Fully Homomorphic Encryption

Zvika Brakerski
Weizmann Institute of Science
Outsourcing Computation

Email, web-search, navigation, social networking...

What if x is private?

Search query, location, business information, medical information...
The Situation Today

We promise we won't look at your data. Honest!

We want real protection.
Outsourcing Computation – Privately

\[x \rightarrow Enc(x) \rightarrow y \rightarrow Dec(y) = f(x) \]

WANTED
Homomorphic Evaluation function:
\[Eval: f, Enc(x) \rightarrow Enc(f(x)) \]

Learns nothing on \(x \).
Fully Homomorphic Encryption (FHE)

\[E_{pk}(x) \]

\[y = \text{Eval}_{evk}(f, Enc(x)) \]

Correctness:
\[\text{Dec}_{sk}(y) = f(x) \]

Input privacy:
\[Enc(x) \approx Enc(0) \]

Fully Homomorphic = Correctness for any efficient \(f \)

= Correctness for universal set

- NAND.
- \((+,\times)\) over \(\mathbb{Z}_2\) (= binary XOR, AND)
Trivial FHE?

PKE \Rightarrow “FHE”:

- Keygen and Enc: Same as PKE.
- $\text{Eval}^{\text{FHE}}(f, c)$
- $\text{Dec}^{\text{FHE}}(f, c) \triangleq f(\text{Dec}_{sk}(c)) = f\left(\text{Dec}_{sk}(\text{Enc}(x))\right) = f(x)$

NOT what we were looking for...

All work is relayed to receiver.

Compact FHE: Dec time does not depend on ciphertext.

\Rightarrow ciphertext length is globally bounded.

In this talk (and in literature) $\text{FHE} \triangleq \text{Compact-FHE}$
Trivial FHE?

PKE ⇒ “FHE”:
- $Keygen$ and Enc: Same as PKE.
- $Eval^{FHE} (f, c)$
- $Dec_{sk}^{FHE} (f, c) \triangleq f(Dec_{sk} (c))$

This “scheme” also completely reveals f to the receiver.
Can be a problem.

Circuit Privacy: Receiver learns nothing about f (except output).

Compactness ⇒ Circuit Privacy (by complicated reduction) [GHV10]

Circuit private FHE is not trivial to achieve – even non-compact.

In this talk: Only care about compactness, no more circuit privacy.
Applications

In the cloud:

• Private outsourcing of computation.
• Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]
• Verifiable outsourcing (delegation). [GGP11,CKV11]
• Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

• Low-communication multiparty computation. [AJLTVW12,LTV12]
• More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

• Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,...]
• General functional encryption. [GKPVZ12]
• Indistinguishability obfuscation for all circuits. [GGHRSW13]
Verifiable Outsourcing (Delegation)

What if the server is cheating?

Can send wrong value of $f(x)$.

Need proof!
FHE ⇒ Verifiable Outsourcing

FHE ⇒ Verifiability and Privacy.

1. Verifiability with preprocessing under “standard” assumptions: [GGP10, CKV10].

2. Less standard assumptions but without preprocessing via SNARGs/SNARKs [DCL08, BCCT11,...] (uses FHE or PIR).

Pre-FHE solutions: multiple rounds [K92] or random oracles [M94].
FHE \Rightarrow Verifiable Outsourcing [V10]

Preprocessing:
\[c_0 = Enc(0) \]
\[z_0 = Eval(f, c_0) \]

Verification:
Check \(y_0 = z_0 \)?

Yes \Rightarrow output \(Dec(y_x) \)
No \Rightarrow output \perp

Idea: “Cut and choose”

\(c_x, c_0 \) look the same \Rightarrow cheating server will be caught w.p. \(\frac{1}{2} \)
(easily amplifiable)

\[f \]

Server executes
\[y = Eval(f, c) \]

But preprocessing is as hard as computation!
FHE \Rightarrow Verifiable Outsourcing [CKV10]

Preprocessing:
- $c_0 = Enc(0)$
- $z_0 = Eval(f, c_0)$

$(evk'', Enc''(c_x)), (evk', Enc'(c_0))$

Verification:

Check $Dec'(y'_0) = z_0$?

- Yes \Rightarrow output $Dec''(Dec(y_x))$
- No \Rightarrow output \perp

Server executes
- $y' = Eval'(Eval(f, \cdot), c')$
- $y'' = Eval''(Eval(f, \cdot), c'')$

Idea: Outer layer keeps server “oblivious” of z_0.

\Rightarrow Can recycle z_0 for future computations.
FHE Timeline

Basic scheme: Ideal cosets in polynomial rings. ⇒ Bounded-depth homomorphism.

- **Assumption:** hardness of (quantum) apx. short vector in ideal lattice.

Bootstrapping: bounded-depth HE ⇒ full HE.

But bootstrapping doesn’t apply to basic scheme...

- **Need additional assumption:** hardness of sparse subset-sum.

... is it even possible?
The FHE Challenge

Make it simpler.
Simplified basic scheme [vDGHV10,BV11a]
- Under similar assumptions.

Make it more secure.
?

Make it practical.
Optimizations [SV10,SS10,GH10]
FHE without Ideals [BV11b]

Linear algebra instead of polynomial rings

Assumption: Apx. short vector in arbitrary lattices (via LWE).

Shortest-vector Problem (SVP):

Fundamental algorithmic problem – extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]
FHE without Ideals [BV11b]

Linear algebra instead of polynomial rings

Assumption: Apx. short vector in arbitrary lattices (via LWE).

- **Basic scheme:** noisy linear equations over \mathbb{Z}_q.
 - Ciphertext is a linear function $c(x)$ s.t. $c(sk) \approx m$.
 - Add/multiply functions for homomorphism.
 - Multiplication raises degree ⇒ use relinearization.

- **Bootstrapping:** Use dimension-modulus reduction to shrink ciphertexts.

- Simpler: straightforward presentation.
- More secure: based on a standard assumption.
- Efficiency improvements.

Concurrently [GH11]: Ideal lattice based scheme without squashing.
FHE without Ideals

Follow-ups:

• [BGV12]: Improved parameters.
 – Even better security.
 – Improved efficiency in ring setting using “batching”.
 – Batching without ideals in [BGH13].

• [B12]: Improved security.
 – Security based on classical lattice assumptions.
 – Explained in blog post [BB12].

Various optimizations, applications and implementations:

[LNV11, GHS12a, GHS12b, GHS12c, GHPS12, AJLTVW12, LTV12,
DSPZ12, FV12, GLN12, BGHWW12, HW13 ...]
The “Approximate Eigenvector” Method [GSW13]

Ciphertexts = Matrix

Same assumption and keys as before – ciphertexts are different

- **Basic scheme:** Approximate eigenvector over \mathbb{Z}_q.
 - Ciphertext is a matrix C s.t. $C \cdot sk \approx m \cdot sk$.
 - Add/multiply matrices for homomorphism*.

- **Bootstrapping:** Same as previous schemes.

- Simpler: straightforward presentation.
- New and exciting applications “for free”! IB-FHE, AB-FHE.
- Same security as [BGV12, B12].
- Unclear about efficiency: some advantages, some drawbacks.
What is the best way to evaluate a product of k numbers?

Sequentialization [BV13]

Parallel vs. Sequential

Conventional wisdom

Actually better (if done right)
Sequentialization [BV13]

Barrington’s Theorem [B86]: Every depth d computation can be transformed into a width-5 depth 4^d branching program.

- Better security – breaks barrier of [BGV12, B12, GSW13].
- Using dimension-modulus reduction (from [BV11b]) ⇒ same hardness assumption as non homomorphic encryption.
- Short ciphertexts.
Efficiency

Standard benchmark: AES128 circuit

Implementations of [BGV12] by [GHS12c,CCKLLTY13] ≈ 5 min/input

Limiting factors:

- Circuit representation.
- Bootstrapping.
- Key size.

2-years ago it was 3 min/gate [GH10]

New works [GSW13,BV13] address some of these issues, but have other drawbacks

⇒ To be practical, we need to improve the theory.

See also HElib

https://github.com/shaih/HElib
Hybrid FHE

- In known FHE encryption is slow and ciphertexts are long.
- In symmetric encryption (e.g., AES) these are better.

Best of both worlds?
Hybrid FHE

\[\text{Dec}_{sk}(y) = f(x) \]

Easy to encrypt, ciphertext is short... But how to do Eval?

Define: \(h(z) = SYM_Dec_z(c) \)

Server Computes: \(y' = Eval_{evk}(h, Enc_{pk}(sym)) \)

\[\Rightarrow y' = Enc(h(sym)) = Enc\left(SYM_Dec_{sym}(c)\right) = Enc_{pk}(x) \]
Approximate Eigenvector Method [GSW13]

Observation: Let C_1, C_2 be matrices with the same eigenvector \tilde{s}, and let m_1, m_2 be their respective eigenvalues w.r.t \tilde{s}. Then:

1. $C_1 + C_2$ has eigenvalue $(m_1 + m_2)$ w.r.t \tilde{s}.
2. $C_1 \cdot C_2$ (and also $C_2 \cdot C_1$) has eigenvalue $m_1 m_2$ w.r.t \tilde{s}.

Idea: $\tilde{s} = \text{secret key}, C = \text{ciphertext},$ and $m = \text{message}.$

⇒ Homomorphism for addition and multiplication.

⇒ Full homomorphism!

Insecure! Eigenvectors are easy to find.

What about **approximate** eigenvectors?
Approximate Eigenvector Method [GSW13]

\[C \cdot \hat{s} = m\hat{s} + \hat{e} \approx m\hat{s} \]

How to decrypt? Must have restriction on \(\|\hat{e}\| \)

Suppose \(\hat{s}[1] = \frac{q}{2} \), and \(m \in \{0,1\} \)

\[(C \cdot \hat{s})[1] = \frac{q}{2} m + \hat{e}[1] \]

Find \(m \) by rounding

Condition for correct decryption: \(\|\hat{e}\| < \frac{q}{4} \).
Approximate Eigenvector Method [GSW13]

\[C_1 \cdot \hat{s} = m_1 \hat{s} + \hat{e}_1 \]
\[\|\hat{e}_1\| \ll q \]

\[C_2 \cdot \hat{s} = m_2 \hat{s} + \hat{e}_2 \]
\[\|\hat{e}_2\| \ll q \]

Goal: \(C_1, C_2 \Rightarrow C_{add} = Enc(m_1 + m_2), C_{mult} = Enc(m_1m_2). \)

\[C_{add} = C_1 + C_2: \]
\[(C_1 + C_2) \cdot \hat{s} = C_1 \hat{s} + C_2 \hat{s} \]
\[= m_1 \hat{s} + \hat{e}_1 + m_2 \hat{s} + \hat{e}_2 \]
\[= (m_1 + m_2) \hat{s} + (\hat{e}_1 + \hat{e}_2) \]

\[\hat{e}_{add} \]

Noise grows a little
Approximate Eigenvector Method [GSW13]

\[
C_1 \cdot \hat{s} = m_1 \hat{s} + \hat{e}_1
\]
\[
\|\hat{e}_1\| \ll q
\]

\[
C_2 \cdot \hat{s} = m_2 \hat{s} + \hat{e}_2
\]
\[
\|\hat{e}_2\| \ll q
\]

Goal: \(C_1, C_2 \Rightarrow C_{add} = Enc(m_1 + m_2), C_{mult} = Enc(m_1 m_2).\)

\[
C_{mult} = C_1 \cdot C_2:
\]

\[
(C_1 \cdot C_2) \cdot \hat{s} = C_1(m_2 \hat{s} + \hat{e}_2)
\]
\[
= m_2 C_1 \hat{s} + C_1 \hat{e}_2
\]
\[
= m_2 (m_1 \hat{s} + \hat{e}_1) + C_1 \hat{e}_2
\]
\[
= m_2 m_1 \hat{s} + m_2 \hat{e}_1 + C_1 \hat{e}_2
\]

Can also use \(C_2 \cdot C_1\)

Noise grows. But by how much?
Plan for Technical Part

1. Constructing approximate eigenvector scheme.
2. Sequentialization.
4. Open problems and limits on FHE.
Learning with Errors (LWE) [R05]

Random noisy linear equations ≈ uniform

As hard as \((n/\alpha)\)-apx. short vector in **worst case** \(n\)-dim. lattices [R05, P09]
Encryption Scheme from LWE

[ACPS09]

\[
\begin{align*}
\mathbf{A} & \times \mathbf{s} + \mathbf{r} = \mathbf{b} \\
\mathbf{s} & \times \mathbf{r} \cdot \mathbf{\eta} + \mathbf{g} \times \mathbf{s} = \mathbf{\tilde{c}_g} \\
\mathbf{g} \cdot \mathbf{s} & \text{(without knowing } \mathbf{s}) \quad [\text{ACPS09}]
\end{align*}
\]
Encryption Scheme from LWE
[R05,ACPS09]

\[
\begin{align*}
A \cdot s + \eta &= b \\
\gamma = \eta + G \\n\gamma_{0,1} \times (n+1) &\text{uniform}
\end{align*}
\]
Approx. Eigenvector Encryption

Goal: Encrypt message $m \in \{0, 1\}$

Idea: $Enc(m) = C_m \cdot I$

$$\Rightarrow C_m \cdot \hat{s} = \hat{e} + mI \hat{s} = m \cdot \hat{s} + \hat{e}$$

As we saw:

$$C_1 \cdot C_2 \cdot \hat{s} = C_1 \cdot (\hat{e}_2 + m_2 \hat{s})$$

$$= C_1 \cdot \hat{e}_2 + m_2 \cdot C_1 \cdot \hat{s}$$

$$= C_1 \cdot \hat{e}_2 + m_2 \hat{e}_1 + m_1 m_2 \hat{s}$$

- **HUGE** noise
- **small** noise
- **desired** output

Need to reduce the norm of C_1

Solution: binary decomposition
Binary Decomposition

Break each entry in C to its binary representation

$$C = \begin{bmatrix} 3 \\ 1 \\ 4 \\ 5 \end{bmatrix} \pmod{8} \implies \text{bits}(C) = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \pmod{8}$$

Small entries like we wanted!
But product with \hat{s} now meaningless

Consider the “reverse” operation:

$$\text{bits}(C) \cdot \begin{bmatrix} 4 & 0 \\ 2 & 0 \\ 1 & 0 \\ 0 & 4 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} = C \implies C \cdot \hat{s} = \text{bits}(C) \cdot G \cdot \hat{s} = \text{bits}(C) \cdot \hat{s}^*$$

$$\hat{s}^* = G \cdot \hat{s}$$

“powers of 2” vector
Contains $q/2$ as an element
Approx. Eigenvector Encryption

\[Enc(m) = C_{m \cdot G} \]
\[\in \mathbb{Z}_q^{((n+1) \log q) \times (n+1)} \]

\[C_{\text{nand}} = G - \text{bits}(C_1) \cdot C_2 \]

\[\Rightarrow C_{m \cdot G} \cdot \tilde{s} = \tilde{e} + m \cdot G \cdot \tilde{s} \]

\[C_{\text{mult}} = \text{bits}(C_1) \cdot C_2 \]

\[\text{bits}(C_1) \cdot C_2 \cdot \tilde{s} \]
\[= \text{bits}(C_1) \cdot (\tilde{e}_2 + m_2 G \tilde{s}) \]
\[= \text{bits} (C_1) \cdot \tilde{e}_2 + m_2 \cdot \text{bits}(C_1) \cdot G \cdot \tilde{s} \]
\[= \text{bits} (C_1) \cdot \tilde{e}_2 + m_2 \cdot C_1 \cdot \tilde{s} \]
\[= \text{bits} (C_1) \cdot \tilde{e}_2 + m_2 \cdot \tilde{e}_1 + m_1 \cdot m_2 \cdot G \cdot \tilde{s} \]

\[\| \tilde{e}_{\text{nand}} \| \leq N \cdot \| \tilde{e}_2 \| + m_2 \cdot \| \tilde{e}_1 \| \leq (N + 1) \cdot \max\{\| \tilde{e}_1 \|, \| \tilde{e}_2 \|\} \]
Homomorphic Circuit Evaluation

Noise grows during homomorphic evaluation

\[\| \hat{e}_{\text{output}} \| \leq (N + 1)^d \cdot M\alpha q \approx N^d \alpha q \]

\[\Rightarrow \text{Decryption succeeds if } \alpha \ll 1/N^d. \]

\[\| \hat{e}_{i+1} \| \leq (N + 1) \| \hat{e}_i \| \]

\[\| \hat{e}_{\text{input}} \| \leq M\alpha q \]
Full Homomorphism

\[\alpha \leq N^{-d} \]
\[d_{hom} \approx \log(1/\alpha) \]

1. If depth upper-bound is known ahead of time.

 Set \(N \geq d^2 \); \(\alpha = 2^{-\sqrt{N}} \) \(\Rightarrow \) \(\log(1/\alpha) = d \)

 Leveled FHE: Parameters (evk) grow with \(d \).

2. Single scheme for any poly depth.

Undesirable:
- Huge parameters.
- Low security.
- Inflexible.

Bootstrap!
The Bootstrapping Theorem

(Proof to come)

Homomorphic \Rightarrow fully homomorphic

when $d_{dec} < d_{hom}$

- d_{dec} = depth of the decryption circuit.
- d_{hom} = maximal homomorphic depth.

In our scheme: $d_{dec} = \log N \Rightarrow \text{FHE if } \alpha < N^{-\log N}$

Quasi-polynomial approximation for short vector problems
(same factor as [BGV12,B12])

Non-homomorphic schemes only need $N^{O(1)}$ approximation
A Taste of Sequentialization [BV13]

\[\hat{e}_{\text{mult}} = \text{bits}(C_1) \cdot \hat{e}_2 + m_2 \cdot \hat{e}_1 \]

Asymmetric!

Important observations:

1. \(\hat{e}_1 \) gets multiplied by 0/1; \(\hat{e}_2 \) can get multiplied by \(N \).
2. \(m_2 = 0 \Rightarrow \hat{e}_1 \) has no effect!

Conclusion: The order of multiplication matters.

Want to multiply \(C_A, C_B \) s.t. \(\hat{e}_A \gg \hat{e}_B \).

Which is better: \(\text{bits}(C_A) \cdot C_B \) or \(\text{bits}(C_B) \cdot C_A \)?
A Taste of Sequentialization [BV13]

\[
\hat{e}_{\text{mult}} = \text{bits } (C_1) \cdot \hat{e}_2 + m_2 \cdot \hat{e}_1
\]

Task: Multiply 4 ciphertexts \(C_1, \ldots, C_4\)

Multiplication Tree

\[
\|\hat{e}\| = E_0(N + 1)^2
\]

\[
\|\hat{e}\| = E_0(N + 1)
\]

\[
\|\hat{e}\| = E_0
\]

Sequential Multiplier

\[
E_0(3N + 1)
\]

\[
E_0(2N + 1)
\]

\[
E_0(N + 1)
\]

\[
E_0
\]

Winner!
Bootstrapping

Homomorphic \Rightarrow fully homomorphic when

\[d_{dec} < d_{hom} \]

- d_{dec} = depth of the decryption circuit.
- d_{hom} = maximal homomorphic depth.
Bootstrapping

Given scheme with bounded d_{hom}
How to extend its homomorphic capability?

Idea: Do a few operations, then "switch" to a new instance

Switch keys
"cost" in homomorphism
How to Switch Keys

We have seen this before!

Hybrid FHE
Hybrid FHE

\[
\text{Define: } h(z) = \text{SYM}_z(Dec_z(c))
\]

Server Computes:
\[
y' = \text{Eval}_{evk}(h, \text{Enc}_{pk}(\text{sym}))
\]
\[
\Rightarrow y' = \text{Enc}(h(\text{sym})) = \text{Enc} \left(\text{SYM} _ \text{Dec}_{sym}(c) \right) = \text{Enc}_{pk}(x)
\]
How to Switch Keys

Decryption circuit:

\[\text{Dec}_{sk}(\cdot) \]

\[c \quad \Rightarrow \quad m \]

Dual view:

\[\text{Dec}(\cdot)(c) \equiv h_c(\cdot) \]

\[sk \quad \Rightarrow \quad m \]

\[h_c(sk) = \text{Dec}_{sk}(c) = m \]

Key switching procedure \((sk_1, pk_1) \rightarrow (sk_2, pk_2)\):

Input: \(c = \text{Enc}_{pk_1}(m) \)

Server aux info: \(aux = \text{Enc}_{pk_2}(sk_1) \) (ahead of time)

Output: \(\text{Eval}_{pk_2}(h_c, aux) \)

\[\text{Eval}_{pk_2}(h_c, aux) = \text{Eval}_{pk_2}(h_c, \text{Enc}_{pk_2}(sk_1)) \]

\[= \text{Enc}_{pk_2}(h_c(sk_1)) = \text{Enc}_{pk_2}\left(\text{Dec}_{sk_1}(c)\right) \]

\[= \text{Enc}_{pk_2}(m) \]

Eval depth = \(d_{dec} \)
Bootstrapping

Given scheme with bounded d_{hom}

How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance (pk_2, sk_2)

Switch keys

“cost” of d_{dec} hom. operations

Conclusion: Bootstrapping if $d_{hom} \geq d_{dec} + 1$

Need to generate many keys...
Bootstrapping

Given scheme with bounded d_{hom}.
How to extend its homomorphic capability?

Idea: Do a few operations, then “switch” to a new instance.

Server aux info:
$$aux = Enc_{pk}(sk)$$

Switch from the key to itself!
Key switching works.
Circular Security

Is it secure to publish $aux = Enc_{pk}(sk)$

Intuitively: Yes, encryption hides the message.

Formally: Security does not extend.

What can we do about it?

Option 1: Assume it’s secure – no attack is known.

Option 2: Use a sequence of keys.

\Rightarrow No. of keys proportional to computation depth (leveled FHE).

Short keys without circular assumption?

[BV11a]: Circular secure “somewhat” homomorphic scheme.
Diversity

- Other (older) schemes with similar properties [AD97, GGH97, R03, R05, …] ⇒ homomorphism
 But all are lattice based

 [B13]: Homomorphically “clean up” the noise ⇒ break security.
 ⇒ “Too much” homomorphism is a bad sign.
What We Saw Today

• Definition of FHE.
• Applications.
• Historical perspective and background.
• Constructing HE using the approximate eigenvector method.
• Sequentialization.
• Bootstrapping.
• Limits on HE.
Open Problems

• Short keys without circular security.
• FHE from different assumptions.
• CCA1 secure FHE.
• Bounded malleability.
• Improved efficiency.
Thank You