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Abstract. A software product line to support urban transport systems is briefly 
described and the design of two of its features is discussed. Different solutions 
based on components are shown for these two features and their variabilities. 
In particular, an analysis is made of how their design is influenced by the 
development process adopted, by the decision to use black-box (off-the-shelf) 
components or white-box components that may be created or adapted 
depending on application requirements, and by the decision of automating or 
not the composition process. Additionally, alternatives for deciding how to 
define iterative cycles and increments of the product line are discussed. 

1. Introduction

A software product line (SPL) consists of a group of software systems sharing common 
and managed features that satisfy the specific needs of a market segment or a particular 
objective and are developed in a predefined manner given a collection of core assets 
[Clements and Northrop, 2002]. The design of an SPL can use various software design 
techniques that facilitate reuse, such as object-oriented frameworks, components, code 
generators, design patterns, features diagrams and aspect-oriented languages. Several 
papers emphasize the difficulty of gathering, representing and implementing 
variabilities in the context of SPLs [Bachmann et al, 2004; Becker, 2003; Bosch et al, 
2001, Junior et al, 2005]. Variability in an SPL differentiates products of the same 
family [Weiss and Lai, 1999]. 

This paper has two main objectives: to illustrate different solutions based on 
components to represent variabilities of an SPL and to discuss how these solutions are 
influenced by the adopted development process, by the decision to use black-box or off-
the-shelf (COTS) components (without access to the source code) which are reused as 
they are or to use white-box components (with access to the source code) which may be 
created or adapted according to application requirements, and by the decision of 
automating the composition process. The solutions are presented in the context of an 
SPL (being developed as an academic project by the authors) to simulate support of 
urban transport systems.  

The organization of the paper is as follows: Section 2 briefly describes the SPL; 
Section 3 presents some generic alternatives for the iterative and incremental 
development of an SPL; Section 4 summarizes the process used for the SPL; Section 5 
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discusses design of components for two features of the SPL; Section 6 presents some 
conclusions.

2. The Software Product Line to Control Electronic Transportation Cards 

The SPL used as an example in this paper concerns management of electronic transport 
cards (ETC) named ETC-SPL. These systems aim to facilitate the use of city transport, 
mainly buses, offering various functionalities for passengers and bus companies, such as 
use of a plastic card to pay fares, automatic opening of barrier gates, unified payment of 
fares, integration of journeys and supply of on-line travel information to passengers.

The software allows the integration and automation of the transport network, 
with a centralized system that maintains the data of passengers, cards, routes, buses and 
journeys. The buses are equipped with a validator that reads a card and communicates 
with the central system (for example using RFID – Radio Frequency Identification) to 
debit the fare on the passenger’s card. There may also be a bus integration system that 
permits the user to pay a single fare for multiple trips. In addition, passengers can go on-
line and look up their completed trips and card credit.

The system domain was analysed and the ETC-SPL is being designed with the 
objective of generating at least three applications (or products) based on the analysis of 
three existing ETC systems in Brazilian cities: São Carlos (São Paulo), Fortaleza 
(Ceará) and Campo Grande (Mato Grosso do Sul).

3.  Development Process of Software Product Lines

The literature describes various processes for the development of an SPL [Gomaa, 2004; 
Atkinson et al, 2000]. In general, they recommend that an organization wanting to 
develop an SPL has developed at least three similar applications belonging to the same 
domain [Roberts and Johnson, 1998; Weiss and Lai, 1999]. The evolution of an SPL 
may be proactive (ad hoc) or reactive (planned) [Sugumaran et all,2006]. An 
intermediate approach, called extractive, occurs when a second or third application is
developed, parts of the code of one or more of the existing software products are 
generalized in such a way that they can be reused, until at a certain moment all the code 
is refactored so that new applications are capable of reusing a substantial part of the core 
assets.

In the case of a proactive evolution, the organization can use a process based on 
reverse engineering or forward engineering that differ basically in their first phase, as 
proposed by Gomaa (2004). In the process based on reverse engineering, artifacts of 
analyses, such as use cases and conceptual models, are recreated from existing systems. 
In the process based on forward engineering the same artifacts are derived from various 
sources, such as existing requirements documents and processes for requirements 
capture. From this point on, both processes are similar and domain analysis considers 
the use cases which are common to all applications of the domain, constituting the 
kernel of the SPL, and those which are optional (existing only for some of the SPL  
products) or alternative (choosing from a set of possibilities). A general conceptual 
model is created representing the common and variable parts. Afterwards a features 
diagram can be developed to synthesize the common and variable parts of the SPL. 
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There are several models of processes for SPL development, all beginning with 
the domain analysis phase described superficially in the previous paragraph. One 
alternative is then to elaborate the design for the entire modeled domain. The 
implementation can be done afterwards, in one version only or in various partial 
increments. This alternative seems to be uneconomic and complex [Gomaa, 2004; 
Atkinson and Muthig, 2002].

Another option is to follow a more agile iterative and incremental process, in 
which the SPL is first designed and implemented in a version that contains only kernel 
features, and then incremented by the design and implementation of subgroups of 
optional and alternative variabilities, as proposed by Gomaa (2004). The SPL is based 
on components and variabilities of several different mechanisms such as inheritance, 
extensions  (e.g. the strategy design pattern), configuration, template instantiation and 
generation can be implemented [Bosch, 2000]. 

The choice of increments to be produced in each iterative cycle can be done horizontally 
or vertically and this has a great influence on the design of the SPL architecture and on 
the components that implement variabilities, as is shown in Section 5. The horizontal 
increments are planned by including a subgroup of features that attend to a specific 
application but do not necessarily contain all possible variabilities of each feature 
included in the increment. The vertical increments implement, in a general and complete 
way, all the variabilities of a subgroup of chosen features, but do not necessarily 
produce a specifically desired application. Using the ETC-SPL as an example, a
horizontal version could be one that would generate the ETC system for the city of São 
Carlos. A vertical version for the ETC-SPL would be an SPL containing all the possible 
forms of journey integration specified during the domain analysis. These possibilities 
are shown schematically in Figure 1.

Fig.  1 – Vertical and horizontal increments

The behavior of variabilities in horizontal versions is shown in Figure 1 by the 
different shadings of variabilities extending a basic feature contained in the kernel. The 
figure illustrates, for example, features that do not appear in the kernel and do appear in 
a later version, features that appear in the kernel and are extended in one way for one 
version and in a different way for another version, etc. With the adoption of an evolving 
process such as that shown in Figure 1, each variability needs a careful design, because 
it may require refactoring in later versions. In other words, a design that is adequate for 
one version may not be so for a later version.
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Horizontal increments are more realistic economically, in the sense that the SPL 
evolves as new applications need to be incorporated to the line, even though they can 
require more rework as the line evolves. On the other hand, vertical increments, even 
when not producing a previously foreseen application after the first iterations, have the 
advantage of allowing each chosen feature to be analysed and designed globally, 
including all its variabilities for the domain.

Another important decision to be made is how to develop the applications during 
the phase of application engineering, either using a manual process of generation of 
components that implement the SPL (in this case they correspond to the software assets 
available) or using an automated process, for instance a code generator. A solution that 
is adequate for a manual increment before automation may not be the best for a 
generative process. Thus it seems best to analyse all specified variabilities of a certain 
feature, before committing to a definite automated solution. However, if the SPL is 
composed mainly of black-box (off-the-shelf) components they impose an important 
restriction that leads to a solution using component composition and automatic 
generation of glue code.

Specifically for the ETC-SPL, we started with the specifications of three known 
products, the ETC systems of Fortaleza, Campo Grande and São Carlos, which were the 
applications to be generated initially. We considered it important to have a complete 
application early on, therefore opting to use horizontal iterative cycles in which each 
increment allows generation of one of these applications.

4.  Development of the ETC-SPL: Iterative Cycles and Kernel Architecture

The points observed in the previous section were taken into consideration and PLUS 
(Product Line UML-based Software Engineering) [Gomaa, 2004] was used for the 
development of the ETC-SPL. The SPL Engineering was divided into two phases: in the 
Inception phase domain analysis yielded initial use cases, the feature diagram and a 
conceptual model, among other artifacts; for the Elaboration phase five iterations have 
been planed, each one producing a version of the ETC-SPL:

 Iteration 1: Comprising only features of the kernel.

 Iteration 2: Version 1 + features and variabilities of the application of Fortaleza.

 Iteration 3: Version 2 + features and variabilities of the application of Campo 
Grande.

 Iteration 4: Version 3 + features and variabilities of the application of São 
Carlos.

 Iteration 5: Version 4 with all variabilities but automatically generated with an 
Application Generator.

The features diagram for the kernel of the ETC-SPL (common features) is 
presented in Figure 2 using the notation of Gomaa (2004) and Figure 3 shows the 
architecture of the ETC-SPL kernel. The architecture is composed of three distributed 
modules, of which there is one occurrence of the server module (ETCServer) and 
various occurrences of each of two client modules (Bus and WebAccess). Internal to 
these modules are the components of the SPL, derived following the processes 
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suggested by Gomaa (2004) and by Cheesman and Daniels (2001), the latter used 
specifically for the identification of business and system components. The design based 
on components of some variabilities of the ETC-SPL is presented and discussed in 
Section 5. The additional features of the ETC systems of each city are the following: 

Fig.  2 – Features diagram for the kernel ETC-SPL

 Fortaleza: Form of Integration (Transport Hub), Card Payment, User 
Companies.

 Campo Grande: Additional Access, Form of Integration (Integration (Time, 
Integration Route, Number of Integration Trips), Transport Hub), Card 
Restriction (Number of Cards), User Companies.

 São Carlos: Additional Access, Passenger Authentication, Form of Integration 
(Integration (Time, Integration Route)), Card Restriction (Card Combination), 
Trip Limit.

Fig.  3 – Kernel architecture of the ETC-SPL
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5.  Design Decisions for the Features of Forms of Integration and Card 
Payment

Two features of the ETC-SPL are discussed with the objective of illustrating how design 
decisions are influenced by the decisions taken related to the SPL development process 
adopted, to the type of component, and to the manner of composition (manual or 
automated). One feature (Form of Integration) uses new classes to model and 
implement its feature and another feature (Card Payment) uses subclasses (with new 
attributes and methods) to do so. For simplicity and space reasons, the models of classes
that are illustrated show only the attributes.

5.1 Design of features related to “Forms of Integration”

We initially will consider the optional feature Transport Hub exclusive to the cities of 
Fortaleza and Campo Grande, which are considered in version 2 of the ETC-SPL. 
Figure 4 shows part of the features diagram related to this feature. The ETC system of 
Fortaleza has only bus transport hubs as a form of trips integration. The transport hubs 
work as a special terminus where passengers can change buses without paying another 
fare. Other more sophisticated ways of integration occur in the ETC systems of the other 
two cities, corresponding to other variabilities of the Form of Integration feature group.

Fig.  4 – Part of the features diagram related to the Transport Hub feature

Figure 5 shows the model of classes used to implement the operations related to 
the routes of the bus company. The classes Route, Run, TransportMode and Bus
(represented with the stereotype* <<kernel>> in the figure) are wrapped in a kernel 
component called RouteMgr, represented previously in Figure 3. The design of the 
feature Transport Hub requires the addition of a TransportHub class to the model. 
Generally, the inclusion of new features to the SPL design implies adding and/or 
modifying classes, operations and attributes. In the same way, the components may need 
adaptations or compositions such that variabilities reflect on the components’ 
architecture. There are many ways of treating these changes, each having advantages 
and disadvantages that reflect on the decisions taken for the SPL’s design.  

One way of treating the inclusion of operations and attributes inside existing 
classes and the inclusion of new classes is to add them directly inside their components 
and change operations according to new needs. For the given example, there should be 
two components, the kernel component RouteMgr and the alternative equivalent 
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component, which could be called RouteTransportHubMgr. They would be used 
respectively for the kernel application and the application of Fortaleza.

Fig.  5 – Fragment of the class model related to the Transport Hub feature

This solution’s advantage is its facility of implementation and composition. 
There are, however, many disadvantages. There can be future problems with 
maintainability because the solution tends to duplicate code and a future modification 
can demand the update of both alternative components. Besides, the original component, 
RouteMgr, has to be a white-box because its adaptation requires the knowledge and 
access of its internal structure.

To include classes, operations and attributes without having internal access to 
the implementation of previously developed components, corresponding to the SPL’s 
assets, it is necessary to design black-boxes. Therefore, to design the ETC-SPL, we 
preferred to use these kind of components and, in this way, operations and attributes that 
would be added to existing classes are separated into new classes so that new variability 
specific components are created. These components can then be assembled with 
components already designed to create new ones satisfying the new requirements. The 
components differ because they implement distinct variabilities, however they can be
formed by kernel components that are reused. The way in which they are connected and 
the required implementation to join these different components can also be changed. 
The disadvantage of this solution is a greater communication between components, 
which can decrease efficiency.

Consequently, instead of including the class TransportHub inside the component 
RouteMgr, a new component is created for the class with its attributes and operations, 
called TransportHubMgr and the component RouteMgr is reused without any alteration. 
The use of these components is managed by another component (Controller 
RouteTransportHubMgr) and the three components are then wrapped in a composed 
component called RouteTransportHubMgr. These components’ architecture details are 
shown in Figure 6. The interfaces are not altered and the components requiring them do 
not need any modifications. The interface IRouteMgt is required by the components 
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Control Trip, Control Run and ManagementControl, the interface IUpdateRun is 
required by Control Run and ICollectFare is required by Control Trip.

In the Campo Grande version, besides the Transport Hub feature, there is also 
the feature Integration. The integration can be done using defined integration routes, 
provided that the trip remains inside a specified time limit. There is also a maximum 
number of integration trips within the time interval allowed. These features can be seen 
in Figure 7.

Fig.  6 – Composed component RouteTransportHubMgr

Fig.  7 – Part of the features diagram related to the “Form of Integration” feature

In the model of classes, the feature Integration Route is represented by an 
optional class called IntegratedRoute and is associated to the Route class, shown in 
Figure 8. Only this specific feature will be shown as an example, because the other 
features are found in different parts of the model and are not related to the RouteMgr 
component. Since Campo Grande also uses transport hubs, the component 
RouteTransportHubMgr can be reused for this version and, so that the components’ 
integrity is maintained and to keep them as black-boxes, the optional IntegratedRoute
class is integrated in a new component called IntegratedRouteMgr. Similarly as in the 
previous example, a controller component is created and the three components are then 
internal parts of the composed component RouteTransportHubIntegrationMgr seen in 
Figure 9.
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Fig.  8 – The feature “Integration Route” in the class model

This component has another interface as the corresponding components of the 
earlier versions do not have the IVerifyIntegratedRoute interface. With integration this 
interface is required by the Control Trip component which consequently also has to be 
altered to treat the provided result according to the business rules of the integration 
feature. The solution can be to use composition, designing a new component or to 
separate the additional interest in an aspect [Kiczales, 1996; Suvée et al, 2006] so that 
the component does not need to be replaced and there can be an enhancement in the 
process of the variabilities’ composition of the SPL [Heo and Choi, 2006]. The other 
interfaces remain the same as in the Fortaleza version.

Fig.  9 – Composed component RouteTransportHubIntegrationMgr

In the São Carlos version, the feature Integration Route also exists but does not 
have the Transport Hub feature. Therefore the components related to the transport hub 
cannot be reused and a new composition is needed. For this version the components that 
can be reused are RouteMgr, developed in version 1 (kernel), and IntegratedRouteMgr, 
developed in version 3 (Campo Grande). A new controller is necessary to compose 
these components and form the composed component RouteIntegrationMgr, whose 
architecture can be seen in Figure 10. 

5.2 Design of features related to “Card Payment”

In the ETC system of Fortaleza, some passenger types have to purchase the bus card. 
This feature does not exist in the other two cities and is designed in the iteration of 
version 2, not reflecting in other iterations. This feature is shown in the partial features 
diagram of Figure 11. The cards can be of different categories according to the type of 
passenger and information about passenger trips may be stored. A card can also have 
various associated payments related to charges made for the card. When the feature 
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Card Payment is present, the payment can also refer to the purchase of a card. These 
requirements lead to the classes’ model presented in Figure 12. 

Fig.  10 – Composed component RouteIntegrationMgr

Figure 12 shows the classes Card, PassengerType, Trip and Payment that are 
part of the ETC-SPL and are encapsulated in the CardMgr component. The Card 
Payment feature implies variation points in the classes PassengerType and Payment, 
altering attributes and operations of these classes, different to the previous example, in 
which it was necessary to insert a new class into the model. One option is to use 
parameterized classes, but this option was not adopted to keep interests separated 
[Gomaa, 2004] so as to maintain the components as black-boxes. We chose then to use 
classes with variation points and separate the Card Payment feature in a new component 
called PaymentMgr with the IPaymentMgt as a provided interface. The specification of 
this interface is shown in Figure 13. Both classes are inserted in one component because 
they have the same interest (Card Payment) and are always used together. If it was 
important to differentiate them, two interfaces could be provided by the component, 
separating the methods implemented by different classes. 

Fig.  11 – Part of the features diagram related to the Card Payment feature

The components CardMgr and PaymentMgr are managed by a controller so that 
the information of the passenger type and the payment remain separated in different 
components and in different tables in a relational data base and can be treated and joined 
if needed. Their composed component is called CardPaymentMgr and its architecture is 
shown in Figure 14. The interfaces of the composed component are not changed and 
therefore it is not necessary to change the components that require the interfaces of this 
component, for example the Control Trip component.
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Fig.  12 – Part of the classes’ model related to the “Card Payment” feature

Fig.  13 – Specification of the IPaymentMgt interface and related classes

Independently of this composed component, the feature Card Payment needs a 
modification in the Card Acquisition component so that it records the reception of a 
payment in the financial system by requiring the IFinancialSystemMgr interface from 
the Financial System component. This way the Acquisition Card component is 
substituted by a composed component that is specific for the Card Payment feature.

This example also shows how a white-box solution would be easily created by a 
generator by maintaining the component’s name and its interfaces and, when needed, 
changing its composition by adding subclasses according to options chosen on the 
generator tool. The solution presented requires more communication between classes 
that implement the component’s interfaces and can be more inefficient, but even so we 
chose this solution so that black-box components could be used. The controllers 
correspond to generated glue code to connect the lower level assets.
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Fig.  14 – Composed component CardPaymentMgr

6. Using a Code Generator

An automated process is planned to be implemented in iteration 5 to generate 
applications for this SPL. It is relatively easy to see that the list of features shown in 
Section 4 is an initial sketch of the Application’s Modeling Language (AML) (Weiss
and Lai, 1999) for the ETC domain and based on it an automated application generator 
can be created. We intend to use the configurable code generator Captor developed by 
our research group [Schimabukuro et al, 2006]. 

For the solution presented here, based on black-box components, the generator 
code will act like a “configurator”, starting from the kernel architecture, replacing and 
including the necessary black-box components from the library of core assets and 
generating glue code for each pair of components being composed.  Note that if the 
automation had been done before iteration 5, each new horizontal version designed and 
implemented would need considerable rework in the generator. 

Another solution that could be used for this case, considering white-box 
components, would be to make the generator perform the changes inside each
component thereby generating additional classes and modifying other elements inside 
the components according to the need of each application. The generator in this case 
would be much more complex and act as a composer, according to the definition of 
Weiss and Lai (1999). Thus, less core assets would be needed. Both solutions are 
acceptable, however, but depend on the previous decision of using black-box or white-
box components. A combination of both is also possible.

The choice of automating the composition process influences the design as well 
as the moment of introducing the automation in the SPL. If automation is used to 
generate the products from the first version, this decision influences the design of the 
new versions of the SPL. Also, for each new horizontal iteration, considerable rework in 
the application generator would be needed.

7. Final Considerations

In the current state of development of the ETC-SPL the design of the kernel and of 
version 2 (Fortaleza) have already been made. Some other features have also been 
designed vertically with the intention of investigating different solutions to those shown 
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in this paper. The implementation of the kernel is ongoing, aiming to create the SPL’s 
assets.

A lesson learned so far from the development of the ETC-SPL is that having 
decided to evolve the line in horizontal iterations, it is very important that some time be 
taken to analyse how feature groups will evolve in the following iterations before 
committing to a design that cannot be easily modified or reused in the next versions. 
The example discussed in this paper for the route integration feature has shown the 
trade-offs between horizontal and vertical development.  It also showed that the decision 
of using black box or white box components is crucial. In general, it is better to design a 
black box component and compositions of them, as it is always possible later, if an off-
the-shelf component is not found, that implements the required interface, to design one 
that performs the required function.
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