Padding Oracle Attack for non-standard PKCS#1 v1.5
Can non-standard implementation provide us a shelter?

Si Gao Hua Chen Limin Fan

Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences

November 20, 2013
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
PKCS#1 v1.5 coding for encryption

A valid “padded message” should satisfy:

<table>
<thead>
<tr>
<th>00</th>
<th>02</th>
<th>Padding String</th>
<th>00</th>
<th>Data Block</th>
</tr>
</thead>
</table>

\[\text{a)} \quad =0x00? \]
PKCS#1 v1.5

PKCS#1 v1.5 coding for encryption
A valid “padded message” should satisfy:

<table>
<thead>
<tr>
<th>00</th>
<th>02</th>
<th>Padding String</th>
<th>00</th>
<th>Data Block</th>
</tr>
</thead>
</table>

b) $=0x02$?
PKCS#1 v1.5 coding for encryption
A valid “padded message” should satisfy:

- Search for the first 0x00

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Padding String</th>
<th></th>
<th></th>
<th>Data Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>02</td>
<td></td>
<td>00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) length ≥ 8?
d) find a 0x00?
Bleichenbacher’s Attack

- From implementation flaws, attackers might have access to an Oracle, which tells whether certain ciphertext is valid
 - Pick a random r, if $c' = r^e c \mod n$ is a valid ciphertext, we know $r m \mod n$ starts with 00 02
 - $r m \mod n$ starts with 00 02 limits m to a smaller interval
 - Repeat until we can determine the value of m
Bleichenbacher’s Attack

- From implementation flaws, attackers might have access to an Oracle, which tells whether certain ciphertext is valid
- Significantly improved in 2012 (For RSA-1024, Mean:49001, Median:14501) [Bardou et al., 2012]
- Focus on the 00 02 in the start, ignore other conditions
- Easy countermeasure: OAEP
PKCS#1 v1.5 still matters

Only for backward compatibility, yet widespread

- TLS doesn’t support OAEP yet
- “Backward compatibility Attacks” [Jager et al., 2013]
This work is about...

Implementations don’t follow the standard step by step

- Can implementation tricks provide a “shelter”?
More specifically...

- For instance, in decryption process, after RSA decryption:

```
XX XX Padding String 00 Data Block
```

- "efficient" way to implement PKCS #1 v1.5
- Bleichenbacher’s Attack doesn’t work (no 00 02)
- leakage still exists, although very vague
- not secure, but might be good enough
Main topic

Question Can this kind of implementation tricks serve as a temporary “shelter”?
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Case I: Basic idea

- Oracle tells us whether $rm \mod n$ has a 0 byte
- No clear expression available (typically, this part of the information is ignored by Bleichenbacher’s Attack)

Straightforward idea
Can we get some clear information from this Oracle?
Property of this Oracle

If m has a 0 byte, $256m \mod n$ must has a 0 byte, unless $256m > n$. Thus

Property 1
Let $c = m^e \mod n$, $c' = 256^e c \mod n$, if $O(c) = T$ and $O(c') = F$, we can conclude that $256m > n$

Extended to $[rn, (r + 1)n)$:

Property 2
Let $c_1 = (sm)^e \mod n$, $c_2 = (256sm)^e \mod n$, $sm \in [rn, (r + 1)n)$, if $O(c_1) = T$ and $O(c_2) = F$, we can conclude that $sm > rn + \frac{1}{256}n$
Simple idea, but.......

Implementation requirements:

- The 0 byte in the two most significant positions doesn’t count (00 02).
- The 0 byte in the least significant position doesn’t count (no data block).
Further analysis

- Even if we take both m and $256m \mod n$ into consideration, we can not guarantee anything from a single Oracle access.
- The problem above rarely happens: if we can collect some points near m and get corresponding replies from the Oracle, we can decide whether $256m > n$ through probability analysis.
More specifically...

<table>
<thead>
<tr>
<th>PO(c)</th>
<th>PO(c')</th>
<th>256m < n</th>
<th>256m > n</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>38.21%</td>
<td>14.86%</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.25%</td>
<td>23.50%</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.23%</td>
<td>23.76%</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>61.31%</td>
<td>37.88%</td>
</tr>
</tbody>
</table>

• Clearly, if we collect some points near \(m \), and find many \(O(c) \neq O(c') \), we can conclude that \(256m > n \).
Distinguish algorithm

Require: Padding Oracle PO, ciphertext c, m's current interval $[a, b]$, r
compute the possible interval of s $[s_{\text{min}}, s_{\text{max}}]$

$$s_{\text{min}} = \left\lfloor \frac{(r + \frac{1}{256})n}{b} \right\rfloor, \quad s_{\text{max}} = \left\lceil \frac{(r + \frac{1}{256})n}{a} \right\rceil$$ —— Make sure s_{min} is near $(r + \frac{1}{256})n$

while $s < s_{\text{max}}$ do
 collect some sample points near current s, $c_1 = s^e c \mod n$, $c_2 = (256s)^e c \mod n$
call PO to calculate $\Pr(PO(c_1) \neq PO(c_2))$
if $\Pr(PO(c_1) \neq PO(c_2)) > \text{threshold}$ then
 break
else
 $s++$
end if
end while

$$a' = \left\lceil \frac{r + \frac{1}{256}n}{s + \text{block} + 1} \right\rceil, \quad b' = \left\lfloor \frac{r + \frac{1}{256}n}{s - \text{block}} \right\rfloor$$

return $[a', b']$
Distinguish algorithm

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [s_{min}, s_{max}]

\[s_{min} = \left\lfloor \frac{(r + \frac{1}{256})n}{b} \right\rfloor, s_{max} = \left\lceil \frac{(r + \frac{1}{256})n}{a} \right\rceil \]

while \(s < s_{max} \) do
 collect some sample points near current s, \(c_1 = s^{e}c \mod n \), \(c_2 = (256s)^{e}c \mod n \)
call PO to calculate \(Pr(PO(c_1) \neq PO(c_2)) \)
if \(Pr(PO(c_1) \neq PO(c_2)) > \text{threshold} \) then
 break —— This tells us \(s^m > \left(r + \frac{1}{256} \right) n \)
else
 \(s++ \)
end if
end while

\(a' = \left\lceil \frac{r + \frac{1}{256}n}{s + \text{block} + 1} \right\rceil, b' = \left\lfloor \frac{r + \frac{1}{256}n}{s - \text{block}} \right\rfloor \)

return \([a', b']\)
Distinguish algorithm

Require: Padding Oracle PO, ciphertext c, m's current interval $[a, b]$, r

compute the possible interval of s $[s_{\text{min}}, s_{\text{max}}]$

$s_{\text{min}} = \left\lfloor \frac{r + \frac{1}{256} b}{n} \right\rfloor$, $s_{\text{max}} = \left\lceil \frac{r + \frac{1}{256} a}{n} \right\rceil$

while $s < s_{\text{max}}$ **do**

collect some sample points near current s, $c_1 = s^e c \mod n$, $c_2 = (256s)^e c \mod n$
call PO to calculate $Pr(PO(c_1) \neq PO(c_2))$

if $Pr(PO(c_1) \neq PO(c_2)) > \text{threshold}$ **then**

break

else

$s++$

end if

end while

$a' = \left\lfloor \frac{r + \frac{1}{256} n}{s + \text{block} + 1} \right\rfloor$, $b' = \left\lfloor \frac{r + \frac{1}{256} n}{s - \text{block}} \right\rfloor$ —— Update the interval of m

return $[a', b']$
Distinguish algorithm

Require: Padding Oracle PO, ciphertext \(c \), \(m \)'s current interval \([a, b]\), \(r \)

compute the possible interval of \(s \) \([s_{\text{min}}, s_{\text{max}}]\)

\[
\begin{align*}
s_{\text{min}} &= \left\lfloor \frac{(r + \frac{1}{256})n}{b} \right\rfloor, \\
s_{\text{max}} &= \left\lceil \frac{(r + \frac{1}{256})n}{a} \right\rceil
\end{align*}
\]

while \(s < s_{\text{max}} \)** do**

collect some sample points near current \(s \), \(c_1 = s^e c \mod n \), \(c_2 = (256s)^e c \mod n \)

call PO to calculate \(Pr(PO(c_1) \neq PO(c_2)) \)

if \(Pr(PO(c_1) \neq PO(c_2)) > \text{threshold} \)** then

break

else

\(s++ \)

end if

end while

\(a' = \left\lfloor \frac{r + \frac{1}{256}n}{s + \text{block} + 1} \right\rfloor, \quad b' = \left\lceil \frac{r + \frac{1}{256}n}{s - \text{block}} \right\rceil \)

return \([a', b']\)

Repeat with larger \(r \), until there is only one \(m \) left in \([a, b]\)
Some other troubles...

“stuck” problem

- After the first round \(r=0\), \([s_{\text{min}}, s_{\text{max}}]\) is too small
- No enough points for analysis (stuck)

Solution:
- multiplier 2: more powerful, less efficient

<table>
<thead>
<tr>
<th>PO(c)</th>
<th>PO(c')</th>
<th>2m < n</th>
<th>2m > n</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>25.19%</td>
<td>15.01%</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>13.20%</td>
<td>23.75%</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>13.35%</td>
<td>23.60%</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>48.25%</td>
<td>37.64%</td>
</tr>
</tbody>
</table>
Some other troubles...

“stuck” problem

- After the first round (r=0), \([s_{\min}, s_{\max}]\) is too small
- No enough points for analysis (stuck)

Solution:

- multiplier 2: more powerful, less efficient

<table>
<thead>
<tr>
<th>PO(c)</th>
<th>PO(c')</th>
<th>2m < n</th>
<th>2m > n</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>25.19%</td>
<td>15.01%</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>13.20%</td>
<td>23.75%</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>13.35%</td>
<td>23.60%</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>48.25%</td>
<td>37.64%</td>
</tr>
</tbody>
</table>
Complete attack for case I

Complete attack algorithm:

- Prefer multiply 256 method (efficiency)
- Typically, only the first few (4-5) rounds need multiply 2 method
- About 0.11 million oracle accesses for RSA-1024 (stable performance)

Works when implementation also checks PS length

<table>
<thead>
<tr>
<th>XX</th>
<th>XX</th>
<th>Padding String</th>
<th>00</th>
<th>Data Block</th>
</tr>
</thead>
</table>

Search for the first 0x00

c) length \(\geq 8 \) ?

d) find a 0x00 ?
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Another case...

Now let's move on

- much easier to analyze (0x00 in the start)
- Any m passes the check means m must start with 0x00
Oracle Analysis

Let \(T = 2^{8(k-1)} \), Oracle’s behavior:

- For each \(r \), both \(rn \) and \(rn + T \) can be used
- Similar as before, need both to complete the attack
- Much more efficient, 12 000 oracle access for RSA-1024 (stable performance)
- Also works when PS length is checked
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Categorize Non-standard implementation

Stronger and weaker:

- a) and b) are (00 02) stronger checks (more leakage)
- Relatively, c) and d) are weaker (less leakage)
- stronger checks dominate the corresponding analysis
- Thus, Non-standard implementations can be divided into 4 Groups:
 - Group I (none): case I
 - Group II (only 02): probably variant of Bleichenbacher’s Attack
 - Group III (only 00): case II
 - Group IV (both): Bleichenbacher’s Attack
Table 1. Implementation types with corresponding attack algorithm

<table>
<thead>
<tr>
<th>Type</th>
<th>Conditions</th>
<th>Group</th>
<th>Available Attack Algorithm</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) b) c) d)</td>
<td></td>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>Group I</td>
<td>Group I Attack</td>
<td>113 520</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>Group I</td>
<td>Unnecessary</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>✓ ✓</td>
<td>Group I</td>
<td>Group I Attack</td>
<td>111 890</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>Group II</td>
<td>Variant of Bleichenbacher’s attack</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>✓ ✓</td>
<td>Group II</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>✓ ✓</td>
<td>Group II</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>✓ ✓ ✓</td>
<td>Group II</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>Group III</td>
<td>Manger’s attack</td>
<td>1 168</td>
</tr>
<tr>
<td>9</td>
<td>✓ ✓</td>
<td>Group III</td>
<td>Group III Attack</td>
<td>12 843</td>
</tr>
<tr>
<td>10</td>
<td>✓ ✓</td>
<td>Group III</td>
<td>Unnecessary</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>✓ ✓ ✓</td>
<td>Group III</td>
<td>Group III Attack</td>
<td>13 047</td>
</tr>
<tr>
<td>12</td>
<td>✓ ✓</td>
<td>Group IV</td>
<td>Bleichenbacher’s attack</td>
<td>4 762</td>
</tr>
<tr>
<td>13</td>
<td>✓ ✓ ✓</td>
<td>Group IV</td>
<td>Bleichenbacher’s attack</td>
<td>15 315</td>
</tr>
<tr>
<td>14</td>
<td>✓ ✓ ✓</td>
<td>Group IV</td>
<td>Unnecessary</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>✓ ✓ ✓ ✓</td>
<td>Group IV</td>
<td>Bleichenbacher’s attack</td>
<td>17 473</td>
</tr>
</tbody>
</table>
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Further improvement*

Although practical, our attack for case I isn’t efficient enough:
- Idea comes from Dr. Cheng Chen
- push the “0x00 ”to the start

\[C = 2^{8(k-3)}, \ k \text{ is the byte length of } n \]
Further improvement*

Although practical, our attack for case I isn’t efficient enough:

- Idea comes from Dr. Cheng Chen
- push the “0x00 ” to the start
- Let $C = 2^{8(k-3)}$, k is the byte length of n
Further improvement

- Looks like case II, yet slightly different from case II
- Similar to the Step 2.c in Bleichenbacher’s attack

\[m(rn+C)/b \]
\[m(rn+C)/a \]

Any F means \(sm > rn+C \)

- To ensure this works, start with several rounds of our case I attack
- about 20 000 oracle access (80% off, stable)
- Also works when implementation check PS length (more rounds of case I attack)
Outline

Introduction
 Basic Problem
 Motivation

Non-standard implementation study
 Case I
 Case II
 Categorize Non-standard implementation
 Further improvement*

Summary
Summary

• We propose analysis for two types of non-standard implementations
• Together with Bleichenbacher’s attack, we can conclude most of non-standard implementations are vulnerable
• Moreover, some non-standard implementations are even worse!
THE END

Thanks for listening!
