
Slide 1 

Introduction  to Multivariate  Public  

Key Cryptography  

Geovandro  Carlos C. F. Pereira  
PhD advisor : Prof. Dr. Paulo S. L. M. Barreto  

 
LARC - Computer Architecture and Networking Lab  

Department of Computer Engineering and Digital Systems  

Escola Politécnica  

University of  Sao Paulo  

 

 



Slide 2 

Agenda  

•Motivation  to  Post-Quantum Crypto   

 

•Introduction  to  MPKC 

•Matsumoto -Imai  Encryption  

•UOV Signature  

•Technique  for Key Size Reduction  

 

•Security Analysis 



Slide 3 

Motivation  

Internet of Things (IoT) 

Any  object  connected  to  the  internet  
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Motivation  

• Typical  Platforms  

 

 

 

 

 

 
Smartcard (Java Card) 

Sensor node Arduino  
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Motivation  

• Typical  Platforms  

 

 

 

 

 

 

• Resources  

• Instruction set of 8, 16 or 32 bits 

• Small  amount  of RAM(2-8 KiB) and  ROM (32-128 KiB) 

• Low clock : 5-40 MHz 

• Energy is expensive  

Smartcard (Java Card) 
Sensor node Arduino  
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Motivation  

•Symmetric  Crypto : ok 

•Conventional  Asymmetric  Criptography : bottleneck  

Security relies on  a few  computational  problems . 

“Complex ” operations  (e.g. multiple -precision  arithmetic ). 

Threats in medium  and  long -terms: 

• Shor [1997]  

Quantum algorithm  for DLP e IFP 

• Barbulescu , Joux,...[2013]  

Conventional  algorithms  for DLP over binary  fields in quase -polynomial  time  

End of  pairings  over binary  fields (it was  the  most  suitable  for WSNs) 

•Need  for alternatives ! 
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•Post-Quantum Cryptography  
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Motivation  

•Post-Quantum Cryptography  

Cryptosystems  that  resist to  quantum algorithms . 

Main  lines of  research : 

Å Hash-based  

Å Very  efficient , large  signatures . 

Å Code -based  

Å Public  Key Encryption  schemes  

Å Singatures  (one -time, large  keys) 

Å Lattice -based  

Å Encryption , Digital signatures , FHE 

ÅMultivariate  Quadratic  (MQ)  

Å Some digital signature  schemes  are robust  (original  UOV, 14 years ) 

Å Most  of the  encryption  constructions  were  broken  (Jintai  has a new perspective about  it) 
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Motivation  

•Conventional  Public  Key Cryptography   

• Need coprocessors in smartcards.  

Å Low flexibility for use or optimizations.  
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• Small fields avoid multiple -precision arithmetic.  
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Motivation  

•Conventional  Public  Key Cryptography   

• Need coprocessors in smartcards.  

Å Low flexibility for use or optimizations.  

•Advantages of MPKC  

• Simplicity of Operations (matrices and vectors).  

• Small fields avoid multiple -precision arithmetic.  

• Long term security. (prevention against spying)  

• Efficiency  

  Signature generation in 804 cycles by Ding  [ASAP 2008]. 

ÅMain Challenge  

Å Relatively large key sizes.  
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•MPKC Constructions  
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Multivariate  Public  Key Cryptography  

 

ÅBasic Property : 

Å Cryptosystems  whose  public  keys are a set of  multivariate  polynomials . 
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Multivariate  Public  Key Cryptography  

 

ÅBasic Property : 

Å Cryptosystems  whose  public  keys are a set of  multivariate  polynomials . 

 
 

ÅNotation : the  public  key  is given  as: 

 
ὖὼȟỄȟὼ ὴ ὼȟỄȟὼ ȟὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ  
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MPKC Encryption  

 

ÅGiven a plaintext  ὓ ὼȟỄȟὼ . 
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MPKC Encryption  

 

ÅGiven a plaintext  ὓ ὼȟỄȟὼ . 

ÅCiphertext  is simply a polynomial  evaluation : 

 
ὖὓ ὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ ὧȟỄȟὧ  
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MPKC Encryption  

 

ÅGiven  a plaintext  ὓ ὼȟỄȟὼ . 

ÅCiphertext  is simply a  polynomial  evaluation : 

 
ὖὓ ὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ ὧȟỄȟὧ  

 
 

ÅTo decrypt  one  needs  to  know  a trapdoor  so that  it is 

feasible  to  invert  the  quadratic  map  to  find  the  plaintext : 

 
ὼȟỄȟὼ ὖ ὧȟỄȟὧ  
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MPKC Signature  

ÅPublic Key:  

 
ὖὼȟỄȟὼ ὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ  

 

 

 



Slide 27 

MPKC Signature  

ÅPublic Key:  

 
ὖὼȟỄȟὼ ὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ  

 

ÅPrivate Key: a trapdoor  for computing  ὖ . 
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MPKC Signature  
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MPKC Signature  

ÅPublic Key:  

 
ὖὼȟỄȟὼ ὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ  

 

ÅPrivate Key: a trapdoor  for computing  ὖ . 

 

ÅSign: given  a hash  ὬȟỄȟὬ , compute  

 
ὼȟỄȟὼ ὖ ὬȟỄȟὬ  

 

Å Verify : ὬȟỄȟὬ ὖὼȟỄȟὼ  

 

Å All vars. and  coeffs . are in the  small field  Ὧ. 
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Security  

 

ÅDirect  attack  is to  solve the  set of  equations : 

 
ὖὓ ὖὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ ὧȟỄȟὧ  
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Security  

 

ÅDirect  attack  is to  solve the  set of  equations : 

 
ὖὓ ὖὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ ὧȟỄȟὧ  

 
 

Å Solving a set of ά randomly chosen (nonlinear) equations 
with ὲ variables is NP-complete . 
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Security  

 

ÅDirect  attack  is to  solve the  set of  equations : 

 
ὖὓ ὖὴ ὼȟỄȟὼ ȟỄȟὴ ὼȟỄȟὼ ὧȟỄȟὧ  

 
 

Å Solving a set of ά randomly chosen (nonlinear) equations 
with ὲ variables is NP -complete.  

 

Å But this does not necessarily ensure the security of the 
systems.  
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Security  

 

ÅMost  of  the  schemes  do not  use exactly  random  maps . 
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Security  

 

ÅMost  of  the  schemes  do not  use exactly  random  maps . 

Å Many  systems have  the  structure  
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Security  

 

ÅMost  of  the  schemes  do not  use exactly  random  maps . 

Å Many  systems have  the  structure  

 

ὖὼȟỄȟὼ ὒ Ὂʐ ὒʐ ὼȟỄȟὼ  

 

Å Ὂ is a quadratic  map  with  certain  structure . (central map ) 

Å This structure  enables  computing  Ὂ  easily. 

Å ὒ and  ὒ are full-rank  linear maps  used  to  hide  Ὂ. 
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Security  

 

ÅMQ-Problem : Given  a set of  ά quadratic  polynomials  in ὲ 

variables  Ø ὼȟỄȟὼ , solve the  system: 

 

ὴ ὼ Ễ ὴ ὼ π 
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Security  

 

ÅMQ-Problem : Given  a set of  ά quadratic  polynomials  in ὲ 

variables  Ø ὼȟỄȟὼ , solve the  system: 

 

ὴ ὼ Ễ ὴ ὼ π 

 

Å IP-Problem : Given  two  polynomial  maps  ὊȟὊȡὑ ὑ . 

The problem  is to  look for two  linear transformations  ὒ and 

ὒ (if they  exist) s.t.: 

 

Ὂ ὼȟỄȟὼ ὒ Ὂʐ ὒʐ ὼȟỄȟὼ  
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Multivariate  Quadratic  

Construction  

Å MQ system with  ά equations  in ὲ vars, all  coefs . in : 

 
Polynomial  notation : 

 

 

 
Vector notation : 

 

ὴ ὼȟȣȟὼ ὼὖ ὼ ὒ ὼ ὧ  

ὴ ὼȟȣȟὼ ḧ ὖ ὼὼ
ȟ

ὒ ὼ ὧ  
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(Pure) Quadratic  Map  

 

 

 

 

ὖ  
ὼ 

ὼ  

 
Ὤ 

ὼע Ὤ ᵾ 
ὼ ὖ  ὼ Ὤ  Ὧ ρȟȣȟά  
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Matsumoto -Imai  Cryptosystem  

 

Å Previously, many  unsuccesfull  attempts  to  construct  an  

encryption  scheme . 

Å Small number  of  variables . 

Å Huge  key  sizes. 

 

Å In 1988, Matsumoto and  Imai  adopted  a “Big” Field in their  

C* construction . 
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Matsumoto -Imai  Cryptosystem  

ÅὯ is a small finite  field  with  Ὧ ή. 
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Matsumoto -Imai  Cryptosystem  
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Matsumoto -Imai  Cryptosystem  

ÅὯ is a small finite  field  with  Ὧ ή. 

Åὑ ὯὼȾὫὼ  a degree  ὲ extension  of  Ὧ. 

Å The linear map  ‰ȡὑᴼὯ  and ‰ ȡὯ ᴼὑ. 

‰ὥ ὥὼ Ễ ὥ ὼ ὥȟὥȟỄȟὥ  

Å Build a map  Ὂ over ὑ: 
 

Ὂ ὒ ‰ʐ Ὂʐ ‰ʐ ὒʐ 

where  the  ὒ are randomly  chosen  invertible  maps  over Ὧ  
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Matsumoto -Imai  Cryptosystem  

ÅὯ is a small finite  field  with  Ὧ ή. 

Åὑ ὯὼȾὫὼ  a degree  ὲ extension  of  Ὧ. 

Å The linear map  ‰ȡὑᴼὯ  and ‰ ȡὯ ᴼὑ. 

‰ὥ ὥὼ Ễ ὥ ὼ ὥȟὥȟỄȟὥ  

Å Build a map  Ὂ over ὑ: 
 

Ὂ ὒ ‰ʐ Ὂʐ ‰ʐ ὒʐ 

where  the  ὒ are randomly  chosen  invertible  maps  over Ὧ  

Å Inversion  of  Ὂ is related  to  the  IP Problem  
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Matsumoto -Imai  Cryptosystem  

Å The map  Ὂ adopted  was : 

Ὂ Ḋὑ ὑ 

ὢ ὢ  
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Matsumoto -Imai  Cryptosystem  

Å The map  Ὂ adopted  was : 

Ὂ Ḋὑ ὑ 

ὢ ὢ  

ÅLet  

ὊὼȟỄȟὼ ‰ Ὂʐ ‰ʐ ὼȟỄȟὼ Ὂ ὼȟỄȟὼ ȟỄȟὊ ὼȟỄȟὼ  
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Matsumoto -Imai  Cryptosystem  

Å The map  Ὂ adopted  was : 

Ὂ Ḋὑ ὑ 

ὢ ὢ  

ÅLet  

ὊὼȟỄȟὼ ‰ Ὂʐ ‰ʐ ὼȟỄȟὼ Ὂ ὼȟỄȟὼ ȟỄȟὊ ὼȟỄȟὼ  

 

ÅὊ are quadratic  polynomials  because  the  map  

ὢ ὢ  is linear (it is the  Frobenius  automorphism  of  

order  —). 
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Matsumoto -Imai  Cryptosystem  

Å Encryption is done  by  the  quadratic  map  over Ὧ  

 

Ὂ ὒ ‰ʐ Ὂʐ ‰ʐ ὒʐ 

where  ὒ are affine  maps  over Ὧ . 
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Matsumoto -Imai  Cryptosystem  

Å Encryption is done  by  the  quadratic  map  over Ὧ  

 

Ὂ ὒ ‰ʐ Ὂʐ ‰ʐ ὒʐ 

where  ὒ are affine  maps  over Ὧ . 

 

ÅDecryption  is the  inverse  process  

Ὂ ὒ ‰ʐ Ὂʐ ‰ʐ ὒʐ  
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Matsumoto -Imai  Cryptosystem  

Å Requirement: G.C.D. ή ρȟή ρ ρ 

to ensure  the  invertibility  of  the  decryption  map  Ὂ  
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Matsumoto -Imai  Cryptosystem  

Å Requirement: G.C.D. ή ρȟή ρ ρ 

to ensure  the  invertibility  of  the  decryption  map  Ὂ  

 

 

ÅὊ ὢ ὢȟὢᶰὑ where  ὸ ή ρḳρ άέὨή ρ. 

ÅThe public  key  includes Ὧ and Ὂ  ὊȟỄȟὊ  

ÅThe private  key  includes ὒȟ ὒ and  ὑ. 



Å Trapdoor to  invert  Ὂ [Patarin]  
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UOV Signature  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  
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UOV Signature  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  

Å Split vars. into  2 sets:           oil variables :   /ḧ ὼȟỄȟὼ  

              vinegar  variables :  ὠḧ ὼȟȣȟὼ  
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UOV Signature  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  

Å Split vars. into  2 sets:           oil variables :   /ḧ ὼȟỄȟὼ  

              vinegar  variables :  ὠḧ ὼȟȣȟὼ  
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UOV Signature  

Ὢ ὼȟỄȟØȟὼȟȣȟὼ Ὤ  

Ὂ ὼὼᴂ Ὂ ὼᴂὼᴂ ὒ ὼ ὒ ὼᴂ ὧ  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  

Å Choose  uniformly  at  random  vinegar s:  ὠḧ ὼȟȣȟὼ  
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UOV Signature  

Ὢ ὼȟỄȟØȟὼȟȣȟὼ Ὤ  

Ὂ ὼὼᴂ Ὂ ὼᴂὼᴂ ὒ ὼ ὒ ὼᴂ ὧ  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  

Å Fix vinegar s:  ὠḧ ὼȟȣȟὼ  

 

 

 

 

 

 

 

Å This becomes  an  έὼέ system of  linear equations . 
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UOV Signature  

Ὢ ὼȟỄȟØȟὼȟȣȟὼ Ὤ 

Ὂ ὼὼᴂ Ὂ ὼᴂὼᴂ ὒ ὼ ὒ ὼᴂ ὧ  



Å Trapdoor to  invert  Ὂ [Patarin]  

ÅὬ ὌὥίὬὓ  

Å Fix vinegar s:  ὠḧ ὼȟȣȟὼ  

 

 

 

 

 

 

 

Å This becomes  an  έὼέ system of  linear equations . 

 

Å It has a solution  with  high probability  ρ ρȾή. 
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UOV Signature  

Ὢ ὼȟỄȟØȟὼȟȣȟὼ  

Ὂ ὼὼᴂ Ὂ ὼᴂὼᴂ ὒ ὼ ὒ ὼᴂ ὧ  



Å Trapdoor to  invert  Ὂ [Patarin]  

 

ÅOil variables  not  mixed . 
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UOV Signature  

Ὂ  

π 

Vinegar 

variables 

Oil  

variables 

● ȣ   ●○    ȣ  ●▪ 
● 

ể 

●○ 

●▪ 

ể 

Vinegar variables 

Oil  variables 
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Rainbow  Signature  

Å Rainbow  Quadratic  Map  



Å UOV key  sizes. 
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MQ Signatures  

Scheme Public Key 

(KiB) 

113.4  

99.4  

77.7  

66.7  

 14.5  

11.0  

10.2  
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•Technique  for Key Size 

Reduction  



Å Technique  for reduction  of  UOV public  keys. 
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MQ Signatures  - Cyclic  UOV 



Å Technique  for reduction  of  UOV public  keys. 

 

Å Part of  the  public  key  with  short representation . 
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MQ Signatures  - Cyclic  UOV 



Å Technique  for reduction  of  UOV public  keys. 

 

Å Part of  the  public  key  with  short representation . 

 

Å Achieves  a 6x reduction  factor  for 80-bit security . 
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MQ Signatures  - Cyclic  UOV 



Public  matrix  of  coefficients  ὓ  
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MQ Signatures  - Cyclic  UOV 

ὖ  

ὖ  ὓ  ể 

ể 
άὼl  

l 
ὲὲ ρ

ς
 

ὖ  



Public  matrix  of  coefficients  ὓ  

 

 

 

Slide 71 

MQ Signatures  - Cyclic  UOV 

ὓ  ể 

άὼl  

ὄ ὅ 

l 

 

άὼl  
l 

l
ὺὺ ρ

ς
άὺȟ l 

ὲὲ ρ

ς
 



Private matrix  of  coefficients  ὓ  
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MQ Signatures  - Cyclic  UOV 

Ὂ  

Ὂ  

Ὂ  

ὓ  ể 

ể 
άὼl  

l 
ὲὲ ρ

ς
 

0 

l 

l
ὺὺ ρ

ς
άὺȟ 

0 

0 

0 

0 



Private matrix  of  coefficients  ὓ  
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MQ Signatures  - Cyclic  UOV 

ὓ  Ὂ 

l
ὺὺ ρ

ς
άὺȟ 

 

άὼl  
l 

l 
ὲὲ ρ

ς
 

ể 

άὼl  
l 

0 

0 

0 



Å There is a linear relation between ὄ and Ὂ which  only  depends  
on  ὄ,Ὂ and Ὓ [Petzoldt  et. al, 2010]  
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MQ Signatures  - Cyclic  UOV 

ὓ  Ὂ 

άὼl  

ὓ  ὄ ὅ 

άὼl  

ὄ ὊϽὃ (S) 

ὥ
ίȢίȟ                    Ὥ Ὦ
 ίȢί ίȢίȟ Ὥ Ὦ 

ρ Ὥ ὺȟὭ Ὦ ὲ 

ρ ὶ ὺȟὶ ί ὲ 

l 

l 

0 



By choosing  ὃ Ὓ invertible:  

 

ÅὊ can  be  computed  from  ὄ and ὃ  
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MQ Signatures  - Cyclic  UOV 

Ὂ ὄϽὃ  



By choosing  ὃ Ὓ invertible:  

 

ÅὊ can  be  computed  from  ὄ and ὃ  

 

 

Å Thus, the  choice  of  ὄ becomes  flexible . 
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MQ Signatures  - Cyclic  UOV 

Ὂ ὄϽὃ  



By choosing  ὃ Ὓ invertible:  

 

ÅὊ can  be  computed  from  ὄ and ὃ  

 

 

Å Thus, the  choice  of  ὄ becomes  flexible . 

Å In particular:  

ὄ π does not  result in a valid  &, 

ὄ = Identity  blocks , reveals  too much  info  of  ὃ , 

ὄ circulant  was  adopted  by  [Petzoldt  et. al, 2010] 
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MQ Signatures  - Cyclic  UOV 

Ὂ ὄϽὃ  



By choosing  ὃ Ὓ invertible:  

 

ÅὊ can  be  computed  from  ὄ and ὃ  

 

 

Å Thus, the  choice  of  ὄ becomes  flexible . 

Å In particular:  

ὄ π does not  result in a valid  &, 

ὄ = Identity  blocks , reveals  too much  info  of  ὃ , 

ὄ circulant  was  adopted  by  [Petzoldt  et. al, 2010] 
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MQ Signatures  - Cyclic  UOV 

Ὂ ὄϽὃ  

Petzoldt  et. a l. showed  by  theorem  that  the  choice  of  a 

circulant  ὄ provides  consistent  UOV signatures . 



Adopting  ὄ circulant:  
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MQ Signatures  - Cyclic  UOV 

ὓ  ὄ ὅ 

άὼl  

ȿ╜╟ȿ l άl l 

╫ ὦȟỄȟὦl 

ể 

άὼl  

l 

Ễ 

l 



Public  matrices  ὖ  
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MQ Signatures  - Cyclic  UOV 

ὖ  



Public  matrices  ὖ  
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ὖ  



Public  matrices  ὖ  
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ὖ  



Public  matrices  ὖ  

 

 

 

Slide 83 

MQ Signatures  - Cyclic  UOV 

ὖ  



Public  matrices  ὖ  
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Ễ 



 
Å Idea: Find equivalent  private  keys that  enables  solving  any  

given  public  key  system. 

 

Slide 85 

Equivalent  Keys in UOV 



 
Å Idea: Find equivalent  private  keys that  enables  solving  any  

given  public  key  system. 

 

Å A class of  equivalent  private  keys with  a simpler  structure . 
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Å Idea: Find equivalent  private  keys that  enables  solving  any  

given  public  key  system. 

 

Å A class of  equivalent  private  keys with  a simpler  structure . 

 

Å Thus, private  keys can  be  built  using this short structure . 
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Å UOV public  key :  
 

ὖ ὛὊ Ὓȟρ Ὥ ά 
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Å UOV public  key :  
 

ὖ ὛὊ Ὓȟρ Ὥ ά 

 

Å Question : Are there  classes of  keys Ὓand Ὂᴂ s.t. 

 
ὖ ὛὊ Ὓ ὛὊ Ὓ ȟρ Ὥ ά 

 

where  matrices  Ὂ  share  with  Ὂ  the  same  trapdoor  
structure ? 
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Å Idea: Introduce  a matrix  ɱ in ὖ : 

 
ὖ Ὓɱ ɱὊ ɱɱ Ὓ  

Å Define Ὂ ḧɱὊ ɱ  
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Å Idea: Introduce  a matrix  ɱ in ὖ : 

 
ὖ Ὓɱ ɱὊ ɱɱ Ὓ  

Å Define Ὂ ḧɱὊ ɱ   
 

Å We want  ɱ that  keeps  the  original Ὂ structure  in Ὂᴂ: 
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ɱ  ɱ  

ɱ  ɱ  

Ὂ Ὂ 

Ὂ 

 

Ὂᴂ Ὂ  

” 

ɱ  ɱ  

ɱ  ɱ  

ὺ ά 

ὺ 

ά 

ὺ ά 

ὺ 

ά 

ὺ ά 

ὺ 

ά π 

ɱ ɱ  



 

Å From the  previous  equality  we  obtain : 

 
” ɱὊ ɱὊ ɱ ɱὊɱ π 

 

and  ɱ π is a solution . 
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ɱ  ɱ  

π ɱ  

ɱ = 

ὺ ά 

ὺ 

ά 



Å Thus, Ὂᴂ ɱὊ ɱ  has the  same  structure  of  Ὂ . 
 

ÅGoing  back  to  definition  
 

ὖ Ὓɱ ɱὊ ɱ ɱ Ὓ  
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Å Thus, Ὂᴂ ɱὊ ɱ  has the  same  structure  of  Ὂ . 
 

ÅGoing  back  to  definition  
 

ὖ Ὓɱ Ὂᴂɱ Ὓ  
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Å Thus, Ὂᴂ ɱὊ ɱ  has the  same  structure  of  Ὂ . 
 

ÅGoing  back  to  definition   
 

ὖ Ὓɱ Ὂᴂɱ Ὓ  

 

Å So, defining  ὛḧὛɱ  one  finally  gets : 
 

ὖ ὛὊ Ὓ  
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Å Note that  ɱ  has the  same  structure  of  ɱ. 
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ɱ  

π 

Ὓ Ὓɱ  = 
Ὓ Ὓ 

Ὓ Ὓ 

ɱ  

ɱ  

ὺ ά 

ὺ 

ά 

ɱ  Ὓ 

ɱ  ɱ  

ɱ  



Å By choosing  suitable  values  of  ɱ , it is possible  to  get : 

 
Ὓ Ὅ  

Ὓ π  

Ὓ Ὅ  

what  implies  

 

Ὓ ὛὛ ὛὛ Ὓ Ὓ ὛὛ Ὓ  
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Å Structure of  Ὓᴂ: 
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Ὓ  

Ὓ 

ά ὺ 

ά 

ὺ 



Å Structure of  Ὓᴂ: 

 

 

 

 

 

 

 

 

Å So, the  answer  is yes , there  exist equivalent  ὛȟὊ  s.t. 

 
ὛὊ Ὓ Ὓɱ ɱὊ ɱ Ὓɱ ὖ  

 

and  Ὂ  have the  desired  trapdoor  structure . 
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Ὓ  

Ὓ 

ά ὺ 

ά 

ὺ 
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Thanks! 

 

 

Questions ? 


