

GenArch – A Model-Based Product Derivation Tool

Elder Cirilo
1
, Uirá Kulesza

1, 2
, Carlos José Pereira de Lucena

1

1
Laboratório de Engenharia de Software – Departamento de Informática

Pontificia Universidade Católica do Rio de Janeiro (PUC-RIO), Brasil

{ecirilo,uira,lucena}@inf.puc-rio.br

2
Departamento de Informática – Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa – Portugal

Abstract. In this paper, we present a model-based tool for product derivation.

Our tool is centered on the definition of three models (feature, architecture and

configuration models) which enable the automatic instantiation of software

product lines (SPLs) or frameworks. The Eclipse platform and EMF technology

are used as the base for the implementation of our tool. A set of specific Java

annotations are also defined to allow generating automatically many of our

models based on existing implementations of SPL architectures.

1. Introduction

Over the last years, many approaches for the development of system families and

software product lines have been proposed [27, 7, 8, 14]. A system family [23] is a set of

programs that shares common functionalities and maintain specific functionalities that

vary according to specific systems being considered. A software product line (SPL) [7]

can be seen as a system family that addresses a specific market segment. Software

product lines and system families are typically specified, modeled and implemented in

terms of common and variable features. A feature [10] is a system property or

functionality that is relevant to some stakeholder and is used to capture commonalities or

discriminate among systems in SPLs.

Most of the existing SPL approaches [27, 7, 8, 14] motivate the definition of a flexible

and adaptable architecture which addresses the common and variable features of the SPL.

These SPL architectures are implemented by defining or reusing a set of different

artifacts, such as object-oriented frameworks and software libraries. Recently, new

programming techniques have been explored to modularize the SPL features, such as,

aspect-oriented programming [1, 20], feature-oriented programming [5] and code

generation [8]. Typical implementations of SPL architectures are composed of a set of

different assets (such as, code artifacts), each of them addressing a small set of common

and/or variable features.

Product Derivation [28] refers to the process of constructing a product from the set of

assets specified or implemented for a SPL. Ideally the product derivation process would

be accomplished with the help of instantiation tools to facilitate the selection,

composition and configuration of SPL code assets and their respective variabilities. Over

the last years, some product derivation tools have been proposed. Gears [13] and

pure::variants [24] are two examples of tools developed in this context. Although these

tools offer a set of useful functionalities for the product derivation, they are in general

complex and heavyweight to be used by the mainstream developer community, because

SBCARS 2007

31

they incorporate a lot of new concepts from the SPL development area. As a result, they

suffer from the following deficiencies: (i) difficult to prepare existing SPL architecture

implementations to be automatically instantiated; (ii) definition of many complex models

and/or functionalities; and (iii) they are in general more adequate to work with proactive

approaches [17].

In this context, this paper proposes a model-driven product derivation tool, called

GenArch, centered on the definition of three models (feature, architecture and

configuration). Initial versions of these three models can be automatically generated

based on a set of code annotations that indicate the implementation of features and

variabilities in the code of artifacts from the SPL. After that, a domain engineer can

refine or adapt these initial model versions to enable the automatic product derivation of

a SPL. The Eclipse [25] platform and model-driven development toolkits available (such

as EMF and oAW) at this platform were used as a base for the definition of our tool.

The remainder of this paper is organized as follows. Section 2 presents background of

generative programming and existing product derivation tools. Section 3 gives an

overview of our product derivation approach based on the combined use of models and

code annotations. Section 4 details the GenArch tool. Section 5 presents a set of initial

lessons learned from the implementation and use of the GenArch tool. Finally, Section 6

concludes the paper and provides directions for future work.

2. Background

This section briefly revisits the generative programming approach (Section 2.1). Our SPL

derivative approach is defined based on its original concepts and ideas. We also give an

overview of existing product derivation tools (Section 2.2).

2.1 Generative Programming

Generative Programming (GP) [8] addresses the study and definition of methods and

tools that enable the automatic generation of software from a given high-level

specification language. It has been proposed as an approach based on domain engineering

[4]. GP promotes the separation of problem and solution spaces, giving flexibility to

evolve both independently. To provide this separation, Czarnecki & Eisenecker [8]

propose the concept of a generative domain model. A generative domain model is

composed of three basic elements: (i) problem space – which represents the concepts and

features existent in a specific domain; (ii) solution space – which consists of the software

architecture and components used to build members of a software family; and (iii)

configuration knowledge – which defines how specific feature combinations in the

problem space are mapped to a set of software components in the solution space. GP

advocates the implementation of the configuration knowledge by means of code

generators.

The fact that GP is based on domain engineering enables us to use domain engineering

methods [4, 8] in the definition of a generative domain model. Common activities

encountered in domain engineering methods are: (i) domain analysis – which is

concerned with the definition of a domain for a specific software family and the

identification of common and variable features within this domain; (ii) domain design –

which concentrates on the definition of a common architecture and components for this

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

32

domain; and (iii) domain implementation – which involves the implementation of

architecture and components previously specified during domain design.

Two new activities [8] need to be introduced to domain engineering methods in order to

address the goals of GP: (i) development of a proper means to specify individual

members of the software family. Domain-specific languages (DSLs) must be developed

to deal with this requirement; and (ii) modeling of the configuration knowledge in detail

in order to automate it by means of a code generator.

In a particular and common instantiation of the generative model, the feature model is

used as a domain-specific language of a software family or product line. It works as a

configuration DSL. A configuration DSL allows to specify a concrete instance of a

concept [8]. Several existing tools adopt this strategy to enable automatic product

derivation (Section 2.2) in SPL development. In this work, we present an approach and a

tool centered on the ideas of the generative model. The feature model is also adopted by

our tool as a configuration DSL which expresses the SPL variabilities.

2.2 Existing Product Derivation Tools

There are many tools to automatically derive SPL members available in industry, such as

Pure::variants and Gears. Pure::variants [24] is a SPL model-based product derivation

tool. Its modeling approach comprises three models: features, family and derivation. The

feature model contains the product variabilities and solution architectures are expressed

in a family model. Both models are flexibly combined to define a SPL. Since a product

line specification in this tool can consist of any number of models, the “configuration

space” is used to manage this information and captures variants. The features are

modeled graphically in different formats such as trees, tables and diagrams. Constraints

among features and architecture elements are expressed using first order logic in Prolog

and uses logic expression syntax closely related to OCL notation. This tool permits the

use of an arbitrary number of feature models, and hierarchical connection of the different

models. The pure::variants does not require any specific implementation technique and

provides integration interfaces with other tools, e.g. for requirements engineering, test

management and code generation.

Gears [13] allows the definition of a generative model focused on automatic product

derivation. It defines three primary abstractions: feature declarations, product definitions,

and variation points. Feature declarations are parameters that express the variations.

Product definitions are used to select and assign values to the feature declaration

parameters for the purpose of instantiating a product. Variation points encapsulate the

variations in your software and map the feature declarations to choices at these variation

points. The language for expressing constraints at feature models is propositional logic

instead of full first-order logic.

3. Approach Overview

In this section, we present an overview of our product derivation approach based on the

use of the GenArch tool. Next section details the tool by showing its architecture,

adopted models and supporting technologies. Our approach aims to provide a product

derivation tool which enables the mainstream software developer community to use the

concepts and foundations of the SPL approach in the development of software systems

SBCARS 2007

33

and assets, such as, frameworks and customizable libraries, without the need to

understand complex concepts or models from existing product derivation tools.

Figure 1. Approach Overview

Figure 1 gives an overview of our approach. Initially (step 1), the domain engineers are

responsible to annotate the existing code of SPL architectures (e.g. an object-oriented

framework). We have defined a set of Java annotations
1
 to be inserted in the

implementation elements (classes, interfaces and aspects) of SPL architectures. The

purpose of our annotations is twofold: (i) they are used to specify which SPL

implementation elements correspond to specific SPL features; and (ii) they also indicate

that SPL code artifacts, such as an abstract class or aspect, represent an extension point

(hot-spot) of the architecture.

After that, the GenArch tool processes these annotations and generates initial versions of

the derivation models (step 2). Three models must be specified in our approach to enable

the automatic derivation of SPL members: (i) an architecture model; (ii) a feature model;

and (iii) a configuration model. The architecture model defines a visual representation of

the SPL implementation elements (classes, aspects, templates, configuration and extra

files) in order to relate them to feature models. It is automatically derived by parsing an

existing directory containing the implementation elements (step 2). Code templates can

also be created in the architecture model to specify implementation elements which have

variabilities to be solved during application engineering. Initial versions of code

1
 Although the current version of GenArch tool has been developed to work with Java technologies, our

approach is neutral with respect to the technology used. It only requires that the adopted technologies

provides support to the definition of its annotations and models.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

34

templates are automatically created in the architecture models based on GenArch

annotations (see details in Section 4.2).

Feature models [16] are used in our approach to represent the variable features

(variabilities) from SPL architectures (step 3). During application engineering,

application engineers create a feature model instance (also called a configuration [9]) in

order to decide which variabilities are going to be part of the final application generated

(step 4). Finally, our configuration model is responsible to define the mapping between

features and implementation elements. It represents the configuration knowledge from a

generative approach [8], being fundamental to link the problem space (features) to the

solution space (implementation elements). Each annotation embedded in an

implementation element is used to create in the configuration model, a mapping

relationship between an implementation element and a feature.

The initial versions of the derivation models, generated automatically by GenArch tool,

must be refined by domain engineers (step 3). During this refinement process, new

features can be introduced in the feature model or the existing ones can be reorganized. In

the architecture model, new implementation elements can also be introduced or they can

be reorganized. Template implementations can include additional common or variable

code. Finally, the configuration model can also be modified to specify new relationships

between features and implementations elements. In the context of SPL evolution, the

derivation models can be revisited to incorporate new changes or modifications according

to the requirements or changes required by the evolution scenarios.

After all models are refined and represent the implementation and variabilities of a SPL

architecture, the GenArch tool uses them to automatically derive an instance/product of

the SPL (step 4). The tool processes the architecture model by verifying if each

implementation element depends on any feature from the feature model. This information

is provided by the configuration model. If an implementation element does not depend on

a feature, it is automatically instantiated since it is mandatory. If an implementation

depends on a feature, it is only instantiated if there is an occurrence of that specific

feature in the feature model instance created by the application engineer. Every template

element from the architecture model, for example, must always depend on a specific

feature. The information collected by that feature is then used in the customization of the

template. The GenArch tool produces, as result of the derivation process, an Eclipse/Java

project containing only the implementation elements corresponding to the specific

configuration expressed by the feature model instance and specified by the application

engineers.

4. GenArch – Generative Architecture Tool

In this section, we present the architecture, adopted models and technologies used in the

development of the GenArch tool. Following subsections detail progressively the

functionalities of the tool by illustrating its use in the instantiation of the JUnit

framework.

4.1. Architecture Overview

The GenArch tool has been developed as an Eclipse plug-in [25] using different

technologies available at this platform. New model-driven development toolkits, such as

Eclipse Modeling Framework (EMF) [6] and openArchitectureWare (oAW) [22] were

SBCARS 2007

35

used to specify its models and templates, respectively. Figure 2 shows the general

structure of the GenArch architecture based on Eclipse platform technologies. Our tool

uses the JDT (Java Development Tooling) API [25] to browse the Abstract Syntax Tree

(AST) of Java classes in order to: (i) parse the Java elements to create the architecture

model; and (ii) to process the GenArch annotations.

The feature, configuration and architecture model of GenArch tool are specified using

EMF. EMF is a Java/XML framework which enables the building of MDD based tools

based on structured data models. It allows generating a set of Java classes to manipulate

and specify visually models. These classes are generated based on a given meta-model,

which can be specified using XML Schema, annotated Java classes or UML modeling

tools (such as Rational Rose). The feature model used in our tool is specified by a

separate plugin, called FMP (Feature Modeling Plugin) [3]. It allows modeling the

feature model proposed by Czarnecki et al [8], which supports modeling mandatory,

optional, and alternative features, and their respective cardinality. The FMP also works

with EMF models.

Figure 2. Genarch Architecture

The openArchitectureWare (OAW) plug-in [22] proposes to provide a complete toolkit

for model-driven development. It offers a number of prebuilt workflow components that

can be used for reading and instantiating models, checking them for constraint violations,

transforming them into other models and then, finally, for generating code. oAW is also

based on EMF technology. Currently, GenArch plug-in has only adopted the XPand

language of oAW to specify its respective code templates (see details in Section 4.4).

4.2. Annotating Java Code with Feature and Variabilities

Following the steps of our approach described in Section 3, the domain engineer initially

creates a set of Java annotations in the code of implementation elements (classes, aspects

and interfaces) from the PL architecture. The annotations are in general embedded in the

code of implementation elements representing the SPL variabilities. Table 1 shows the

two kinds of annotations supported by our approach: (i) @Feature – this annotation is

used to indicate that a particular implementation element addresses a specific feature. It

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

36

also allows to specify the kind of feature (mandatory, alternative, or optional) being

implemented and its respective feature parent if exists; and (ii) @Variability – it

indicates that the implementation element annotated represents an extension point (e.g. a

hotspot framework class) in the SPL architecture. In the current version of GenArch,

there are three kinds of implementation elements that can be marked with this annotation:

abstract classes, abstract aspects, and interfaces. Each of them has a specific type (hotspot

or hotspot-aspect) defined in the annotation.

Table 1. GenArch Annotations and their Attributes

@Feature

Attributes

Name Name of feature

Parent The parent of feature

Type alternative, optional or mandatory

@Variability

Attributes

Type hotspot or hotspotAspect

Feature Contains the feature associated with the variability

@Feature(name="TestCase",parent="TestSuite",type=FeatureType.mandatory)

@Variability(type=VariabilityType.hotSpot,feature="TestCase")

public abstract class TestCase extends Assert implements Test {

 private String fName;

 public TestCase() {

 fName= null;

 }

 public TestCase(String name) {

 fName= name;

 }

 ...

}

Figure 3. TestCase class annotated

Along the next sections, we will use the JUnit testing framework to illustrate the GenAch

functionalities. In particular, we are considering the following components of this

framework:

(I) Core – defines the framework classes responsible for specifying the basic

behavior to execute test cases and suites. The main hot-spot classes available in this

component are TestCase and TestSuite. The framework users need to extend these

classes in order to create specific test cases to their applications;

(II) Runner – this component is responsible for offering an interface to start and

track the execution of test cases and suites. JUnit provides three alternative

implementations of test runners, as follows: a command-line based user interface (UI), an

AWT based UI, and a Java Swing based UI; and, finally,

(III) Extensions – responsible for defining functionality extending the basic behavior

of the JUnit framework. Examples of available extensions are: a test suite to execute test

suites in separate threads and a test decorator to run test cases repeatedly.

SBCARS 2007

37

Figure 3 shows the TestCase abstract class from the JUnit framework marked with two

GenArch annotations. The @Feature annotation indicates that the TestCase class is

implementing the TestCase feature and has the TestSuite as feature parent. It also shows

that this feature is mandatory. This means that every instance of the JUnit framework

requires the implementation of this class. The @Variability annotation specifies that the

TestCase class is an extension point of the JUnit framework. It represents a hot-spot

class that needs to be specialized when creating test cases (a JUnit framework

instantiation) for a Java application. Next section shows how GenArch annotations are

processed to generate the initial version of the derivation models.

4.3. Generating and Refining the Approach Models

In the second step of our approach, an initial version of each GenArch model is produced.

The architecture model is created by parsing the Java project or directory that contains the

implementation elements of the SPL architecture. The Eclipse Java Development Tooling

(JDT) API [25] is used by our plug-in to parse the existing Java code. During this parsing

process, every Java package is converted to a component with the same name in the

architecture model. Each type of implementation element (classes, interfaces, aspects or

files) has a corresponding representation in the architecture model. Figure 4(a) shows, for

example, the initial version of the JUnit architecture model. Every package was converted

to a component and every implementation element was converted to its respective

abstraction in the architecture model. As we mentioned before, architecture models are

created only to allow the visual representation of the SPL implementation elements in

order to relate them to a feature model.

(a) Architecture Model (b) Configuration Model (c) Feature Model

Figure 4. The JUnit GenArch Models – Initial Versions

The GenArch annotations are used to generate specific elements in the feature,

configuration and architecture models. These elements are also processed by the tool

using the Eclipse Java Development Tooling (JDT) API [25]. The JDT API allows

browsing the Abstract Syntax Tree (AST) of Java classes to read their respective

annotations. The @Feature annotation is used to create different features with their

respective type in the feature model. Every @Feature annotation demands the creation of

a new feature in the feature model. If the @Feature annotation has a parent attribute, a

parent feature is created to aggregate the new feature. Figure 4(c) shows the partial

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

38

feature model generated for the JUnit framework. It aggregates, for example, the

TestSuite and TestCase features, which were generated based on the @Feature

annotation presented in Figure 3.

On the other hand, each @Variability annotation demands the creation of a code

template which represents concrete instances of the extension implementation element

that is annotated. The architecture model is also updated to include the new template

element created. Consider, for example, the annotated TestCase class presented in

Figure 3. The @Variability annotation of this class demands the creation of a code

template which represents TestCase subclasses, as we can see in Figure 4(a). This

template will be used in the derivation process of the JUnit framework to generate

TestCase subclasses for a specific Java application under testing. Only the structure of

each template is generated based on the respective implementation element (abstract

class, interface or abstract aspect) annotated. Empty implementations of the abstract

methods or pointcuts from these elements are automatically created in the template

structure. Next section shows how the code of every template can be improved using

information collected by a feature model instance.

The GenArch configuration model defines a set of mapping relationships. Each mapping

relationship links a specific implementation element from the architecture model to one

or more features from the feature model. An initial version of the configuration model is

created based on the @Feature annotations with attribute type equals to optional or

alternative. When processing these annotations, the GenArch tool adds a mapping

relationship between the feature created and the respective implementation element

annotated. The current visualization of our configuration model shows the

implementation elements in a tree (similar to the architecture model), but with the

explicit indication of the feature(s) which each of them depends on. Figure 4(b) shows

the initial configuration model of the JUnit framework based on the processed

annotations. As we can see, the RepeatedTestAspect aspect
2
 depends explicitly on the

Repeated feature. It represents a mapping relationship between these elements, created

because the RepeatTestAspect is marked with the @Feature annotation and its

attributes have the following values: (i) name equals to Repeated; and (ii) type equals to

optional.

In the GenArch tool, every template must depend at least on a feature. The

@Variability annotation specifies explicitly this feature. This information is used by the

tool to update the configuration model by defining that the template generated depends

explicitly on a feature. Figure 4(b) shows that the TestCaseTemplate depends explicitly

on the TestCase feature. It means that during the derivation/instantiation of the JUnit

framework, this template will be processed to every TestCase feature created in the

feature model instance.

After the generation of the initial versions of GenArch models, the domain engineer can

refine them by including, modifying or removing any feature, implementation element or

2
 In this paper, we are using the implementation of the JUnit framework, which was refactored using the

AspectJ language. Two features of the Extension component were implemented as aspects in this version:

(i) the repetition feature – which allows to repeat the execution of specific test cases; and (ii) the active

execution feature – which addresses the concurrent execution of test suites. Additional details about it can

be found in [18, 20].

SBCARS 2007

39

mapping relationship. Figure 5 shows a partial view of the final versions of the JUnit

framework models. As we can see, they were refined to completely address the features

and variabilities of the JUnit.

(a) Architecture Model (b) Configuration Model (c) Feature Model

Figure 5. The JUnit GenArch Models – Final Versions

4.4. Implementing Variabilities with Templates

The GenArch tool adopts the XPand language from the oAW plugin [22] to specify the

code templates. XPand is a very simple and expressive template language. In our

approach, templates are used to codify implementation elements (classes, interfaces,

aspects and configuration files) which need to be customized during the product

derivation. Examples of implementation elements which can be implemented using

templates are: concrete instances of hot-spots (classes or aspects) and parameterized

configuration files. Every GenArch template can use information collected by the feature

model to customize its respective variable parts of code.

Figure 6. The TestCaseTemplate

Figure 6 shows the code of the TestSuite template using the XPand language. It is used

to generate the code of specific JUnit test suites for Java applications. The IMPORT

01 «IMPORT featuremodel»

02 «DEFINE TestSuiteTemplate FOR Feature»

03 «FILE attribute + ".java"»

04 package junit.framework;

05 public class «attribute» {

06 public static Test suite() {

07 TestSuite suite = new TestSuite();

08 «FOREACH features AS child»

09 suite.addTestSuite(«child.attribute».class);

10 «ENDFOREACH»

11 return suite;

12 }

13 }

14 «ENDFILE»

15 «ENDDEFINE»

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

40

statement allows using all the types and template files from a specific namespace (line 1).

It is equivalent to a Java import statement. GenArch templates import the featuremodel

namespace, because it contains the classes representing the feature model. The DEFINE

statement determines the template body (line 2). It defines the name of the template as

well as the meta-model class whose instances will be used in its customization. The

TestSuiteTemplate template, for example, has the name TestSuiteTemplate and uses

the Feature meta-model class to enable its customization. The specific feature to be used

in the customization of each template is defined by the mapping relationship in the

configuration model. Thus, the TestSuiteTemplate, for example, will be customized

using each TestSuite feature specified in a feature model instance by the application

engineer (see configuration model in Figure 5(b)).

Inside the DEFINE tags (lines 3 to 14) are defined the sequence of statements responsible

for the template customization. The FILE statement specifies the output file to be written

the information resulting from the template processing. Figure 6 indicates that the file

name resulting from the template processing will have the name of the feature being

manipulated (attribute) plus the Java extension (.java). The following actions are

accomplished in order to customize the TestSuiteTemplate: (i) the name of the

resulting test case class is obtained based on the feature name (attribute); and (ii) the

test cases to be included at this test suite are specified based on the feature names

(child.attribute) of the feature child (child). The FOREACH statement allows the

processing of the child features of the TestSuite feature being processed for this template.

4.5. Generating SPL Instances

In the fourth and last step of our approach (Section 3), called product derivation, a

product or member of the SPL is created. The product derivation is organized in the

following steps: (i) choice of variabilities in a feature model instance – initially the

application engineer specifies a feature model instance using the FMP plug-in which

determines the final product to be instantiated; (ii) next, the application engineer provides

to GenArch tool, the architecture and configuration model of the SPL and also the feature

model instance specified in step (i); and (iii) finally, the GenArch tool processes all these

models to decide which implementation elements needs to be instantiated to constitute

the final application requested. The selected implementation elements are then loaded in

a specific source folder of an Eclipse Java project. The complete algorithm used by

GenArch tool can be found in [18, 19, 20]

5. Lessons Learned and Discussions

This section provides some discussions and lessons learned based on the initial

experience of use the GenArch tool to automatically instantiate the JUnit framework and

a J2ME SPL game [18]. Although these examples are not so complex, they allow to

illustrate and exercise all the tool functionalities. Additional details about the models and

code generated for these case studies will be available at [29].

Synchronization between Code, Annotations and Models. In the current version of the

GenArch tool, there is no available functionality to synchronize the SPL code,

annotations and respective models. This is fundamental to guarantee the compatibility of

the SPL artifacts and to avoid inconsistencies during the process of product derivation.

Besides, it is also important to allow that specific changes in the code, models or

SBCARS 2007

41

annotations will be reflected on the related artifacts. At this moment, we are focusing at

the implementation of a synchronization functionality which tries to solve automatically

the inconsistencies between models, code and annotations, and if it is not possible it only

shows the inconsistency to the product line engineer, as a GenArch warning or error. The

following inconsistencies are planned to be verified by our tool: (i) removing of features

from the feature model which are not longer used by the configuration model or

annotation; (ii) removing of mapping relationships in the configuration model which refer

to non-existing features or implementation elements; (iii) removing of implementation

elements from the architecture model which do not exist anymore; and (iv) automatic

creation of annotations in implementation elements based on information provided by the

configuration model. Finally, the implementation of our synchronization functionality

can also enable the automatic generation of implementation elements with annotations,

from existing GenArch models.

Integration with Refactoring Tools. Application of refactoring techniques [12, 21] is

common nowadays in the development of software systems. In the development of SPLs,

refactoring is also relevant, but it assumes a different perspective. In the context of SPL

development, refactoring technique needs to consider [2], for example: (i) if changes

applied to the structure of existing SPL implementation elements do not decrease the set

of all possible configurations (products) addressed by the SPL; and (ii) complex scenarios

of merging existing programs into a SPL. Although many existing proposed refactorings

introduce extension points or variabilities [2], the refactoring tools available are not

strongly integrated with existing SPL modeling or derivation tools. It can bring

difficulties or inconsistencies when using both tools together in the development of a

SPL. The integration of GenArch with existing refactoring tools involves several

challenges, such as, for example: (i) to allow the creation of @Feature annotations to

every refactoring that exposes or creates a new variable feature in order to present it in

the SPL feature model to enable its automatic instantiation; and (ii) refactorings that

introduce new extension points (such as, abstract classes or aspects or an interface) must

be integrated with GenAch to allow the automatic insertion of @Variability

annotations. Also the functionality of synchronization of models, code and annotations

(discussed in Section 5.1) is fundamental in the context of integration of GenArch with

existing refactoring tools, because it guarantees that every refactoring applied to existing

SPL implementation elements, which eventually cause the creation of new or

modification of existing annotations, will be synchronized with the derivation models.

SPL Adoption Strategies. Different adoption strategies [17] can be used to develop

software product lines (SPLs). The proactive approach motivates the development of

product lines considering all the products in the foreseeable horizon. A complete set of

artifacts to address the product line is developed from scratch. In the extractive approach,

a SPL is developed starting from existing software systems. Common and variable

features are extracted from these systems to derive an initial version of the SPL. The

reactive approach advocates the incremental development of SPLs. Initially, the SPL

artifacts address only a few products. When there is a demand to incorporate new

requirements or products, the common and variable artifacts are incrementally extended

in reaction to them. Independent from the SPL adoption strategy adopted, a derivation

tool is always needed to reduce the cost of instantiation of complex architectures

implemented to SPLs.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

42

We believe that GenArch tool can be used in conjunction with proactive, extractive or

incremental adoption approaches. In the proactive approach, our tool can be used to

annotate the implementation elements produced during domain engineering in order to

prepare those elements to be automatically instantiated during application engineering.

Also, the extractive approach can demand the introduction of GenArch annotations in

classes, interfaces or aspects, whenever new extension points are exposed in order to

gradually transform the existing product in a SPL. Finally, the reactive approach requires

the implementation of the synchronization functionality (Section 5.1) in the GenArch

tool, because it can involve complex scenarios of merging products.

Architecture Model Specialization. The architecture model supported currently by

GenArch tool allows to represent SPL architectures implemented in the Java and AspectJ

programming languages. However, our architecture model is not dependent of Java

technologies, only the GenArch functionalities responsible to manipulate the

implementation elements were codified to only work with Java and AspectJ

implementation elements. Examples of such functionalities are: (i) the parser that imports

and processes the implementation elements and annotations; and (ii) the derivation

component that creates a SPL instance/product as a Java project. In this way, the

GenArch approach, as presented in Section 3, is independent of specific technologies.

Currently, we are working on the definition of specializations of the architecture model.

These specializations have the purpose to support other abstractions and mechanisms of

specific technologies. In particular, we are modifying the tool to work with a new

architecture model that supports the abstractions provided by the Spring framework [15].

It is a specialization of our current architecture model. It will allow to work not only with

Java and AspectJ elements, but also with Spring beans and their respective configuration

files.

6. Conclusions and Future Work

In this paper, we presented GenArch, a model-based product derivation tool. Our tool

combines the use of models and code annotations in order to enable the automatic

product derivation of existing SPLs. We illustrated the use of our tool using the JUnit

framework, but we also validated it in the context of a J2ME Games SPL. As a future

work, we plan to evolve the GenArch functionalities to address the following

functionalities: (i) synchronization between models, code and annotations (as described

in Section 5.1); (ii) to extend the GenArch parsing functionality to allow the generation

of template structure based on existing AspectJ abstract aspects; (iii) to address the

aspect-oriented generative model proposed in [20] in order to enable the customization of

pointcuts from feature models.

Acknowledgments. The authors are supported by ESSMA/CNPq project under grant

552068/2002-0. Uirá is also partially supported by European Commission Grant IST-33710:

Aspect-Oriented, Model-Driven Product Line Engineering (AMPLE).

References
[1] V. Alves, P. Matos, L. Cole, P. Borba, G. Ramalho. “Extracting and Evolving Mobile

Games Product Lines”. Proceedings of SPLC'05, pp. 70-81, September 2005.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, C. Lucena. Refactoring Product

Lines, Proceedings of the GPCE´2006, ACM Press: Portland, Oregon, USA.

SBCARS 2007

43

[3] M. Antkiewicz, K. Czarnecki. FeaturePlugin: Feature modeling plug-in for Eclipse,

OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.

[4] G. Arrango. Domain Analysis Methods. In Software Reusability, New York, pp. 17-49,

1994.

[5] Y. Smaragdakis, D. Batory. Mixin Layers: An Object-Oriented Implementation

Technique for Refinements and Collaboration-Based Designs, ACM TOSEM, 11(2): 215-

255 (2002).

[6] F. Budinsky, et al. Eclipse Modeling Framework. Addison-Wesley, 2004.

[7] P. Clements, L. Northrop. Software Product Lines: Practices and Patterns. 2001:

 Addison-Wesley Professional.

[8] K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools, and

 Applications, Addison-Wesley, 2000.

[9] K. Czarnecki, S. Helsen, U. Eisenecker. Staged Configuration Using Feature Models. In

Proceedings of the Third Software Product-Line Conference, September 2004.

[10] K. Czarnecki, S. Helsen. Feature-Based Survey of Model Transformation Approaches.

IBM Systems Journal, 45(3), 2006, pp. 621-64.

[11] K. Czarnecki, M. Antkiewicz, C. Kim. “Multi-level Customization in

ApplicationEngineering”. CACM, Vol. 49, No. 12, pp. 61-65, December 2006.

[12] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison, 1999.

[13] Gears/BigLever, URL: http://www.biglever.com/, January 2007.

[14] J. Greenfield, K. Short. Software Factories: Assembling Applications with Patterns,

Frameworks, Models and Tools. 2005: John Wiley and Sons.

[15] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, C. Sampaleanu. Professional Java

Development with the Spring Framework, Wrox, 2005.

[16] K. Kang, et al. Feature-oriented domain analysis (FODA) feasibility study. Technical

Report CMU/SEI-90-TR-021, SEI, Pittsburgh, PA, November 1990.

[17] C. Krueger. “Easing the Transition to Software Mass Customization”. In Proceedings of

the 4th PFE, pp. 282–293, 2001.

[18] U. Kulesza, et al. Mapping Features to Aspects: A Model-Based Generative Approach.

Early Aspects@AOSD´2007 Post-Workshop Proceedings, LNCS 4765, Springer-Verlag.

[19] U. Kulesza, C. Lucena, P. Alencar, A. Garcia. Customizing Aspect-Oriented

Variabilites Using Generative Techniques. Proceedings of SEKE'06, July 2006.

[20] U. Kulesza. Uma Abordagem Orientada a Aspectos para o Desenvolvimento de

Frameworks. Rio de Janeiro, 2007. Tese de Doutorado, DI/PUC-Rio, Abril 2007.

[21] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois

at Urbana-Champaign, 1992.

[22] openArchitectureWare, URL: http://www.eclipse.org/gmt/oaw/,

[23] D. L. Parnas. On the Design and Development of Program Families. IEEE Transactions

on Software Engineering (TSE), 1976. 2(1): p. 1-9.

[24] Pure::Variants, URL: http://www.pure-systems.com/, January 2007.

[25] S. Shavor, et al. The Java Developer’s Guide to Eclipse. Addison-Wesley, 2003.

[26] T. Stahl, M. Voelter. Model-Driven Software Development: Technology, Engineering,

Management. 2006: Wiley.

[27] D. Weiss, C. Lai. Software Product-Line Engineering: A Family-Based Software

Development Process, Addison-Wesley Professional, 1999.

[28] S. Deelstra, M. Sinnema, J. Bosch. Product derivation in software product families: a

case study. Journal of Systems and Software 74(2): 173-194, 2005.

[29] GenArch – Generative Architectures Plugin, URL: http://www.teccomm.les.inf.puc-

rio.br/genarch/.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

44

