Strongly Secure One-Round Group Authenticated Key Exchange in the Standard Model

Yong Li, Zheng Yang

Ruhr-University Bochum
CANS 2013

Outline

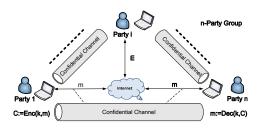
- Introduction, Motivation and Contributions
- GAKE security model (G-eCK)
- Formal definition of GAKE
- New one-round GAKE protocols in the standard model

Introduction

- Numerous group-oriented scenarios:
 - video conferencing
 - collaborative applications, etc.
- Security Goals:
 - Confidentiality
 - Integrity
 - Authentication

Introduction

- Group authenticated key exchange:
 - a shared symmetric session key for group members
 - secure multicasting network layer among the parties using a symmetric encryption with a shared session key



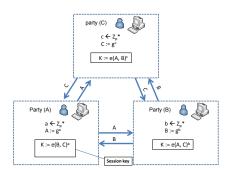
Classical example: Tripartite DHKE

- KE: Pairing-based Tripartite Diffie-Hellman key exchange (TDHKE) [AJ04]
 - Let G and G_T be two cyclic groups of prime order p, generator g for G, and a bilinear computable pairing e: G × G → G_T.
 - ▶ Party A: sk_A : $a \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; pk_A : $A = g^a \in \mathbb{G}$.
 - ▶ Party B: sk_B : $b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; pk_B : $B = g^b \in \mathbb{G}$.
 - ▶ Party C: sk_C : $c \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; pk_C : $C = g^c \in \mathbb{G}$.

Tripartite Diffie-Hellman Key Exchange

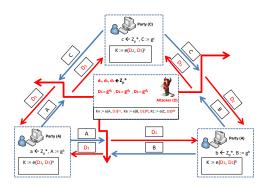
Shared Session Key:

$$K_{A,B,C} = e(B,C)^a = e(A,C)^b = e(A,B)^c = e(g,g)^{abc}$$



Insecurity of TDHKE

Man-in-the-Middle attack on TDHKE



How to thwart MITM attacks? Authenticated Key Exchange.

Motivation

- GAKE is a fundamental cryptographic primitive, and there are different possible security models and schemes for GAKE, e.g. [BCPQ01] [BCP02] [KY03] [BMS07], etc..
- But no secure scheme in the G-eCK security model one of the strongest security model for one-round GAKE under standard assumptions without random oracles.

Motivation

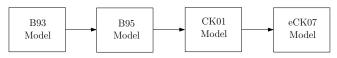
- ▶ 2009: [MSU09] provides a tripartite/group key exchange scheme and analyses their scheme in G-eCK Security model, but with the random oracle model.
- 2012: [FMSB12] provides a tripartite key exchange. It satisfies G-eCK Security, but under the gap Bilinear Diffie-Hellman (GBDH) assumption in the random oracle model.

Contributions

- we provide a concrete construction for one-round 3AKE protocol that is G-eCK secure in the standard model based on pairings [BS02].
- a provably G-eCK secure GAKE scheme with constant maximum group size in the standard model - based on multilinear maps [GGH13].

Introduction, Motivation and Contributions GAKE Security Model (G-eCK Model) Formal Definition of One-round GAKE Stongly Secure One-Round GAKE in the Standard Model

Evolution of AKE Security Models



- 1: Chosenn Message
- 2: Known Session Key
- 1: Chosenn Message
- 2: Known Session Key 3: Adaptive Corruption
- 1: Chosenn Message 2: Known Session Kev
- 3: Adaptive Corruption
- 3.1: Perfect Forward Secrecy 3.1: Weak Perfect Forward Secrecy
- 4: Leakage of Session States
 - 3.2: Key Compromise Impersonation
 - 4: Leakage of Session States

1: Chosenn Message

2: Known Session Kev

3: Adaptive Corruption

- 5: Chosen Identity and Public Key

G-eCK Model: Execution Environment (1)

- ▶ a set of honest parties $\{\mathsf{ID}_1,\ldots,\mathsf{ID}_\ell\}$ for $\ell\in\mathbb{N}$ and $\mathsf{ID}_i\in\mathcal{IDS}$
- ▶ each identity is associated with a long-term key pair $(sk_{|D_i}, pk_{|D_i}) \in (SK, PK)$
- each honest party ID_i can sequentially and concurrently execute the protocol multiple times with different indented partners, this is characterized by a collection of oracles $\{\pi_i^s: i \in [\ell], s \in [\rho]\}$ for $\rho \in \mathbb{N}$, i.e. Oracle π_i^s behaves as party ID_i .

G-eCK Model: Execution Environment (2)

We assume each oracle π_i^s maintains a list of independent internal state variables with following semantics:

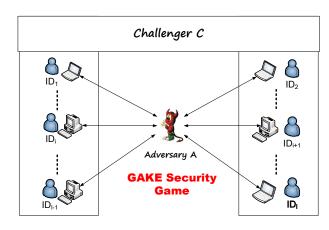
- pid^s_i: A variable stores a set of partner identities in the group
- ▶ Φ_i^s : A variable stores the oracle decision $\Phi_i^s \in \{\text{accept}, \text{reject}\}$
- ▶ K_i^s : A variable records the session key $K_i^s \in \mathcal{K}_{\mathsf{KE}}$ for symmetric encryption

G-eCK Model: Execution Environment (2)

- st_i^s: A variable stores the maximum secret session states that are allowed to be leaked
- T_i^s: A variable stores the transcript of all messages sent and received by π_i^s during its execution

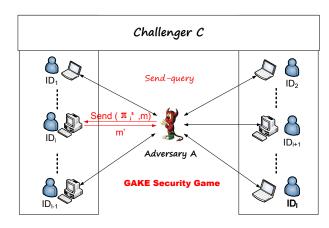
G-eCK Model: Adversarial Model (1)

- Send
- RegisterCorrupt
- Corrupt
- RevealKey
- StateReveal
- Test



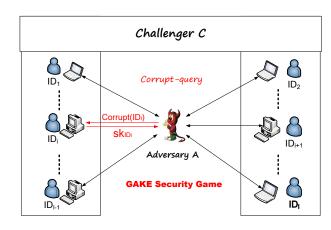
G-eCK Model: Adversarial Model (2)

- Send
- ▶ RegisterCorrupt
- Corrupt
- RevealKey
- StateReveal
- ▶ Test



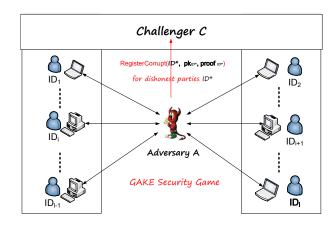
G-eCK Model: Adversarial Model (3)

- Send
- Corrupt
- RegisterCorrupt
- RevealKey
- StateReveal
- ▶ Test



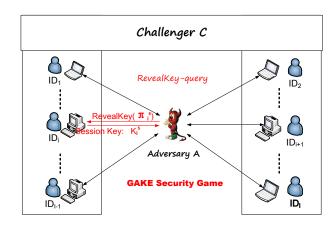
G-eCK Model: Adversarial Model (4)

- Send
- Corrupt
- RegisterCorrupt
- RevealKey
- StateReveal
- Test



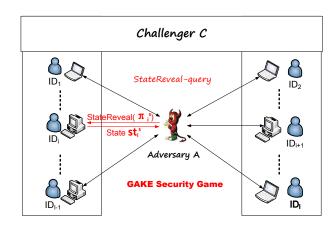
G-eCK Model: Adversarial Model (5)

- Send
- Corrupt
- RegisterCorrupt
- RevealKey
- StateReveal
- Test



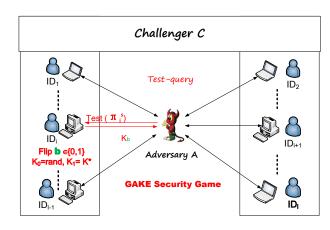
G-eCK Model: Adversarial Model (6)

- Send
- Corrupt
- RegisterCorrupt
- RevealKey
- StateReveal
- Test



G-eCK Model: Adversarial Model (7)

- Send
- Corrupt
- RegisterCorrupt
- RevealKey
- StateReveal
- Test



G-eCK Model: Security Game

- 1. Challenger \mathcal{C} implements the collection of oracles $\{\pi_i^s: i \in [\ell], s \in [\rho]\}$, and generates ℓ long-term key pairs $(pk_{\mathsf{ID}_i}, sk_{\mathsf{ID}_i})$ and corresponding proof pf_i for all honest parties ID_i .
- Adversary A may issue polynomial number of queries as aforementioned: Send, StateReveal, Corrupt, RegisterCorrupt and RevealKey
- 3. At some point, \mathcal{A} may issue a $\mathsf{Test}(\pi_i^s)$ query on an oracle π_i^s during the experiment with only once.
- At the end of the game, the A may terminate with outputting a bit b' as its guess for b of Test query.

G-eCK Model: Matching Sessions

We define the partnership via matching sessions.

Let π_i^s and π_j^t be two oracles. We say that an oracle π_i^s has a **matching session** to oracle π_i^t , if

- 1. $pid_i^s = pid_i^t$
- 2. π_i^s has sent all protocol messages and $\mathsf{T}_i^s = \mathsf{T}_j^t$

G-eCK Model: Freshness (1)

Let π_{S}^{s} be an accepted oracle. Let $\pi_{S} = \{\pi_{j}^{t}\}_{\mathsf{ID}_{j} \in \mathsf{pid}_{j}^{s}, j \neq i}$ be a set of oracles (if they exist), such that π_{i}^{s} has a matching session to π_{j}^{t} . The oracle π_{i}^{s} is said to be fresh if none of the following conditions holds:

- ▶ A queried RegisterCorrupt(ID_j , pk_{ID_j} , pf_{ID_j}) with some $ID_j \in pid_i^s$.
- \mathcal{A} queried either RevealKey (π_i^s) or RevealKey (π_j^t) for some oracle $\pi_j^t \in \pi_{\mathcal{S}}$.

G-eCK Model: Freshness (2)

- \triangleright \mathcal{A} queried both $\mathsf{Corrupt}(\mathsf{ID}_i)$ and $\mathsf{StateReveal}(\pi_i^s)$.
- For some oracle $\pi_j^t \in \pi_S$, \mathcal{A} queried both $\mathsf{Corrupt}(\mathsf{ID}_j)$ and $\mathsf{StateReveal}(\pi_j^t)$.
- ▶ If $ID_j \in pid_i^s$ $(j \neq i)$ and there is no oracle π_j^t such that π_i^s has a matching session to π_j^t , \mathcal{A} queried Corrupt(ID_j).

G-eCK Model: Security Definition

We say that an adversary $\mathcal{A}(t, \epsilon)$ -breaks the G-eCK security of a correct group AKE protocol Σ , if \mathcal{A} runs the security game within time t, and the following condition holds:

If a Test query has been issued to an oracle π_i^s without failure and π_i^s is fresh throughout the security game, then the probability that the bit b' returned by \mathcal{A} equals to the bit b chosen by the Test query is bounded by

$$|\Pr[b = b'] - 1/2| > \epsilon$$

We say that a correct group AKE protocol Σ is (t, ϵ) -g-eCK-secure, if there exists no adversary that (t, ϵ) -breaks the g-eCK security of Σ .

Formal Definition of One-round GAKE (1)

We consider the following variables:

- $\triangleright \mathcal{PK}$: a longterm key space for public key and private key
- SK: a longterm key space for private key
- ▶ R_{ORGAKE}: a randomness space
- IDS: an identity space
- K_{ORGAKE}: a shared session key space
- ▶ GD := $((ID_1, pk_{ID_1}), ..., (ID_n, pk_{ID_n}))$: a list which is used to store the public information of a group of parties
- T: the transcript storing the messages sent and received by a protocol instance at a party which are sorted orderly.

Formal Definition of One-round GAKE (2)

A ORGAKE scheme consists of 4 algorithms:

- ▶ $pms \leftarrow Setup(1^{\kappa})$
 - output: a set of system parameters storing in a variable pms.
- ► $(sk_{ID}, pk_{ID}, pf_{ID}) \stackrel{\$}{\leftarrow} ORGAKE.KGen(pms, ID)$
 - output: (sk_{ID}, pk_{ID}) ∈ {PK, SK} for party ID and a non-interactive proof pf_{ID} for pk_{ID} which is required during key registration.
- ▶ $m_{\mathsf{ID}_i} \stackrel{\$}{\leftarrow} \mathsf{ORGAKE.MF}(pms, sk_{\mathsf{ID}_i}, r_{\mathsf{ID}_i}, \mathsf{GD})$
 - output: a message m_{ID_i} to be sent in a protocol pass.
- ▶ $K \leftarrow \mathsf{ORGAKE}.\mathsf{SKG}(pms, sk_{\mathsf{ID}_i}, r_{\mathsf{ID}_i}, \mathsf{GD}, \mathsf{T})$
 - output: session key $K \in \mathcal{K}_{\mathsf{ORGAKE}}$.

Formal Definition of One-round GAKE (3): Correctness

For correctness, on input the same transcript T and group description $GD = ((ID_1, pk_1), ..., (ID_n, pk_n))$, algorithm ORGAKE.SKG satisfies the constraint:

► ORGAKE.SKG (pms, sk_{ID_1} , r_{ID_1} , GD, T) = ORGAKE.SKG (pms, sk_{ID_i} , r_{ID_i} , GD, T),

Stongly Secure One-Round GAKE Schemes in the Standard Model

Building blocks:

- A Target Collision Resistant Hash Function (TCRHF)
- A Pseudo-Random Function (PRF)
- A Weak Programmable Hash Function wPHF [HJK11]

Tripartite AKE Protocol Execution:

- Setup:
 - Symmetric bilinear groups
 PG = (G, g, G_T, p, e) ⁵ PG.Gen(1^κ) and a set of random values {u_i}_{1<i<4} ⁵ G
 - A target collision resistant hash function TCRHF(hk_{TCRHF},·): K_{TCRHF} × G → Z_p, where hk_{TCRHF} ⁵ TCRHF.KGen(1^κ)
 - ▶ A pseudo-random function family $PRF(\cdot, \cdot) : \mathbb{G}_{\mathcal{T}} \times \{0, 1\}^* \to \mathcal{K}_{AKE}.$

- ▶ Long-term Key Generation and Registration: Input $pms := (\mathcal{PG}, \{u_i\}_{1 \leq i \leq 4}, hk_{\mathsf{TCRHF}})$, each party runs as:
 - ▶ Party Â: $sk_{\hat{A}} = a \stackrel{s}{\leftarrow} \mathbb{Z}_{p}^{*}, h_{A} = \text{TCRHF}(A)$ $pk_{\hat{A}} = (A, t_{A}) = (A = g^{a}, t_{A} = (u_{A}^{h_{A}^{3}} u_{3}^{h_{A}^{2}} u_{2}^{h_{A}} u_{1}^{a})^{a})$
 - ▶ Party \hat{B} : $sk_{\hat{B}} = b \stackrel{s}{\leftarrow} \mathbb{Z}_{p}^{*}, h_{B} = \text{TCRHF}(B)$ $pk_{\hat{B}} = (B, t_{B}) = (A = g^{b}, t_{B} = (u_{4}^{h_{3}^{3}} u_{3}^{h_{B}^{2}} u_{2}^{h_{B}} u_{1})^{b})$
 - ▶ Party \hat{C} : $sk_{\hat{C}} = c \stackrel{5}{\leftarrow} \mathbb{Z}_p^*, h_C = \text{TCRHF}(C)$ $pk_{\hat{C}} = (C, t_C) = (C = g^c, t_C = (u_4^{h_0^2} u_3^{h_C^2} u_2^{h_C} u_1)^c)$

- ► Ephemeral Key Generation and Broadcast Messages:
 - ▶ Party Â: $x \stackrel{5}{\leftarrow} \mathbb{Z}_p^*$, $X := g^x$ $h_X := \mathsf{TCRHF}(X), t_X := (u_4^{h_X^3} u_3^{h_X^2} u_2^{h_X} u_1)^x$ broadcasts messages $(\hat{A}, A, t_A, X, t_X)$ to \hat{B} and \hat{C} .
 - ▶ Party \hat{B} : $y \leftarrow \mathbb{Z}_p^*$, $Y := g^y$ $h_Y := \mathsf{TCRHF}(Y), t_Y := (u_0 u_1^{h_Y} u_2^{h_Y^2} u_3^{h_Y^3})^y$ \hat{B} broadcasts messages $(\hat{B}, B, t_B, Y, t_Y)$ to \hat{A} and \hat{C} .
 - ▶ Party \hat{C} : $z \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$, $Z := g^z$ $h_Z := \mathsf{TCRHF}(Z), t_Z := (u_0 u_1^{h_Z} u_2^{h_Z^2} u_3^{h_Z^2})^z$ \hat{A} broadcasts messages $(\hat{C}, C, t_C, Z, t_Z)$ to \hat{A} and \hat{B} .

- ▶ Session Key Generation (1): Upon receiving (B̂, B, t_B, Y, t_Y) and (Ĉ, C, t_C, Z, t_Z), party computes the session key as follows:
 - sid := $\hat{A}||A||t_A||X||t_X||\hat{B}||B||t_B||Y||t_Y||\hat{C}||C||t_C||Z||t_Z|$
 - ▶ h_B = TCRHF(B), h_C = TCRHF(C), h_Y = TCRHF(Y) and h_Z = TCRHF(Z)

Session Key Generation (2):

▶ if
$$e(t_B, g) \neq e(u_0 u_1^{h_B} u_2^{h_B^2} u_3^{h_B^3}, B)$$
 or $e(t_C, g) \neq e(u_0 u_1^{h_C} u_2^{h_C^2} u_3^{h_C^3}, C)$ or $e(t_Y, g) \neq e(u_0 u_1^{h_Y} u_2^{h_Y^2} u_3^{h_Y^3}, Y)$ or $e(t_Z, g) \neq e(u_0 u_1^{h_Z} u_2^{h_Z^2} u_3^{h_Z^3}, Z)$

- ▶ then "rejects"
- else $k := e(BY, CZ)^{a+x}$ and $k_e := PRF(k, sid)$
- Return the session key: k_e

▶ Upon receiving (Â, A, t_A, X, t_X) and (Ĉ, C, t_C, Z, t_Z), party B̂ proceeds as the same as party Â:

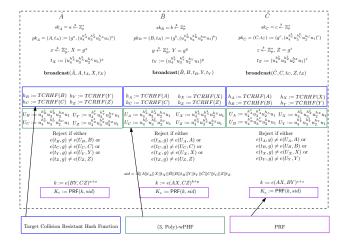
$$k := e(AX, CZ)^{b+z}$$
 and $k_e := PRF(k, sid)$

▶ Upon receiving $(\hat{A}, A, t_A, X, t_X)$ and $(\hat{B}, B, t_B, Y, t_Y)$, party \hat{C} proceeds as the same as **party** \hat{A} :

$$k := e(AX, BY)^{a+x}$$
 and $k_e := PRF(k, sid)$

Stongly Secure One-Round GAKE in the Standard Model

TAKE in the Standard Model from Bilinear Maps



Security of TAKE in the Standard Model

- Cube Bilinear Decisional Diffie-Hellman Assumption (CBDDH)
 - ▶ Let $\mathcal{PG} = (\mathbb{G}, g, \mathbb{G}_T, p, e)$ denote the description of symmetric bilinear group
 - Given (g, g^a, T) decide whether or not $T = e(g, g)^{a^3}$

Security of TAKE in the Standard Model

Theorem 1:

Assume each ephemeral key chosen during key exchange has bit-size $\lambda \in \mathcal{N}$. Suppose that the CBDDH problem is $(t, \epsilon_{\text{CBDDH}})$ -hard in the symmetric bilinear groups \mathcal{PG} , the CCRHP is $(t, \epsilon_{\text{TCRHF}})$ -secure target collision resistant hash function family, and the PRF is $(t, \epsilon_{\text{PRF}})$ -secure pseudo-random function family. Then the proposed protocol is (t', ϵ) -session-key-secure with $t' \approx t$ and $\epsilon \leq \frac{(\rho\ell)^2}{2^{\lambda}} + \epsilon_{\text{TCRHF}} + 4(\rho\ell)^3 \cdot \epsilon_{\text{CBDDH}} + \epsilon_{\text{PRF}}$.

GAKE in the Standard Model from Multilinear Groups

GAKE Protocol Execution:

Setup:

- n-mulitilinear groups $\mathcal{MLG} = (\mathbb{G}, \mathbb{G}_T, g, p, me) \stackrel{\$}{\leftarrow} \mathsf{MLG.Gen}(\kappa, n)$, a set of random values $\{u_j\}_{0 \leq j \leq n+1} \stackrel{\$}{\leftarrow} \mathbb{G}$ and a random element $\Phi \stackrel{\$}{\leftarrow} \mathbb{G}$ denoted here as padding for achieving scalability.
- ▶ a target collision resistant hash function TCRHF(hk_{TCRHF} , ·) : $\mathcal{K}_{\text{TCRHF}} \times \mathbb{G} \to \mathbb{Z}_p$, where $hk_{\text{TCRHF}} \stackrel{\$}{\sim} \text{TCRHF.KGen}(1^{\kappa})$
- ▶ a pseudo-random function family PRF (\cdot, \cdot) : $\mathbb{G}_{\mathcal{T}} \times \{0, 1\}^* \to \mathcal{K}_{\mathsf{AKE}}$

GAKE in the Standard Model from Multilinear Groups

▶ Long-term Key Generation and Registration: On input $pms := (\mathcal{MLG}, \{u_j\}_{0 \le j \le n+1}, hk_{\mathsf{TCRHF}})$, each Party \hat{D}_i (2 < i < n + 1) runs as follows:

▶ Party \hat{D}_i computes: $sk_{\hat{D}_i} = d_i \stackrel{s}{\leftarrow} \mathbb{Z}_p^*$ and $h_{D_i} = \text{TCRHF}(D_i)$ $pk_{\hat{D}_i} = (D_i, t_{D_i}) = (D_i = g^{d_i}, t_{D_i} = (\prod_{i=0}^{n+1} u_i^{h_{D_i}^i})^{d_i})$

GAKE in the Standard Model from Multilinear Maps

Let ω denote the size of group for a protocol instance such that $2 \le \omega \le n+1$.

- Ephemeral Key Generation and Broadcast Messages:
 - party \hat{D}_i :

$$x_i \stackrel{\xi}{\sim} \mathbb{Z}_p^*, \ X_i := g^{x_i}$$

$$h_{X_i} := \mathsf{TCRHF}(X_i), \ t_{X_i} = (\prod_{j=0}^{n+1} u_j^{h_{X_i}^j})^{x_i}$$

$$\hat{D}_i \text{ broadcasts messages } (\hat{D}_i, D_i, t_{D_i}, X_i, t_{X_i}) \text{ to its intended communication partners.}$$

GAKE in the Standard Model from Multilinear Maps

- ▶ Session Key Generation (1): Upon receiving all messages $\{\hat{D}_l, D_l, t_{D_l}, X_l, t_{X_l}\}_{1 \le l \le \omega, l \ne i}$ from each session participant, **party** \hat{D}_i computes the session key as follows:
 - ▶ sid := $\hat{D}_1 ||D_1||t_{D_1}||X_1||t_{X_1}||\dots||\hat{D}_{\omega}||D_{\omega}||t_{D_{\omega}}||X_{\omega}||t_{X_{\omega}}|$
 - ▶ $h_{D_l} = \text{TCRHF}(D_l), h_{X_l} = \text{TCRHF}(X_l), \text{ where } 1 \leq l \leq \omega, l \neq i$

GAKE in the Standard Model from Multilinear Maps

Session Key Generation (2):

▶ if
$$me(t_{D_l}, g, ..., g) \neq me(\prod_{j=0}^{n+1} u_j^{h'_{D_l}}, D_l, g, ..., g)$$
 or $me(t_{X_l}, g, ..., g) \neq me(\prod_{j=0}^{n+1} u_j^{h'_{X_l}}, X_l, g, ..., g)$

▶ then "rejects"

else
$$k:=$$

$$me(D_1X_1,\ldots,D_{i-1}X_{i-1},D_{i+1}X_{i+1},\ldots,D_{\omega}X_{\omega},\underbrace{\Phi,\ldots,\Phi}_{(n+1-\omega)\Phi})^{d_i+x_i}$$
and $k_e:=\mathsf{PRF}(k,sid)$

▶ Return the session key: k_e

Security of GAKE in the Standard Model

- n-Multiliear Decisional Diffie-Hellman Assumption (nMDDH)
 - ▶ Let $\mathcal{MLG} = (\mathbb{G}, \mathbb{G}_T, g, p, me)$ denote the description of n-multilinear groups
 - Given (g, g^a, T) decide whether or not $T = me(g, ..., g)^{a^{n+1}}$

Security of TAKE in the Standard Model

Theorem 2:

Assume each ephemeral key chosen during key exchange has bit-size $\lambda \in \mathcal{N}$. Suppose that the mMDDH problem is $(t, \epsilon_{\text{nMDDH}})$ -hard in the symmetric multilinear \mathcal{MLP} , the CRHF is $(t, \epsilon_{\text{TCRHF}})$ -secure target collision resistant hash function family, and the PRF is $(t, \epsilon_{\text{PRF}})$ -secure pseudorandom function family. Then the proposed protocol of size $2 \le \omega \le n+1$ is (t', ϵ) -session-key-secure with $t' \approx t$ and $\epsilon \le \frac{(d\ell)^{n+1}}{2^{\lambda_1}} + \epsilon_{\text{TCRHF}} + (n+2)(d\ell)^{n+1} \cdot \epsilon_{\text{nMDDH}} + \epsilon_{\text{PRF}}$.

Strongly Secure One-Round GAKE

Introduction, Motivation and Contributions
GAKE Security Model (G-eCK Model)
Formal Definition of One-round GAKE
Stongly Secure One-Round GAKE in the Standard Model

Thank you for your attention!

Bibliography

- [BCPQ01] Provably authenticated group Diffie-Hellman key exchange. Bresson, Chevassut, Pointcheval, and Quisquater - ACM CCS 01.
- ► [BCP02] Dynamic group Diffie-Hellman key exchange under standard assumptions. Bresson, Chevassut, and Pointcheval â EUROCRYPT 2002.
- ► [BCP02] Scalable protocols for authenticated group key exchange. Jonathan Katz and Moti Yung CRYPTO 2003.
- ► [BS02] Applications of multilinear forms to cryptography. Dan Boneh and Alice Silverberg 2002.

Bibliography

- ► [AJ04] A one round protocol for tripartite Diffie-Hellman. Antoine Joux - Journal of Cryptology, 2004.
- [BMS07] On security models and compilers for group key exchange protocols. Bresson, Manulis, and Schwenk -IWSEC 07.
- [HofKil08] Programmable hash functions and their applications. Hofheinz, Kiltz - CRYPTO 08
- [MSU09] Modeling leakage of ephemeral secrets in tripartite/group key exchange. Manulis, Suzuki, and Ustaoglu - ICISC 09

Bibliography

- [GBN09] Modeling key compromise impersonation attacks on group key exchange protocols. Gorantla, Boyd, and Nieto - PKC 2009.
- ► [HJK11] Short signatures from weaker assumptions. Hofheinz, Jager, and Kiltz â ASIACRYPT 2011.
- [FMSB12] Sufficient condition for ephemeral key-leakage resilient tripartite key exchange. Fujioka, Manulis, Suzuki, and Ustaoglu - ACISP 12.
- ► [GGH13] Candidate multilinear maps from ideal lattices. Garg, Gentry, and Halevi EUROCRYPT-2013.