety of contexts. In order to maximize the benefits provided by reuse of an inter-
preter framework, the framework must produce a representation of the system that is
flexible enough to be used for a variety of purposes. For example, some analysis models,
such as discrete event simulations, enable the realization of an extensive family of ana-
lytic theories. Other analysis models, such as fault trees, are much more narrowly tar-
geted, and enable a much smaller set of analytic theories. The latter types of analysis
models are therefore not strong candidates for construction of an interpreter framework.

Requirement 3. The model interpreter framework provides extension mechanisms
sufficient to accommodate domain-specific interpretation. The inclusion of extension
mechanisms within an interpreter framework is the crucial feature that allows them to be
applied to domain-specific models. As noted earlier, contemporary software architec-
tures are increasingly incorporating domain-specific information as a strategy for man-
aging complexity. Extension mechanisms are created through the use of design patterns
such as Template Method, Strategy, and Functor [6]. These patterns allow domain-spe-
cific logic to be inserted into the interpreter framework at points of variability. Of course,
the interpreter framework designer cannot predict every possible variability point. The
choice of whether to include an extension mechanism at a potential point of variability is
a design trade-off between flexibility and usability; that is, the inclusion of additional
variability points makes the framework more widely applicable, but also increases the
burden on a software architect utilizing the framework in a domain-specific context.

4. The Design of a Model Interpreter Framework
In this section, we describe in detail the design of a model interpreter framework we
implemented as part of the eXtensible Toolchain for Evaluation of Architectural Models
(XTEAM) [2], an environment that leverages the MDE paradigm to provide a reusable
infrastructure for realizing domain-specific architectural analyses.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

152



4.1. The XTEAM Toolchain

The eXtensible Toolchain for Evaluation of Architectural Models (XTEAM) allows an
architect to analyze architectural models through a model interpreter framework that
maps component models to executable simulations. Furthermore, XTEAM incorporates
mechanisms to accommodate domain-specific extensibility at both the modeling and
analysis phases of the architectural evaluation process.

A high-level view of XTEAM is shown in Figure 3. Using the Generic Modeling
Environment (GME) [7], we created a domain-independent component model by com-
posing the elements of the xADL Structures and Types ADL [19] and the Finite State
Processes (FSP) ADL [20]. GME uses this component model to create a modeling envi-
ronment in which architectural models that conform to the component model can be cre-
ated. We also implemented a model interpreter framework that maps the component
model to an analysis model — a discrete event simulation — and implements appropriate
extension mechanisms, which are described further in the next subsection.

An architect takes
advantage of the extensibil-
ity in XTEAM in the fol-
lowing way. First, the
component model is
enhanced to include
attributes and elements that
capture the parameters of a
relevant analytic theory.
XTEAM currently imple-
ments modeling extensions
for energy consumption [11], reliability [15], latency, and memory usage analyses as
examples. The architect then utilizes the extension mechanisms built into the model
interpreter framework in such a way as to generate simulations that measure, analyze,
and record the properties of interest. This has been accomplished for the four analyses
listed above to demonstrate the capability.

The modeling capabilities of XTEAM are described fully in [2]; the remainder of
this paper focuses on the design and evaluation of the XTEAM interpreter framework.

4.2. The XTEAM Model Interpreter Framework

The XTEAM model interpreter framework implements a semantic mapping between a
flexible and extensible domain-independent component model and a simulation model.
As described above, XTEAM provides a modeling environment built on top of GME that
allows an architect to extend the XTEAM component model by defining new elements,
attributes, and constraints that (1) tailor the model to a specific component technology,
such as the OSGi platform [8] or CORBA Component Model (CCM) [9] and (2) allow
the inclusion of the parameters required by an analytic theory.

When invoked by an architect, the XTEAM interpreter framework traverses the
architectural model, building up a discrete event simulation model in the process. The
interpreter framework maps components and connectors to discrete event constructs,
such as atomic models and static digraphs. The FSP-based behavioral specifications are

Figure 3. The eXtensible Toolchain for Evaluation
of Architectural Models.

End-to-end
Latency
Analysis

GME Domain Specific
Modeling Environment

GME Metamodeling
Environment

XTEAM Model
Interpreter
FrameworkGME 

Metamodeling 
Paradigm

XTEAM ADL

XTEAM ADL 
Metamodel

adevs
Simulation

Engine

ADL
Extensions

Finite
State

Processes

Application
Architectures

Energy
Consumption

Analysis

Reliability
Analysis

Memory
Usage

Analysis

Application 
SimulationsApplication 

SimulationsApplication 
Simulations

Scenario-
driven

Analysis
Results

xADL
Core

XTEAM 
Architecture 

Models

XTEAM 
Simulation 
Generators

SBCARS 2007

153



translated into the state transition functions employed by the discrete event simulation
engine. The interpreter framework also creates discrete event entities that represent vari-
ous system resources, such as threads.

The interpreter frame-
work employs the Strategy pattern
[17] to enable an architect to
implement domain-specific exten-
sions, as depicted in Figure 4. The
Strategy pattern allows a set of
related algorithms to be transpar-
ently interchanged within differ-
ent contexts. The different
algorithms are abstracted by a
common interface. In the
XTEAM interpreter framework,
each algorithm generates code
that encapsulates logic to realize a particular analytic theory. For example, the logic may
implement equations that calculate non-functional system properties based on the param-
eters defined in the model and equations defined by the theory. The algorithms are
invoked at specific times during the interpretation process, such that the code generated
by those algorithms will be invoked when various events occur during an actual simula-
tion run. These events include a component receiving or sending data, invoking an inter-
face, initiating or completing a task, etc.

To illustrate the process used by an architect to realize a given analysis using an
interpreter framework, we now describe the implementation of the XTEAM energy con-
sumption simulator. The energy consumption estimation technique described in [11] pro-
vides a mechanism for estimating software energy consumption at the level of software
architecture. The estimation technique provides equations that enable the calculation of
energy costs based on a number of parameters, including data sizes and values, charac-
teristics of the hardware hosts, and network bandwidth. Energy is used by the system
whenever either (1) data is transmitted over the network or (2) the software is required to
perform computation. Consequently, the equations defined by the energy consumption
estimation technique were inserted into the Strategy methods corresponding to the send-
ing and receiving of data and the invocation of an interface. The equations calculate the
energy cost of a given data transmission or computation based on the parameters defined
in the model, and record these values for later examination by architects. The implemen-
tation of the other XTEAM simulation generators follows the same approach.

5. Evaluation
This section describes how XTEAM was utilized to provide a key non-functional analy-
sis that ultimately guided the choice of architectural style for a given application. Fur-
thermore, this section compares the predictions of system properties made by XTEAM
with measured values taken from the executing system. In our experiments, XTEAM
simulations were shown to produce predicted values for system energy consumption that
fell within 10% of the observed values, and guided the software architects to the correct
choice of architectural style. This result illustrates the utility of XTEAM in making fun-
damental architectural decisions early in the development cycle.

Figure 4. High-level design of the XTEAM model
interpreter framework.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

154



5.1. Application Scenario

To illustrate the importance of non-functional analysis, consider the MIDAS family of
sensor network applications [18]. An instance of MIDAS consists of sensors, gateways,
hubs, and PDAs. Sensor nodes collect data about the environment and transmit that data
to gateways over wireless links. Gateways manage groups of sensors, aggregate and fuse
sensor data, and forward the fused data to hubs. Hubs analyze fused sensor data, generate
visualizations of the data, and provide a user interface for configuring and managing the
system. PDAs provide mobile access to the data visualizations and system management
capabilities. The distributed software system, which is described and analyzed in this
section, is implemented on top of a lightweight, component-based middleware platform,
called Prism-MW [10], which enables architecture-based development of distributed
applications in embedded and pervasive environments.

The MIDAS system is subject to a number of non-functional requirements. For
this evaluation, we analyzed an instance of MIDAS that provides building monitoring
services, such as intrusion and fire detection. In this scenario, the MIDAS hardware
devices are not connected to a continuous power supply, but instead run on battery
power. Therefore, the system’s efficiency with respect to energy consumption has a crit-
ical impact on the longevity of the system services.

One of the most influential factors in the system’s overall energy consumption is
the cost of sending and receiving data over the wireless network. As a result, the type and
frequency of interactions between software components has a major impact on the sys-
tem’s energy usage. Component interactions are, in turn, governed to a large extent by
the choice of an architectural style. It was crucial, therefore, that the MIDAS system
employ an energy efficient architectural style, while still fulfilling numerous other func-
tional and non-functional requirements. Based on the system requirements as a whole,
two candidate architectural styles, client-server and publish-subscribe, were selected.

Two models of the MIDAS security application — each using one of the candidate styles
— were then created in XTEAM and compared with respect to energy consumption.

5.2. Modeling and Analysis

Figure 5 shows the same sub-
set of MIDAS designed using
the two styles. The FireAlarm-
Receiver and IntrusionAlarm-
Receiver components
deployed on the gateways
translate, aggregate and fuse
alarm events received from the
sensors periodically, and prop-
agate them to the components
deployed on the hub. The Ana-
lyzer components deployed on the hub analyze the alarm data and determine whether
there is actually a fire or intrusion. If the FireAlarmAnalyzer (IntrusionAlarmAnlyzer)
component concludes that there is a fire (intrusion), it transmits a sensor-activation mes-
sage to the FireAlarmReceiver (IntrusionAlarmReceiver) component, which in turn
sends an activation signal to all the fire (intrusion) sensors.

Fire
Alarm

Analyzer

Alarm
Logger

Fire 
Alarm

Receiver

Hub

Gateway 1

Intrusion 
Alarm

Receiver

Gateway 2

Intrusion
Alarm

Analyzer

Client-Server
Connector

Client-Server
Connector

Client-Server
Connector

Client-Server
Connector

Client-Server
Connector

Figure 5. A subset of MIDAS designed in client-server
(left) and publish-subscribe (right) styles.

Fire
Alarm

Analyzer

Alarm
Logger

Fire 
Alarm

Receiver

Hub

Gateway 1

Intrusion 
Alarm

Receiver

Gateway 2

Intrusion
Alarm

Analyzer

Publish-Subscribe
Connector

Pub-Sub
Connector

Pub-Sub
Connector

SBCARS 2007

155



For the client-server architecture, we modeled the behavior of client-server con-
nectors based on a request-response protocol. Client-server connectors are frequently
implemented as middleware stubs and skeletons. The behavior of the application compo-
nents was also modeled according to the above scenario: the Receiver components act as
clients and invoke interfaces on the Analyzer and Logger components via their local cli-
ent-server connectors. The client-server connector on a gateway then transmits a request
event (from its local Receiver component) to the Analyzer and Logger components sepa-
rately, which indicates that each request requires two transmissions on each gateway.

For the publish-subscribe architecture, we modeled the behavior of connectors
based on a typical publish-subscribe interaction protocol. For example, the FireAlarm-
Analyzer sends a message to the connector that requests a subscription to fire alarm
events. When a component, such as FireAlarmReceiver, publishes a fire alarm event, the
connector routes the event to each subscribed component. The behavior model of each
component is essentially the same as that in the client-server architecture, except that
components publish and subscribe to events. For instance, the FireAlarmAnalyzer has
the same behavior for processing fire alarm events as in the client-server architecture, but
includes additional logic that transmits event subscription requests to the publish-sub-
scribe connector. In this architecture, the publish-subscribe connector can optimize the
transmission of events based on the location of publishers and subscribers (as is done in
the publish-subscribe service implementations of widely-used middleware platforms
[16]). Therefore, compared with the client-server architecture, the publish-subscribe
architecture may require fewer events to be sent over the wireless network, but incurs the
additional overhead of managing lists of publishers and subscribers.

XTEAM requires the following host-specific energy costs to analyze the above
two architectural styles with respect to their energy costs:
1. The communication energy cost on each host due to transmitting and receiving data

over the network. Previous research [3] has shown that the energy consumption of
wireless communication is directly proportional to the size of transmitted and received
data and can be expressed as a linear equation with the size of data exchanged. Our
energy estimation tool [11] details the steps for determining the communication
energy cost on a specific hardware platform.

2. The energy consumption on each host due to processing a subscription and retrieving
a set of subscribers for a published event. These energy costs can be determined by
leveraging the measurement setup described in [11].

Note that we do not need to con-
sider the computational energy cost of
most component event processing (e.g.,
the energy consumption of the FireAlarm-
Analyzer due to processing a fire alarm) in
comparing the energy costs of the candi-
date architectural styles because this cost
is the same for both styles.

Once the architectural model was
parameterized with the above information,
the XTEAM energy consumption simula-
tion generator was invoked. XTEAM allows simulations to include various stochastic
behaviors, such as the frequency of client requests, the probability of cache misses, or the

0
40000
80000

120000
160000
200000

0.4 0.8 1.4 2 3

F requency (times/sec )

E
n
er
g
y 
(m

J)

C lient‐S erver  ‐ Meas ured C lient‐S erver  ‐ E s timated

P ublis h‐S ubs cribe  ‐ Meas ured P ublis h‐S ubs c ribe  ‐ E s timated

Figure 6. Comparison of the energy
consumption of MIDAS using the client-
server and publish-subscribe styles.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

156



sizes and values of data. In this case, the timing and size of events was determined sto-
chastically, and four different average rates of event transmission were simulated. The
results of the energy consumption simulation are shown in Figure 6. The XTEAM analy-
sis predicted that utilizing the publish-subscribe style would result in significant energy
savings. The next section describes how we verified the correctness of this result.

5.3. Verification

In order to determine the accuracy of the energy consumption estimates made by
XTEAM, we need to know the actual energy consumption of the distributed software
system. To this end, we used a digital multimeter and the experimental setup described in
[11]. The MIDAS application discussed in Section 6.1 was implemented using both the
client-server and publish-subscribe styles on top of Prism-MW. We used the same aver-
age frequencies and sizes of alarm events as those simulated in XTEAM, measured the
energy consumption on each host, and finally calculated the software system’s overall
energy consumption by summing up the three hosts’ energy costs. 

For each candidate style, we compared the actual overall energy consumption
with the energy consumption estimates generated by XTEAM for different rates of event
transmission. As shown in Figure 6, the predicted energy consumption fell within 10%
of the measured energy consumption in all the scenarios analyzed. In addition, the pub-
lish-subscribe style was determined to be much more energy-efficient for this scenario
because (1) the publish-subscribe style requires fewer events to be sent over the wireless
network and (2) the energy savings obtained by the reduced data exchange over the net-
work exceeds the energy overhead due to processing subscription requests and retrieving
the set of subscribers for each published event.

This result demonstrates that although the architectural models cannot be param-
eterized with perfect accuracy — especially when XTEAM is being applied early in the
architectural development process — the predictions provided by XTEAM are accurate
enough to enable architects to successfully determine trade-offs between relatively
course-grained design alternatives, such as the choice of architectural style.

5.4. Limitations

Although the experiment described above establishes both the quality and utility of
XTEAM predictions of non-functional properties, there are several limitations to the
applicability of our approach. First, XTEAM’s model interpreter framework relies on the
ability to measure and quantify a given system property. Properties that are difficult or
impossible to quantify, such as usability [23], cannot be predicted using XTEAM’s dis-
crete event simulation-based analysis. Second, the properties of a component assembly
must be derivable from a composition of (1) the properties of individual components, (2)
the overall software architecture, and (3) the system’s usage profile. For example, prop-
erties that depend on the environment in which the system is used are not amenable to
analysis in XTEAM. An example of such a property is security [22], which is heavily
impacted by characteristics of the computing infrastructure (e.g., network and operating
system) and external, human factors. While these types of concerns can be added to
XTEAM’s modeling language through metamodel extensions, XTEAM’s focus is on
software architecture, and consequently the corresponding extensions to the model inter-
preter framework would likely require significant effort. Finally, XTEAM is intended to
predict system run-time properties rather than lifecycle properties related to construction

SBCARS 2007

157



activities. For example, the maintainability of a system is derivable from its software
architecture [21], but is not compatible with XTEAM’s dynamic analysis. The non-func-
tional property classification scheme described in [22] provides a good mechanism for
determining what properties can be effectively analyzed by XTEAM.

6. Related Work
This section establishes the broader context in which our work resides. First, we discuss
a conceptual framework that provides a basis for the ideas discussed in this paper. Sec-
ond, we describe a representative approach to component-based architectures.

6.1. Prediction-Enabled Component Technology

Predication-enabled component technology (PECT) is a proposed framework for the
integration of component technologies and analysis technologies [1]. A PECT can be
used to determine the emergent properties of a highly complex assembly of software
components when certain characteristics of the individual components can be certified.
PECT relies on component design tools and run-time environments to enforce the
assumptions required by each analysis technique applied to the system.

A PECT instance includes a construction framework and one or more reasoning
frameworks [12]. The construction framework constitutes the design and implementation
facilities, such as modeling environments and code generators, that are used to develop a
component-based system. The construction framework relies on an abstract component
technology, or ACT, to represent component models and run-time platforms. Software
architecture and design models, or constructive models, that conform to the ACT are cre-
ated in the construction framework. A reasoning framework, on the other hand, consti-
tutes the analysis facilities to be applied to the system. A reasoning framework applies
system analysis techniques, or property theories, through the use of an analysis environ-
ment. Discrete event simulators and fault-tree analysis tools are examples of analysis
environments. Interpretations transform constructive models into analysis models. Com-
ponent characteristics, which constitute the parameters of property theories, are codified
in a component’s analytic interface. This interface is leveraged by the reasoning frame-
work to apply a system-wide analysis of non-functional properties. 

PECT leverages many of the core concepts of MDE to support analysis of the
non-functional properties of large-scale component assemblies. PECT establishes an
intuitive way of organizing and relating the elements of component technologies and
analysis technologies, and outlines a strategy for integrating component models and
analysis models that leverages their complementary characteristics. For these reasons,
we believe PECT provides a useful conceptual framework for additional research in the
modeling and analysis of component-based systems. However, PECT does not address
the fundamental challenge described in Section 2; that is, it does not help a software
architect discover and realize any particular domain-specific model interpretation.

6.2. CALM and Cadena

Cadena is an extensible environment for the modeling and development of component-
based architectures [14]. The Cadena Architecture Language with Metamodeling
(CALM) supports the specification of platform- and domain-specific component models,
which are leveraged by Cadena to provide automated enforcement of architectural con-

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

158



straints. In this way, CALM and Cadena provide a modeling environment that can be
readily integrated with a wide variety of component technologies.

CALM is based on a three-tiered typing system. At the style tier, an architect
defines the kinds of components, connectors, and interfaces that exist within a particular
component model or architectural style. The style tier is essentially a metamodeling layer
that defines a language of architectural constructs. At the module tier, the component and
interface types that may exist within a specific application architecture are declared.
Finally, at the scenario tier, component types are instantiated into a particular configura-
tion or assembly. At each tier, Cadena automatically enforces the constraints imposed by
the type system defined at the tier above.

The modeling capabilities of CALM and Cadena provide a powerful and intuitive
mechanism for creating application architectures that conform to domain-specific com-
ponent models. Cadena also provides an integrated model-checking infrastructure,
Bogor, which enables automatic verification of the logical properties of a system, such as
event sequencing. However, Cadena provides little support for the implementation of
additional, domain-specific types of non-functional analysis. Thus, Cadena also forces
architects to develop model interpreters from scratch in most cases.

7. Conclusions
This paper presented an approach to the construction of analytic frameworks that enable
the prediction of the non-functional properties of component-based systems. Such frame-
works allow the rapid construction of model interpreters, which is one of the most com-
plex and difficult activities in the model-driven engineering paradigm. In order to
achieve this result, model interpreter frameworks must make several important assump-
tions about the models to which they are applied, and fulfill a set of design requirements.
This paper also demonstrated the process of constructing, utilizing, and validating a
model interpreter framework using an example.

Our ongoing work in this area is two-fold. First, we are constructing additional
interpreter frameworks and integrating them into the XTEAM environment, in order to
more clearly define the scope of applicability of the approach described in this paper. For
example, we hope to identify a small set of analysis models for which interpreter frame-
works can be constructed that will provide broad coverage of the analysis techniques
present in the software architecture literature. Second, we are continuing to apply the
current XTEAM interpreter framework in several R&D contexts. For example, we are
utilizing XTEAM for the continuing development of the MIDAS family of applications
and conducting a rigorous analysis of the impact of styles on non-functional properties.

8. References
[1] S.A. Hissam, J.A. Stafford, K.C. Wallnau (2002). Packaging Predictable Assembly. 

In Proc. of the ACM Working Conf. on Component Deployment, pp. 108-124.

[2] G. Edwards, et al. (2007). Scenario-Driven Dynamic Analysis of Distributed Archi-
tectures. In Proc. of Fundamental Approaches to Software Engineering.

[3] L.M. Feeney, et. al. (2001). Investigating the Energy Consumption of a Wireless Net-
work Interface in an Ad Hoc Networking Environment. In Proc. of IEEE INFOCOM.

[4] D.C. Schmidt (2006). Model-Driven Engineering. IEEE Computer, pp. 41 - 47.

SBCARS 2007

159



[5] A. Ledeczi, et al. (2001). On metamodel composition. In Proceedings of the 2001 
IEEE International Conference on Control Applications, pp. 756 - 760.

[6] M. Fayad, D. C. Schmidt (1997). Object-oriented application frameworks. Communi-
cations of the ACM, pp. 32 - 38.

[7] The Generic Modeling Environment. http://www.isis.vanderbilt.edu/projects/gme/

[8] OSGi: The Open Services Gateway Initiaive. http://www.osgi.org/

[9] CCM: The Corba Component Model. http://www.omg.org/

[10]S. Malek, M. Mikic-Rakic, et al. (2005). A Style-Aware Architectural Middleware 
for Resource Constrained, Distributed Systems. IEEE Trans. on Soft. Engineering.

[11]C. Seo, et al. (2006). Energy Consumption Framework for Distributed Java-Based 
Software Systems. Tech. Report USC-CSE-2006-604, Univ. of Southern California.

[12]K. Wallnau (2003). Volume III: A Technology for Predictable Assembly from Certi-
fiable Components. Tech. Report CMU/SEI-2003-TR-009, Software Eng. Institute.

[13]M. Woodside. Tutorial Introduction to Layered Modeling of Software Performance. 
Carleton University, http://sce.carleton.ca/rads.

[14]A. Childs, et al. (2006). CALM and Cadena: Metamodeling for Component-Based 
Product-Line Development. IEEE Computer.

[15]R. Roshandel, S. Banerjee, L. Cheung, N. Medvidovic, and L. Golubchik (2006). 
Estimating Software Component Reliability by Leveraging Architectural Models. In 
Proc. of the 28th International Conference on Software Engineering.

[16]G. Edwards, D. C. Schmidt, A. Gokhale, B. Natarajan (2004). Integrating Publisher/
Subscriber Services in Component Middleware for Distributed Real-time and Embed-
ded Systems. Proc. of the 42nd Annual ACM Southeast Conference.

[17]E. Gamma, R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Elements 
of Reusable Object-Oriented Software, Addison-Wesley.

[18]S. Malek, C. Seo, et al. (2007). Reconceptualizing a Family of Heterogeneous 
Embedded Systems via Explicit Architectural Support. Proc. of the 29th International 
Conference on Software Engineering (ICSE 2007).

[19]E. Dashofy, et al. (2002). An Infrastructure for the Rapid Development of XML-
based Architecture Description Languages. In Proc. of the 24th International Confer-
ence on Software Engineering, pp. 266 - 276.

[20]J. Magee, et al. (1999). Behaviour Analysis of Software Architectures. In Proceed-
ings of the TC2 First Working IFIP Conference on Software Architecture, pp. 35 - 50.

[21]N. Lassing, et al. (2002). Experiences with ALMA: Architecture-Level Modifiability 
Analysis. Journal of systems and software, Elsevier, pp. 47-57.

[22]I. Crnkovic, et al. (2005). Concerning Predictability in Dependable Component-
Based Systems: Classification of Quality Attributes. Architecting Dependable Sys-
tems III, Springer, LNCS 3549, Editor(s): R. de Lemos et al., pp. 257-278.

[23]Eelke Folmer, et al. (2004). Software Architecture Analysis of Usability. In Proc. of 
the IFIP Working Conf. on Eng. for Human-Computer Interaction, pp. 321-339.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

160


