
Design Issues in a Component-based Software Product Line

Paula M. Donegan*, Paulo C. Masiero

Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo (USP)
Caixa Postal 668 – 13.560-970 – São Carlos – SP – Brazil

{donegan,masiero}@icmc.usp.br

Abstract. A software product line to support urban transport systems is briefly
described and the design of two of its features is discussed. Different solutions
based on components are shown for these two features and their variabilities.
In particular, an analysis is made of how their design is influenced by the
development process adopted, by the decision to use black-box (off-the-shelf)
components or white-box components that may be created or adapted
depending on application requirements, and by the decision of automating or
not the composition process. Additionally, alternatives for deciding how to
define iterative cycles and increments of the product line are discussed.

1. Introduction

A software product line (SPL) consists of a group of software systems sharing common
and managed features that satisfy the specific needs of a market segment or a particular
objective and are developed in a predefined manner given a collection of core assets
[Clements and Northrop, 2002]. The design of an SPL can use various software design
techniques that facilitate reuse, such as object-oriented frameworks, components, code
generators, design patterns, features diagrams and aspect-oriented languages. Several
papers emphasize the difficulty of gathering, representing and implementing
variabilities in the context of SPLs [Bachmann et al, 2004; Becker, 2003; Bosch et al,
2001, Junior et al, 2005]. Variability in an SPL differentiates products of the same
family [Weiss and Lai, 1999].

This paper has two main objectives: to illustrate different solutions based on
components to represent variabilities of an SPL and to discuss how these solutions are
influenced by the adopted development process, by the decision to use black-box or off-
the-shelf (COTS) components (without access to the source code) which are reused as
they are or to use white-box components (with access to the source code) which may be
created or adapted according to application requirements, and by the decision of
automating the composition process. The solutions are presented in the context of an
SPL (being developed as an academic project by the authors) to simulate support of
urban transport systems.

The organization of the paper is as follows: Section 2 briefly describes the SPL;
Section 3 presents some generic alternatives for the iterative and incremental
development of an SPL; Section 4 summarizes the process used for the SPL; Section 5

* With financial support of FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)

SBCARS 2007

3

discusses design of components for two features of the SPL; Section 6 presents some
conclusions.

2. The Software Product Line to Control Electronic Transportation Cards

The SPL used as an example in this paper concerns management of electronic transport
cards (ETC) named ETC-SPL. These systems aim to facilitate the use of city transport,
mainly buses, offering various functionalities for passengers and bus companies, such as
use of a plastic card to pay fares, automatic opening of barrier gates, unified payment of
fares, integration of journeys and supply of on-line travel information to passengers.

The software allows the integration and automation of the transport network,
with a centralized system that maintains the data of passengers, cards, routes, buses and
journeys. The buses are equipped with a validator that reads a card and communicates
with the central system (for example using RFID – Radio Frequency Identification) to
debit the fare on the passenger’s card. There may also be a bus integration system that
permits the user to pay a single fare for multiple trips. In addition, passengers can go on-
line and look up their completed trips and card credit.

The system domain was analysed and the ETC-SPL is being designed with the
objective of generating at least three applications (or products) based on the analysis of
three existing ETC systems in Brazilian cities: São Carlos (São Paulo), Fortaleza
(Ceará) and Campo Grande (Mato Grosso do Sul).

3. Development Process of Software Product Lines

The literature describes various processes for the development of an SPL [Gomaa, 2004;
Atkinson et al, 2000]. In general, they recommend that an organization wanting to
develop an SPL has developed at least three similar applications belonging to the same
domain [Roberts and Johnson, 1998; Weiss and Lai, 1999]. The evolution of an SPL
may be proactive (ad hoc) or reactive (planned) [Sugumaran et all,2006]. An
intermediate approach, called extractive, occurs when a second or third application is
developed, parts of the code of one or more of the existing software products are
generalized in such a way that they can be reused, until at a certain moment all the code
is refactored so that new applications are capable of reusing a substantial part of the core
assets.

In the case of a proactive evolution, the organization can use a process based on
reverse engineering or forward engineering that differ basically in their first phase, as
proposed by Gomaa (2004). In the process based on reverse engineering, artifacts of
analyses, such as use cases and conceptual models, are recreated from existing systems.
In the process based on forward engineering the same artifacts are derived from various
sources, such as existing requirements documents and processes for requirements
capture. From this point on, both processes are similar and domain analysis considers
the use cases which are common to all applications of the domain, constituting the
kernel of the SPL, and those which are optional (existing only for some of the SPL
products) or alternative (choosing from a set of possibilities). A general conceptual
model is created representing the common and variable parts. Afterwards a features
diagram can be developed to synthesize the common and variable parts of the SPL.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

4

There are several models of processes for SPL development, all beginning with
the domain analysis phase described superficially in the previous paragraph. One
alternative is then to elaborate the design for the entire modeled domain. The
implementation can be done afterwards, in one version only or in various partial
increments. This alternative seems to be uneconomic and complex [Gomaa, 2004;
Atkinson and Muthig, 2002].

Another option is to follow a more agile iterative and incremental process, in
which the SPL is first designed and implemented in a version that contains only kernel
features, and then incremented by the design and implementation of subgroups of
optional and alternative variabilities, as proposed by Gomaa (2004). The SPL is based
on components and variabilities of several different mechanisms such as inheritance,
extensions (e.g. the strategy design pattern), configuration, template instantiation and
generation can be implemented [Bosch, 2000].

The choice of increments to be produced in each iterative cycle can be done horizontally
or vertically and this has a great influence on the design of the SPL architecture and on
the components that implement variabilities, as is shown in Section 5. The horizontal
increments are planned by including a subgroup of features that attend to a specific
application but do not necessarily contain all possible variabilities of each feature
included in the increment. The vertical increments implement, in a general and complete
way, all the variabilities of a subgroup of chosen features, but do not necessarily
produce a specifically desired application. Using the ETC-SPL as an example, a
horizontal version could be one that would generate the ETC system for the city of São
Carlos. A vertical version for the ETC-SPL would be an SPL containing all the possible
forms of journey integration specified during the domain analysis. These possibilities
are shown schematically in Figure 1.

Fig. 1 – Vertical and horizontal increments

The behavior of variabilities in horizontal versions is shown in Figure 1 by the
different shadings of variabilities extending a basic feature contained in the kernel. The
figure illustrates, for example, features that do not appear in the kernel and do appear in
a later version, features that appear in the kernel and are extended in one way for one
version and in a different way for another version, etc. With the adoption of an evolving
process such as that shown in Figure 1, each variability needs a careful design, because
it may require refactoring in later versions. In other words, a design that is adequate for
one version may not be so for a later version.

SBCARS 2007

5

Horizontal increments are more realistic economically, in the sense that the SPL
evolves as new applications need to be incorporated to the line, even though they can
require more rework as the line evolves. On the other hand, vertical increments, even
when not producing a previously foreseen application after the first iterations, have the
advantage of allowing each chosen feature to be analysed and designed globally,
including all its variabilities for the domain.

Another important decision to be made is how to develop the applications during
the phase of application engineering, either using a manual process of generation of
components that implement the SPL (in this case they correspond to the software assets
available) or using an automated process, for instance a code generator. A solution that
is adequate for a manual increment before automation may not be the best for a
generative process. Thus it seems best to analyse all specified variabilities of a certain
feature, before committing to a definite automated solution. However, if the SPL is
composed mainly of black-box (off-the-shelf) components they impose an important
restriction that leads to a solution using component composition and automatic
generation of glue code.

Specifically for the ETC-SPL, we started with the specifications of three known
products, the ETC systems of Fortaleza, Campo Grande and São Carlos, which were the
applications to be generated initially. We considered it important to have a complete
application early on, therefore opting to use horizontal iterative cycles in which each
increment allows generation of one of these applications.

4. Development of the ETC-SPL: Iterative Cycles and Kernel Architecture

The points observed in the previous section were taken into consideration and PLUS
(Product Line UML-based Software Engineering) [Gomaa, 2004] was used for the
development of the ETC-SPL. The SPL Engineering was divided into two phases: in the
Inception phase domain analysis yielded initial use cases, the feature diagram and a
conceptual model, among other artifacts; for the Elaboration phase five iterations have
been planed, each one producing a version of the ETC-SPL:

 Iteration 1: Comprising only features of the kernel.

 Iteration 2: Version 1 + features and variabilities of the application of Fortaleza.

 Iteration 3: Version 2 + features and variabilities of the application of Campo
Grande.

 Iteration 4: Version 3 + features and variabilities of the application of São
Carlos.

 Iteration 5: Version 4 with all variabilities but automatically generated with an
Application Generator.

The features diagram for the kernel of the ETC-SPL (common features) is
presented in Figure 2 using the notation of Gomaa (2004) and Figure 3 shows the
architecture of the ETC-SPL kernel. The architecture is composed of three distributed
modules, of which there is one occurrence of the server module (ETCServer) and
various occurrences of each of two client modules (Bus and WebAccess). Internal to
these modules are the components of the SPL, derived following the processes

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

6

suggested by Gomaa (2004) and by Cheesman and Daniels (2001), the latter used
specifically for the identification of business and system components. The design based
on components of some variabilities of the ETC-SPL is presented and discussed in
Section 5. The additional features of the ETC systems of each city are the following:

Fig. 2 – Features diagram for the kernel ETC-SPL

 Fortaleza: Form of Integration (Transport Hub), Card Payment, User
Companies.

 Campo Grande: Additional Access, Form of Integration (Integration (Time,
Integration Route, Number of Integration Trips), Transport Hub), Card
Restriction (Number of Cards), User Companies.

 São Carlos: Additional Access, Passenger Authentication, Form of Integration
(Integration (Time, Integration Route)), Card Restriction (Card Combination),
Trip Limit.

Fig. 3 – Kernel architecture of the ETC-SPL

SBCARS 2007

7

5. Design Decisions for the Features of Forms of Integration and Card
Payment

Two features of the ETC-SPL are discussed with the objective of illustrating how design
decisions are influenced by the decisions taken related to the SPL development process
adopted, to the type of component, and to the manner of composition (manual or
automated). One feature (Form of Integration) uses new classes to model and
implement its feature and another feature (Card Payment) uses subclasses (with new
attributes and methods) to do so. For simplicity and space reasons, the models of classes
that are illustrated show only the attributes.

5.1 Design of features related to “Forms of Integration”

We initially will consider the optional feature Transport Hub exclusive to the cities of
Fortaleza and Campo Grande, which are considered in version 2 of the ETC-SPL.
Figure 4 shows part of the features diagram related to this feature. The ETC system of
Fortaleza has only bus transport hubs as a form of trips integration. The transport hubs
work as a special terminus where passengers can change buses without paying another
fare. Other more sophisticated ways of integration occur in the ETC systems of the other
two cities, corresponding to other variabilities of the Form of Integration feature group.

Fig. 4 – Part of the features diagram related to the Transport Hub feature

Figure 5 shows the model of classes used to implement the operations related to
the routes of the bus company. The classes Route, Run, TransportMode and Bus
(represented with the stereotype* <<kernel>> in the figure) are wrapped in a kernel
component called RouteMgr, represented previously in Figure 3. The design of the
feature Transport Hub requires the addition of a TransportHub class to the model.
Generally, the inclusion of new features to the SPL design implies adding and/or
modifying classes, operations and attributes. In the same way, the components may need
adaptations or compositions such that variabilities reflect on the components’
architecture. There are many ways of treating these changes, each having advantages
and disadvantages that reflect on the decisions taken for the SPL’s design.

One way of treating the inclusion of operations and attributes inside existing
classes and the inclusion of new classes is to add them directly inside their components
and change operations according to new needs. For the given example, there should be
two components, the kernel component RouteMgr and the alternative equivalent

* Gomaa (2004) sometimes uses more than one stereotype to classify more specifically elements of a SPL.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

8

component, which could be called RouteTransportHubMgr. They would be used
respectively for the kernel application and the application of Fortaleza.

Fig. 5 – Fragment of the class model related to the Transport Hub feature

This solution’s advantage is its facility of implementation and composition.
There are, however, many disadvantages. There can be future problems with
maintainability because the solution tends to duplicate code and a future modification
can demand the update of both alternative components. Besides, the original component,
RouteMgr, has to be a white-box because its adaptation requires the knowledge and
access of its internal structure.

To include classes, operations and attributes without having internal access to
the implementation of previously developed components, corresponding to the SPL’s
assets, it is necessary to design black-boxes. Therefore, to design the ETC-SPL, we
preferred to use these kind of components and, in this way, operations and attributes that
would be added to existing classes are separated into new classes so that new variability
specific components are created. These components can then be assembled with
components already designed to create new ones satisfying the new requirements. The
components differ because they implement distinct variabilities, however they can be
formed by kernel components that are reused. The way in which they are connected and
the required implementation to join these different components can also be changed.
The disadvantage of this solution is a greater communication between components,
which can decrease efficiency.

Consequently, instead of including the class TransportHub inside the component
RouteMgr, a new component is created for the class with its attributes and operations,
called TransportHubMgr and the component RouteMgr is reused without any alteration.
The use of these components is managed by another component (Controller
RouteTransportHubMgr) and the three components are then wrapped in a composed
component called RouteTransportHubMgr. These components’ architecture details are
shown in Figure 6. The interfaces are not altered and the components requiring them do
not need any modifications. The interface IRouteMgt is required by the components

SBCARS 2007

9

Control Trip, Control Run and ManagementControl, the interface IUpdateRun is
required by Control Run and ICollectFare is required by Control Trip.

In the Campo Grande version, besides the Transport Hub feature, there is also
the feature Integration. The integration can be done using defined integration routes,
provided that the trip remains inside a specified time limit. There is also a maximum
number of integration trips within the time interval allowed. These features can be seen
in Figure 7.

Fig. 6 – Composed component RouteTransportHubMgr

Fig. 7 – Part of the features diagram related to the “Form of Integration” feature

In the model of classes, the feature Integration Route is represented by an
optional class called IntegratedRoute and is associated to the Route class, shown in
Figure 8. Only this specific feature will be shown as an example, because the other
features are found in different parts of the model and are not related to the RouteMgr
component. Since Campo Grande also uses transport hubs, the component
RouteTransportHubMgr can be reused for this version and, so that the components’
integrity is maintained and to keep them as black-boxes, the optional IntegratedRoute
class is integrated in a new component called IntegratedRouteMgr. Similarly as in the
previous example, a controller component is created and the three components are then
internal parts of the composed component RouteTransportHubIntegrationMgr seen in
Figure 9.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

10

Fig. 8 – The feature “Integration Route” in the class model

This component has another interface as the corresponding components of the
earlier versions do not have the IVerifyIntegratedRoute interface. With integration this
interface is required by the Control Trip component which consequently also has to be
altered to treat the provided result according to the business rules of the integration
feature. The solution can be to use composition, designing a new component or to
separate the additional interest in an aspect [Kiczales, 1996; Suvée et al, 2006] so that
the component does not need to be replaced and there can be an enhancement in the
process of the variabilities’ composition of the SPL [Heo and Choi, 2006]. The other
interfaces remain the same as in the Fortaleza version.

Fig. 9 – Composed component RouteTransportHubIntegrationMgr

In the São Carlos version, the feature Integration Route also exists but does not
have the Transport Hub feature. Therefore the components related to the transport hub
cannot be reused and a new composition is needed. For this version the components that
can be reused are RouteMgr, developed in version 1 (kernel), and IntegratedRouteMgr,
developed in version 3 (Campo Grande). A new controller is necessary to compose
these components and form the composed component RouteIntegrationMgr, whose
architecture can be seen in Figure 10.

5.2 Design of features related to “Card Payment”

In the ETC system of Fortaleza, some passenger types have to purchase the bus card.
This feature does not exist in the other two cities and is designed in the iteration of
version 2, not reflecting in other iterations. This feature is shown in the partial features
diagram of Figure 11. The cards can be of different categories according to the type of
passenger and information about passenger trips may be stored. A card can also have
various associated payments related to charges made for the card. When the feature

SBCARS 2007

11

Card Payment is present, the payment can also refer to the purchase of a card. These
requirements lead to the classes’ model presented in Figure 12.

Fig. 10 – Composed component RouteIntegrationMgr

Figure 12 shows the classes Card, PassengerType, Trip and Payment that are
part of the ETC-SPL and are encapsulated in the CardMgr component. The Card
Payment feature implies variation points in the classes PassengerType and Payment,
altering attributes and operations of these classes, different to the previous example, in
which it was necessary to insert a new class into the model. One option is to use
parameterized classes, but this option was not adopted to keep interests separated
[Gomaa, 2004] so as to maintain the components as black-boxes. We chose then to use
classes with variation points and separate the Card Payment feature in a new component
called PaymentMgr with the IPaymentMgt as a provided interface. The specification of
this interface is shown in Figure 13. Both classes are inserted in one component because
they have the same interest (Card Payment) and are always used together. If it was
important to differentiate them, two interfaces could be provided by the component,
separating the methods implemented by different classes.

Fig. 11 – Part of the features diagram related to the Card Payment feature

The components CardMgr and PaymentMgr are managed by a controller so that
the information of the passenger type and the payment remain separated in different
components and in different tables in a relational data base and can be treated and joined
if needed. Their composed component is called CardPaymentMgr and its architecture is
shown in Figure 14. The interfaces of the composed component are not changed and
therefore it is not necessary to change the components that require the interfaces of this
component, for example the Control Trip component.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

12

Fig. 12 – Part of the classes’ model related to the “Card Payment” feature

Fig. 13 – Specification of the IPaymentMgt interface and related classes

Independently of this composed component, the feature Card Payment needs a
modification in the Card Acquisition component so that it records the reception of a
payment in the financial system by requiring the IFinancialSystemMgr interface from
the Financial System component. This way the Acquisition Card component is
substituted by a composed component that is specific for the Card Payment feature.

This example also shows how a white-box solution would be easily created by a
generator by maintaining the component’s name and its interfaces and, when needed,
changing its composition by adding subclasses according to options chosen on the
generator tool. The solution presented requires more communication between classes
that implement the component’s interfaces and can be more inefficient, but even so we
chose this solution so that black-box components could be used. The controllers
correspond to generated glue code to connect the lower level assets.

SBCARS 2007

13

Fig. 14 – Composed component CardPaymentMgr

6. Using a Code Generator

An automated process is planned to be implemented in iteration 5 to generate
applications for this SPL. It is relatively easy to see that the list of features shown in
Section 4 is an initial sketch of the Application’s Modeling Language (AML) (Weiss
and Lai, 1999) for the ETC domain and based on it an automated application generator
can be created. We intend to use the configurable code generator Captor developed by
our research group [Schimabukuro et al, 2006].

For the solution presented here, based on black-box components, the generator
code will act like a “configurator”, starting from the kernel architecture, replacing and
including the necessary black-box components from the library of core assets and
generating glue code for each pair of components being composed. Note that if the
automation had been done before iteration 5, each new horizontal version designed and
implemented would need considerable rework in the generator.

Another solution that could be used for this case, considering white-box
components, would be to make the generator perform the changes inside each
component thereby generating additional classes and modifying other elements inside
the components according to the need of each application. The generator in this case
would be much more complex and act as a composer, according to the definition of
Weiss and Lai (1999). Thus, less core assets would be needed. Both solutions are
acceptable, however, but depend on the previous decision of using black-box or white-
box components. A combination of both is also possible.

The choice of automating the composition process influences the design as well
as the moment of introducing the automation in the SPL. If automation is used to
generate the products from the first version, this decision influences the design of the
new versions of the SPL. Also, for each new horizontal iteration, considerable rework in
the application generator would be needed.

7. Final Considerations

In the current state of development of the ETC-SPL the design of the kernel and of
version 2 (Fortaleza) have already been made. Some other features have also been
designed vertically with the intention of investigating different solutions to those shown

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

14

in this paper. The implementation of the kernel is ongoing, aiming to create the SPL’s
assets.

A lesson learned so far from the development of the ETC-SPL is that having
decided to evolve the line in horizontal iterations, it is very important that some time be
taken to analyse how feature groups will evolve in the following iterations before
committing to a design that cannot be easily modified or reused in the next versions.
The example discussed in this paper for the route integration feature has shown the
trade-offs between horizontal and vertical development. It also showed that the decision
of using black box or white box components is crucial. In general, it is better to design a
black box component and compositions of them, as it is always possible later, if an off-
the-shelf component is not found, that implements the required interface, to design one
that performs the required function.

References

Atkinson, C; Bayer, J.; Muthig, D. (2000) Component-Based Product Line
Development: The KobrA Approach. 1st Software Product Line Conference, 19p.

Atkinson, C; Muthig, D. (2002) Enhancing Component Reusability through Product
Line Technology. Proceedings of the 7th International Conference in Software
Reuse (ICSR02), Springer Press, p. 93-108.

Bachmann, F.; Goedicke, M.; Leite, J.; Nord, R.; Pohl, K.; Ramesh, B.; Vilbig, A.
(2004) A Meta-model for Representing Variability in Product Family
Development. Proceedings of the 5th International Workshop on Software
Product-Family Engineering, Springer, p. 66-80.

Becker, M. (2003) Towards a General Model of Variability in Product Families.
Proceedings of the 1st Workshop on Software Variability Management, Groningen,
9p.

Bosch, J. (2000) Design et Use of Software Architectures: adopting and evolving a
product-line approach, Addison-Wesley, 354p.

Bosch, J.; Florijn, G.; Greefhorst, D.; Kuusela, J.; Obbink, H.; Pohl, K. (2001)
Variability Issues in Software Product Lines. Proceedings of the 4th International
Workshop on Product Family Engineering, Springer, p. 11-19.

Cheesman, J.; Daniels, J. (2001) UML Components: a simple process for specifying
component-based software, Addison-Wesley, 176p.

Clements, P.; Northrop, L. (2002) Software Product Lines: Practices and Patterns,
Addison-Wesley, 563p.

Gomaa, H. (2004) Designing Software Product Lines with UML. Addison-Wesley,
701p.

Heo, S-H.; Choi, E. M. (2006) Representation of Variability in Software Product Line
Using Aspect-Oriented Programming. Proceedings of the 4th International
Conference on Software Engineering Research Management and Applications
(SERA), 8p.

SBCARS 2007

15

Junior, E. A. O.; Gimenes, I. M. S.; Huzita, E. H. M.; Maldonado, J. C. (2005) A
Variability Management Process for Software Product Lines. Proceedings of the
2005 conference of the Centre for Advanced Studies on Collaborative research,
Cascon, p. 225-241.

Kiczales, G. (1996) Aspect-Oriented Programming. ACM Computing Surveys (CSUR),
v.28, n. 4es, p. 220-242.

Roberts, D; Johnson, R. (1998) Evolving Frameworks: a pattern language for
developing object-oriented frameworks. In: Martin, R.C.; Riehle, D.; Buschman,
F. Pattern Languages of Program Design 3, Addison-Wesley, p. 471-486.

Schimabukuro, E. K. J.; Masiero, P. C.; Braga, R. T. V. (2006) Captor: A Configurable
Application Generator (in Portuguese). XIII Tools Session of the Brazilian
Symposium of Software Engineering, 6p.

Sugumaran,V.; Park, S.; Kang, K.C. (2006) Software Product Line Engineering.
Communications of the ACM, Vol 49, No. 12, p. 29-32.

Suvée, D.; Fraine, B. D.; Vanderperren, W. (2006) A Symmetric and Unified Approach
Towards Combining Aspect-Oriented and Component-Based Software
Development. In: Component Based Software Engineering, p. 114-122.

Weiss, D. M.; Lai, C. R. R. (1999) Software product-line engineering: a family-based
software development process. Addison-Wesley, 426p.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

16

