

LIFT: Reusing Knowledge from Legacy Systems

Kellyton dos Santos Brito
1, 2

, Vinícius Cardoso Garcia
1, 2

, Daniel Lucrédio
3
,

Eduardo Santana de Almeida
1, 2

, Silvio Lemos Meira
1, 2

1
Informatics Center - Federal University of Pernambuco (UFPE)

2
Recife Center for Advanced Studies and Systems (CESAR)

3
ICMC - Institute of Mathematical and Computer Sciences - University of São Paulo

(USP)

{ksb, vcg, esa2, srlm}@cin.ufpe.br, lucredio@icmc.usp.br

Abstract. Software maintenance tasks are the most expensive activities on

legacy systems life cycle, and system understanding is the most important

factor of this cost. Thus, in order to aid legacy knowledge retrieval and reuse,

this paper presents LIFT: a Legacy InFormation retrieval Tool, discussing

since its initial requirements until its preliminary experience in industrial

projects.

1. Introduction

Companies stand at a crossroads of competitive survival, depending on information

systems to keep their business. In general, since these systems many times are built and

maintained in the last decades, they are mature, stable, with few bugs and defects,

having considerable information about the business, being called as legacy systems

[Connall 1993, Ulrich 1994].

 On the other hand, the business dynamics demand constant changes in legacy

systems, which causes quality loss and difficult maintenance [Lehman 1985], making

software maintenance to be the most expensive software activity, responsible for more

than 90% of software budgets [Lientz 1978, Standish 1984, Erlikh 2000]. In this

context, companies have some alternatives: (i) to replace the applications by other

software packages, losing the entire knowledge associated with the application and

needing change in the business processes to adapt to new applications; (ii) to rebuild the

applications from scratch, still losing the knowledge embedded in the application; or

(iii) to perform application reengineering, reusing the knowledge embedded in the

systems.

 Reengineering legacy systems is a choice that prioritizes knowledge reuse,

instead of building everything from scratch again. It is composed of two main tasks,

Reverse Engineering, which is responsible for system understanding and knowledge

retrieval, and Forward Engineering, which is the reconstruction phase. The literature

[Lehman 1985, Jacobson 1997, Bianchi 2000] discusses several methods and processes

to support reengineering tasks, as well as specific tools [Paul 1992, Müller 1993, Storey

1995, Finnigan 1997, Singer 1997, Zayour 2000, Favre 2001, Lanza 2003a, Lanza

2003b, Schäfer 2006] to automate it. However, even with these advances, some

activities are still difficult to replicate in industrial context, especially in the first step

SBCARS 2007

75

(reverse engineering) when there are a lot of spread information, sometimes with few or

no documentation at all. Thus, tools that can aid and automate some of these activities

are extremely essential. Despite the new tools available today some shortcomings still

exist, such as: (i) the recovery of the entire system (interface, design and database), and

trace the requirements from interface to database access, instead of only architectural,

database or user interface recovery; (ii) the recovery of system functionality, i.e, what

the system does, instead of recovering only the architecture, that shows how the system

works; (iii) the difficult of managing the huge data amount present in the systems and

the high dependency of the expert’s knowledge; and (iv), although existing tools address

a proper set of requirements, such as search [Paul 1992], cognitive [Zayour 2000] or

visualization capabilities [Schäfer 2006], they normally fail to address all the

requirements together.

 Thus, in this work, we present LIFT: Legacy InFormation retrieval Tool, which

is a tool for knowledge retrieval from legacy systems, designed to fulfill the

shortcomings identified in current tools. The remainder of this paper is organized as

follows. In Section 2, we present the background of reengineering and reverse

engineering, in order to clarify the terms and concepts used. In Section 3, we present the

set of requirements of LIFT, based on a survey on reverse engineering tools, in

conjunction with its architecture and implementation. Section 4 presents more details

about the tool’s functionality. In Section 5 we present a case study using the tool.

Finally, in Section 6 we discuss some conclusions and future directions.

2. Background

According to the literature [Chikofsky 1990, Sommerville 2000, Pressman 2001],

Reverse Engineering is the process of analyzing a subject system to identify their

components and interrelationships, in order to create representations in another form

or at a higher abstraction level, as well as to recover embedded information, allowing

knowledge reuse. In this sense, reengineering is the examination and alteration of a

subject system to reconstitute it in a new form and the subsequent implementation of the

new form. In other words, reengineering is composed by a reverse engineering phase

followed by a delta, which is reorganization or any alteration, and forward engineering.

 The reengineering has basically four objectives [Sneed 1995, Bennett 2000]: (i)

to improve maintainability: generating documents and building more structured,

cohesive and coupled systems; (ii) migration: moving the software to a better or less

expensive operational environment or convert old programming languages into new

programming languages; (iii) to achieve greater reliability: the reengineering process

has activities that reveal potential defects, such as re-documentation and testing; and (iv)

preparation for functional enhancement: improving the software structure and

isolating them from each other, make it easier to change or add new functions without

affecting other modules. A great number of approaches and tools have been proposed to

face the reengineering, and Garcia et al. [Garcia 2004, Garcia 2005] classified the main

approaches in (i) Source to Source Translation, (ii) Object recovery and specification,

(iii) Incremental approaches and (iv) Component-based approaches.

 In reengineering, understanding the code is crucial to ensure that the intended

behavior of the system is not broken. Studies show that these activities are the most

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

76

expensive tasks [Standish 1984, Erlikh 2000] and one of the efforts to decrease these

costs is the development of software visualization tools [Bassil 2001], which make use

of sophisticated visualization techniques to amplify cognition, and software exploration

tools, which provide basic navigation facilities, i.e., searching and browsing [Robitaille

2000]. The boundary between these two categories is fuzzy, and Schäfer et al. [Schäfer

2006] defined an hybrid category, called visual exploration tools.

 In this new category of visual exploration tools, Schäfer et al. [Schäfer 2006]

discussed and justified five functional requirements and observed that existing tools

only support a subset of them, in general each one covering different requirements. The

requirements are: (i) Integrated Comprehension, (ii) Cross-Artifact Support, (iii)

Explicit Representation, (iv) Extensibilit, and (v) Traceability.

 Our work focuses on knowledge retrieval from legacy systems, based on reverse

engineering, aiming to recognize and reuse the knowledge embedded in legacy systems,

allowing the system maintenance or the forward engineering. We studied several

software exploration and visualization tools, identifying their main requirements, in

order to recognize not only five, but a solid set of initial requirements for a visual

exploration tool. This study served as a basis for the definition of the LIFT tool, which

is a tool for knowledge retrieval from legacy systems that complains to these identified

requirements. In addition, we defined a new requirement that define techniques of

automatic analysis and suggestions to user. Next section describes these requirements

and the tool.

3. LIFT: Legacy Information Tool

In order to identify fundamental requirements for our visual exploration tool, we

performed a survey covering the most known software tools with visualization and/or

exploration capabilities. The survey included nine works: Scruple [Paul 1992], Rigi

[Müller 1993], TkSee [Singer 1997], PBS [Finnigan 1997], SHriMP [Storey 1995],

DynaSee[Zayour 2000], GSEE [Favre 2001], CodeCrawler [Lanza 2003a, Lanza 2003b]

and Sextant [Schäfer 2006]. The identified requirements are shown in Table 1, and

classified as follows:

R1. Visualization of entities and relations: Harel [Harel 1992] claimed that “using

appropriate visual formalisms can have spectacular effect on engineers and

programmers“. An easy visualization of system modules and relationships, usually

presented by a Call Graph, is an important issue of a software visualization tool,

providing a graphical presentation of system and subsystems.

R2. Abstraction mechanisms and integrated comprehension: The visualization of

large systems in one single view usually presents many pieces of information that are

difficult to understand. Thus, the capability of presenting several views and abstraction

levels as well as to allow user create and manipulate these views is fundamental for the

understanding of large software systems.

R3. User interactivity: In addiction to the creation of abstractions and views, other

interactivity options are also important, such as the possibility of the user take notes on

the code, abstractions and views, which allows the recognition of information by

another user or by the same user at some point again. This way, duplicated work can be

SBCARS 2007

77

avoided. Another issue is the possibility of an easy switch between the high level code

visualization and the source code, to permit the user to see both code representations

without losing cognition information.

R4. Search capabilities: During software exploration, related artifacts are

successively accessed. Thus, it is highly recommended to minimize the artifact

acquisition time, as well as the number and complexity of intermediate steps in the

acquiring procedure. In this way, the support of arbitrary navigation, such as search

capabilities, is a common requirement in software reverse engineering tools.

R5. Trace Capabilities: Software exploration requires a large cognitive effort. In

general, the user spends many days following the execution path of a requirement to

understand it, and often it is difficult to mentally recall the execution path and the

already studied items. Thus, to prevent the user from getting lost in execution paths, the

tools should provide ways to backtrack the flows of the user, show already visited items

and paths, and also indicate options for further exploration.

R6. Metrics Support: Visual presentations can present a lot of information in a

single view. Reverse engineering tools should take advantage of these presentations to

show some useful information in an effective way. This information can be metrics

about cohesion and coupling of modules, length, internal complexity or other kinds of

information chosen by user, and can be presented, for example, as the color, length and

format of entities in a call graph.

R7. Cross artifacts support: A software system is not only source code, but a set of

semantic (source code comments, manuals and documents) and syntactic (functions,

operations and algorithms) information spread in a lot of files. So, a reverse engineering

tool should be capable of dealing with several kinds of artifacts.

R8. Extensibility: The software development area is in constant evolution. The

technologies and tools are in constant change, and their lifetime is even shorter. Thus,

the tools must be flexible, extensible, and not technology-dependent, in order to permit

its usage with a high range of systems and increase its lifetime.

R9. Integration with other tools: As software reuse researchers advocate [Krueger

1992], it is not necessary reinvent new solutions when others already exist, and a tool

should permit that features present in other tools could be incorporated into it, as well as

adopting standards to permit communication between distinct tools.

R10. Semi Automatic Suggestion: In general, the software engineer’s expertise and

domain knowledge are important in reverse engineering tasks [Sartipi 2000]. However,

in many cases this expertise is not available, adding a new setback to system

understanding. In these cases, the tool should have functionalities that automatically

analyze the source code and perform some kind of suggestions to user, such as

automatic clustering and patterns detection. However, we identified that this kind of

requirement is not present in existent tools, and recognize it as a new requirement for

knowledge recovery of software visualization and exploration tools.

3.1. Architecture

Based on the requirements defined in the previous section, we defined the LIFT

architecture. In addition, we designed it to fulfill other non functional requirements,

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

78

such as Scalability, Maintainability and Reusability, and defined the main modules, the

most important components, and expansion and integration points. The tool architecture

is shown in Figure 1, and consists of four modules: Parser, Analyzer, Visualizer and

Understanding Environment.

Table 1: Requirements of Software Visualization and Exploration Tools

Tools

Requirement Scruple Rigi TkSEE PBS SHriMP DynaSee GSEE
Code

Crawler Sextant

Call
Visualization X X X X X X X

Abstraction
Mechanisms X X

User
Interactivity X X X X X X

Search
Capabilities X X X X X X

Trace
Capabilities X X X X

Metrics
Support X X

Cross
Artifacts
Support X X X X

Extensibility X X X X

Integration X X X X

Semi
Automatic
Suggestion

 Parser: It is responsible for organizing the source code. Thus, the legacy code is

parsed and inserted in a structured database, in two steps: Initially, all code is parsed and

stored in a first structure. Next, the parsed code is organized into a higher abstraction

level, used by the application. This separation is useful to allow scalability, because the

tool accesses the structure that contains only useful information, instead of all source

code statements. The separation also allows an easy use of the toll with several

technologies, since the use of a different input language can be made only by changing

the parser component. Figure 2a shows some tables of the first parser and Figure 2b

shows tables of the organized structure.

 Analyzer: It is responsible for analyzing the code inserted in the structured

database and to generate representations. First, by using pre-processing information,

application modules are classified as interface and business one. In the first version of

tool, this classification is based on language characteristics. For example, in

NATURAL/ADABAS systems used in the case study, modules headers contain

information if it is a map (interface module) or a program (business module). Next, the

system database is inferred from legacy database instructions. Thus, a call graph is

created with module information, such as size, type and source code comments.

 Still within the analyzer, a second step is performed, to analyze and deduce the

useful information. The tool uses mainly two methods: (i) minimal paths algorithm and

(ii) cluster detection.

SBCARS 2007

79

 Minimal path is used to permit the user to follow the entire path from the user

interface to data access. In this sense, the analyzer computes all minimal paths from all

user interface and business modules to database entities, in order to support the user

when following the system sequences. The minimal path implementation is based on the

well-known Dijkstra algorithm [Dijkstra 1959].

 On the other hand, cluster detection identifies and shows legacy system clusters

that possibly can be recognized as a higher level abstraction, an object or component, or

modules that can be merged to form one more cohesive structure. There are some

approaches of cluster detection that are being used in reverse engineering context,

mainly based on k-means algorithm [Sartipi 2000] that needs some previous knowledge

about the code. We focus on unknown code, and choose the Mark Newman's edge

betweenness clustering algorithm [Girvan 2002]. In this algorithm, the betweenness of

an edge measures the extent to which that edge lies along shortest paths between all

pairs of nodes. Edges which are least central to communities are progressively removed

until the communities are adequately separated. We performed a small modification in

the algorithm, which is the parameterization of the number of edges to be removed,

allowing it to be interactively chosen by user.

Figure 1: LIFT Architecture

 Visualizer: It is responsible for managing the data generated by other modules,

and to present these to the user in an understandable way. Visualization is based on a

call graph, where modules and relationships are presented according to user preferences

for modules and edges properties of thickness, color, format and size. The visualization

has three modes, with easy transition among them: (i) default visualization, focusing on

configurable attributes of modules and edges color, shape and size; (ii) path

visualization, with focus on paths followed by application, with variable set of deep and

direction (forward, upward or mixed mode) of paths; and (iii) cluster visualization, with

focus on cluster detection and visualization.

 Understanding Environment: Integrates the other modules, containing

graphical interfaces for the functionalities of parser, code analyzer and visualizer. In

addition, the environment provides an easy way to show the source code.

 The tool works with the concept of code views. Thus, users can generate and

deal in parallel with new sub graphs from previous graphs. The environment allows, for

instance, the creation of graphs with only unconnected modules, which in general are

dead code or batch programs. Other option is to generate new graphs with the detected

clusters, isolating them from the complete application. These views are useful to isolate

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

80

modules and paths that identify application requirements.

 The environment allows also the creation of system documentations, with areas

to document the views, which represent a requirement, and areas to document the

modules. The module documentation is created by default with source code comments,

extracted in pre-processing. Additionally, the tool also permits the user to view and

comment source code, maintaining both the original and the commented versions.

Figure 2: Database Tables used by the Parser

3.2. Implementation

In order to validate and refine the identified requirements and proposed architecture, we

developed the LIFT tool in conjunction with the industry where we are engaged in reuse

projects which focus on environments and tools to support reuse. These projects are part

of the Reuse in Software Engineering (RiSE) project [Almeida 2004]. RiSE’s goal is to

develop a robust framework for software reuse, in conjunction with the industry,

involving processes, methods, environment and tools. In the project, the role of the

RiSE group (researchers) is to investigate the state-of-the-art in the area and disseminate

the reuse culture. On the other hand, the industry (and its project managers, architects,

and system engineers), represented by Recife Center for Advanced Studies and Systems

(C.E.S.A.R
1
) and Pitang Software Factory

2
, is responsible for “making things happens”

with planning, management, and necessary staff and resources.

 The LIFT was developed based on the architecture presented in previous

subsection. The tool has a three-tier client-server architecture developed in JAVA.

 The persistence layer uses SQL ANSI statements, therefore it is database

independent. The parser was already implemented by the Pitang Software Factory as a

.NET standalone application, and was refined and improved to be incorporated in LIFT.

All other modules were developed in JAVA. Cluster analysis was developed based on

Mark Newman's edge betweenness clustering algorithm and Minimal Paths was based

1
 Recife Center for Advanced Studies and Systems – http://www.cesar.org.br

2
 Pitang software factory – http://www.pitang.com

SBCARS 2007

81

on Dijkstra algoritm, as shown in previous sections. The Visualizer uses the JUNG
3
,

Java Universal Network/Graph Framework, to implement visualizations.

 The current version of LIFT implementation contains 76 classes, with 787

methods, divided into 25 packages, containing 9.420 lines of code (not counted code

comments).

4. LIFT Usage

This section presents LIFT from a user’s point of view. The initial steps, parsing,

organization and call graph generation is performed by simple menu commands, shown

in Figure 3a.

Figure 3. LIFT menus

 The main screen, shown in Figure 4, has three areas. The left area (index 1)

shows the paths and minimal paths from screens and business modules to database

modules. The right area (index 2) shows the selected module information, such as the

relations and comments, inserted by user or recognized by source code comments. In the

center (index 3) the call graph is shown, with the tree visualization options (index 4).

Figure 4: Isolated view in normal mode

3
 JUNG: Java Universal Network/Graph Framework - http://jung.sourceforge.net/

A B

1

2

3

4

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

82

 The first step towards system understanding is isolate unconnected nodes, which

may be identified as dead code or batch programs. This task is performed by right

clicking the paths area and choosing submenus “New Graph” and “Unconnected

Nodes”, as shown in Figure 3b. These modules are analyzed separately from other

modules. So, in a similar way, a new view containing only connected nodes is

generated. In this view, the user tries to discover high coupled and related modules, by

cluster detection, as shown in Figure 5a. Therefore, clustered modules are separated in a

new view and analyzed in separate, in general resulting in a requirement. This new view

is simpler than the complete view with all connected modules, providing an easier

visualization of a possible requirement. Thus, by using the functionalities of path mode

and analyzing the source code, the user can identify and generate documentation of the

requirement. This documentation can be made in the description area, present in each

view.

 These steps are repeated until the entire application is separated into clusters, or

no more clusters can be detected. In the last case, remaining modules are analyzed using

the path mode (Figure 5b), in order to retrieve these requirements.

5. LIFT Preliminary Evaluation

LIFT is being used in a project involving C.E.S.A.R and the Pitang Software Factory.

These institutions have acquired experience in understanding and retrieving knowledge

from 2 million LOC of Natural/ADABAS systems, with programs varying from 11.000

LOC to 500.000 LOC. In these projects, only the source code is received and documents

describing these are generated. Moreover, two kinds of knowledge retrieval can be

performed: to understand for maintenance or understand for reimplementation in

another platform.

Figure 5: LIFT Cluster and Path Visualization Modes

 Initially, LIFT was partially applied in a pilot project of understanding, for

maintenance, a 65.000 LOC system. The understanding was performed in seven weeks,

SBCARS 2007

83

by one Natural/ADABAS expert system engineer (SE) with no knowledge about

analyzed code. The engineer recovered 10 high level requirements groups, each one

with a proper set of sub requirements, which were validated by the project stakeholders.

This pilot served to understand the company process, identify points where the tool

could aid, refine it and improve its usability and scalability.

 As a second interaction, the tool is being fully applied in a project of

understanding for maintenance of a 210.000 LOC system. Initially, we made minor

changes in the existing process to use the tool facilities. The modified process is shown

in Figure 5 and defines four phases: (i) Organize Code, (ii) Analyze Code, (iii)

Understand System and (iv) Validate Project. The three first phases are supported by

LIFT. The new process is shown in Figure 5.

 In this interaction, the source code was parsed and inserted into the database.

Next, it was organized and the connected modules were separated from the unconnected

ones and assigned for a system engineer for estimation and understanding. Thus, based

on cluster analysis, SE experience and stakeholder information, the connected graph was

split into 19 high level requirements groups, that would be responsible for each high

level requirement. Next, based on the Pitang staff experience and company baseline,

each group had a preliminary analysis and effort estimation. Thus, the understanding

and documentation generation started.

Figure 6: Process used to recovery legacy knowledge with LIFT

 The requirements are documented as follows. A context diagram is generated,

showing accesses to systems beyond application boundaries, such as access to other

systems data or functions. Thus, description area comments of each view are mapped to

functional requirements descriptions. Each functional requirement has also a tree with

the modules and relationships of the correspondent view, that compound the modules

and relationships of the requirement, and each one is described in details. In addition,

each system data entity is recovered and described in another document section.

 When this paper was being written, 12 of 19 high level requirements groups had

already been understood. Table 2 shows estimated and executed understanding times of

these groups. The real time to understand and document the groups was 38% less than

the planned time, showing that the use of LIFT initially decreases the effort of

knowledge retrieval tasks.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

84

 In addition to comparing estimation and executing time with the tool, we plan to

compare final project data with previous project data, such as the number of

requirements recovered, and total execution time by lines of code, function points and

use case points. These data will be useful to validate these initial results.

 Moreover, we are collecting user experiences to validate strong and weak points

of the tool, as well as to identify possible new functionalities. Users agree that minimal

paths visualization is very useful in knowledge recovery for re-implementation, because

the key objective is to know the main application execution path, instead of details.

However, the visualization of complete paths is desired in knowledge recovery for

maintenance, because of the need for a map of the entire application when maintenance

tasks are performed. Additionally, they agree that the use of views to isolate possible

requirements and the existence of “Path Mode” are very useful to deal with large

systems, allowing clean visualizations of large systems.

 Another important consideration is that users reported that cluster analysis is

useful to identify and isolate related modules, but the applicability of this option was

limited when identifying the high level requirements groups because the

NATURAL/ADABAS environment has some features that maintain and show to the

user a list of the application entry and main modules. However, cluster analysis was

useful to identify some of high level requirements not included on this list, and clusters

and sub-requirements inside them.

 Some points are being considered, as other forms of suggestions, such as text

pattern detection in modules names, comments or source code, and document automatic

generation.

 Eventually, we ended up identifying that the tool can be used to understand large

systems. Running in a Pentium IV/512MB Ram station and accessing a Pentium

IV/512MB Ram database server, the tool performed tasks in the time shown in Table 3.

Table 2: Reduction in legacy knowledge recovery effort with LIFT

 Parse Code and Organization are slow tasks, but we consider that this time does

not harm the tool’s performance because these tasks occur only once in each system. In

addition, Minimal Paths Calculation, Analysis and Load Graph tasks take a small time,

but are performed few times, that is, only when the application runs and the system is

chosen. Besides, Cluster Detection is a task that takes little time, in general from 1 to 20

seconds depending on the number of modules and edges involved. Finally, after initial

SBCARS 2007

85

analysis, the operations of graph manipulation, view creations and load details are

instant tasks, with times imperceptibles by user, which provides a good usability and

user experience.

6. Concluding Remarks and Future Work

In this paper, we presented LIFT: Legacy InFormation retrieval Tool, which is a tool for

knowledge retrieval from legacy systems. The tool requirements were obtained from a

set of functionalities of other tools for software visualization or exploration, from our

industrial experience and customer needs, as well as a new requirement was identified

as a lack on current tools, that is the analysis of source code and the perform of

suggestions to user. The tool uses the concept of views, which encloses the system

functionalities. Additionally, we also use a new way to store legacy data in database

systems, which allows tool scalability.

 The tool was partially used in a pilot project to knowledge retrieval of a 65.000

LOC NATURAL/ADABAS system, in order to refine and improves its usability and

scalability. Currently, the tool is being fully used in another similar project of software

understanding and knowledge recovery for the maintenance of 210.000 LOC. By the

end of the second understanding interaction, we intend to compare data with previous

projects, in order to get more accurate information and make better conclusions about

the effort reduction.

Table 3: LIFT execution times

Time (seconds) Task

65KLOC Application 210 KLOC Application

Parse Code 961s 1520s

Organize Code 660s 963s

Minimal Paths Calculation 19s 84s

Full Analysis and Graph Creation 23s 98s

Interactive Cluster Detection 0s - 20s 0s – 30s

Graph Manipulation Imperceptible Imperceptible

 The preliminary results show effort reduction of 38% in relation to the estimated

time. Also, user interviews demonstrate best applicability of minimal paths in tasks of

general understand for re-implementation, and complete paths in tasks of full

understanding for maintenance. We observed good user experiences in knowledge

recovery using the concepts of requirements isolation in multiple views, cluster

detection and path mode system navigation. Thus, the tool presents good scalability

performing tasks in user acceptable times, running in conventional hardware.

 Currently, LIFT is being modified to perform automatic documentation

generation: textual requirements document and UML diagrams, such as use case and

class diagrams. Also, general and graph pattern detection are being implemented, in

order to provide more suggestions to user and increase the effort reduction. Finally, we

plan to use the tool to perform reverse engineering and knowledge recovery in systems

that use other technologies or development paradigm, such as COBOL or Java.

References

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C. and Meira, S. R. d. L. (2004). "RiSE

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

86

Project: Towards a Robust Framework for Software Reuse". IEEE International

Conference on Information Reuse and Integration (IRI), Las Vegas, USA, p. 48-53.

Bassil, S. and Keller, R. K. (2001). "Software Visualization Tools: Survey and Analysis".

Proceedings of International Workshop of Program Comprehension, Toronto, Ont.,

Canada, p. 7-17.

Bennett, K. H. and Rajlich, V. T. (2000). "Software maintenance and evolution: a roadmap".

Proceedings of the Conference on The Future of Software Engineering, Limerick,

Ireland, ACM Press, p. 73-87.

Bianchi, A., Caivano, D. and Visaggio, G. (2000). "Method and Process for Iterative

Reengineering of Data in a Legacy System". Proceedings of the Seventh Working

Conference on Reverse Engineering (WCRE'00), Brisbane, Queensland, Australia,

IEEE Computer Society, p. 86--97.

Chikofsky, E. J. and Cross, J. H. (1990). "Reverse Engineering and Design Recovery: A

Taxonomy." IEEE Software Vol.(1), No. 7, p. 13-17.

Connall, D. and Burns, D. (1993). "Reverse Engineering: Getting a Grip on Legacy

Systems." Data Management Review Vol.(24), No. 7.

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs." Numerische

Mathematik Vol.(1), No. 1, p. 269-271.

Erlikh, L. (2000). "Leveraging Legacy System Dollars for E-Business." IT Professional

Vol.(2), No. 3, p. 17-23.

Favre, J.-M. (2001). "GSEE: a Generic Software Exploration Environment". Proceedings of

the International Workshop on Program Comprehension (IWPC), Toronto, Ont.,

Canada, p. 233.

Finnigan, P. J. (1997). "The software bookshelf." IBM Systems Journal Vol.(36), No. 4.

Garcia, V. C. (2005), "Phoenix: An Aspect Oriented Approach for Software Reengineer(in

portuguese). M.Sc Thesis." Federal University of São Carlos, São Carlos,

Garcia, V. C., Lucrédio, D., Prado, A. F. d., Alvaro, A. and Almeida, E. (2004). "Towards an

effective approach for reverse engineering". Proceedings of 11th Working Conference

on Reverse Engineering (WCRE), Delft, Netherlands, p. 298-299.

Girvan, M. and Newman, M. E. J. (2002). "Community Structure in Social and Biological

Networks." Proceedings of the National Academy of Sciences of USA Vol.(99), No. 12.

Harel, D. (1992). "Toward a Brighter Future for System Development." IEEE Computer

Vol.(25), No. 1.

Jacobson, I., Griss, M. and Jonsson, P. (1997). "Software Reuse: Architecture, Process and

Organization for Business Success", Addison-Wesley Professional.

Krueger, C. W. (1992). "Software Reuse." ACM Computing Surveys Vol.(24), No. 2, p.

131-183.

Lanza, M. (2003a). "CodeCrawler - lessons learned in building a software visualization

tool". Proceedings of European Conference on Software Maintenance and

Reengineering, p. 409-418.

SBCARS 2007

87

Lanza, M. and Ducasse, S. p. (2003b). "Polymetric Views-A Lightweight Visual Approach

to Reverse Engineering." IEEE Transactions on Software Engineering Vol.(29), No. 9,

p. 782-795.

Lehman, M. M. and Belady, L. A. (1985). "Program Evolution Processes of Software

Change", London: Academic Press.

Lientz, B. P., Swanson, E. B. and Tompkins, G. E. (1978). "Characteristics of Application

Software Maintenance." Communications of the ACM Vol.(21), No. 6, p. 466 - 471.

Müller, H. A., Tilley, S. R. and Wong, K. (1993). "Understanding software systems using

reverse engineering technology perspectives from the Rigi project". Proceedings of the

1993 Conference of the Centre for Advanced Studies on Collaborative Research,

Toronto, Ontario, Canada, p. 217-226.

Paul, S. (1992). "SCRUPLE: a reengineer's tool for source code search ". Proceedings of the

1992 Conference of the Centre for Advanced Studies on Collaborative research,

Toronto, Ontario, Canada, IBM Press, p. 329-346

Pressman, R. S. (2001). "Software Engineering: A Practitioner's Approach", McGraw-Hill.

Robitaille, S., Schauer, R. and Keller, R. K. (2000). "Bridging Program Comprehension

Tools by Design Navigation". Proceedings of International Conference on Software

Maintenance (ICSM), San Jose, CA, USA, p. 22-32.

Sartipi, K., Kontogiannis, K. and Mavaddat, F. (2000). "Architectural design recovery using

data mining techniques". Proceedings of the 4th European Software Maintenance and

Reengineering (ESMR), Zurich, Switzerland, p. 129-139.

Schäfer, T., Eichberg, M., Haupt, M. and Mezini, M. (2006). "The SEXTANT Software

Exploration Tool." IEEE Transactions on Software Engineering Vol.(32), No. 9.

Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N. (1997). "An examination of software

engineering work practices". Proceedings of conference of the Centre for Advanced

Studies on Collaborative research (CASCON), Toronto, Ontario, Canada, IBM Press, p.

21.

Sneed, H. M. (1995). "Planning the Reengineering of Legacy Systems." IEEE Software

Vol.(12), No. 1, p. 24-34.

Sommerville, I. (2000). "Software Engineering", Pearson Education.

Standish, T. A. (1984). "An Essay on Software Reuse." IEEE Transactions on Software

Engineering Vol.(10), No. 5, p. 494-497.

Storey, M.-A. D. and Müller, H. A. (1995). "Manipulating and documenting software

structures using SHriMP views". Proceedings of the International Conference on

Software Maintenance (ICSM), Opio, France, p. 275 - 284.

Ulrich, W. (1994). "From Legacy Systems to Strategic Architectures." Software Engineering

Strategies Vol.(2), No. 1, p. 18-30.

Zayour, I. and Lethbridge, T. C. (2000). "A cognitive and user centric based approach for

reverse engineering tool design". Proceedings of the 2000 Conference of the Centre for

Advanced Studies on Collaborative Research, Ontario, Canada, p. 16.

Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software

88

