Introduction to Multivariate Public Key Cryptography

Geovandro Carlos C. F. Pereira PhD advisor: Prof. Dr. Paulo S. L. M. Barreto

LARC - Computer Architecture and Networking Lab Department of Computer Engineering and Digital Systems Escola Politécnica University of Sao Paulo

Motivation to Post-Quantum Crypto

- Introduction to MPKC
 - Matsumoto-Imai Encryption
 - UOV Signature
- Technique for Key Size Reduction

• Security Analysis

Internet of Things (IoT)

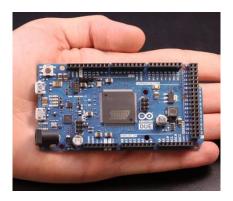
Any object connected to the internet

INRC

• Typical Platforms

Smartcard (Java Card)

Sensor node

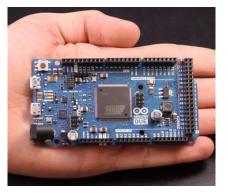


Arduino

• Typical Platforms

Smartcard (Java Card)

Sensor node



Arduino

• Resources

- Instruction set of 8, 16 or 32 bits
- Small amount of RAM(2-8 KiB) and ROM (32-128 KiB)
- Low clock: 5-40 MHz
- Energy is expensive

• Symmetric Crypto: ok

- Symmetric Crypto: ok
- Conventional Asymmetric Criptography: bottleneck Security relies on a few computational problems.

- Symmetric Crypto: ok
- Conventional Asymmetric Criptography: bottleneck Security relies on a few computational problems.

"Complex" operations (e.g. multiple-precision arithmetic).

- Symmetric Crypto: ok
- Conventional Asymmetric Criptography: bottleneck
 Security relies on a few computational problems.
 "Complex" operations (e.g. multiple-precision arithmetic).

Threats in medium and long-terms:

• Shor [1997]

Quantum algorithm for DLP e IFP

- Symmetric Crypto: ok
- Conventional Asymmetric Criptography: bottleneck
 Security relies on a few computational problems.
 "Complex" operations (e.g. multiple-precision arithmetic).

Threats in medium and long-terms:

• Shor [1997]

Quantum algorithm for DLP e IFP

• Barbulescu, Joux,...[2013]

Conventional algorithms for DLP over binary fields in quase-polynomial time End of pairings over binary fields (it was the most suitable for WSNs)

- Symmetric Crypto: ok
- Conventional Asymmetric Criptography: bottleneck
 Security relies on a few computational problems.
 "Complex" operations (e.g. multiple-precision arithmetic).

Threats in medium and long-terms:

• Shor [1997]

Quantum algorithm for DLP e IFP

• Barbulescu, Joux,...[2013]

Conventional algorithms for DLP over binary fields in quase-polynomial time End of pairings over binary fields (it was the most suitable for WSNs)

Need for alternatives!

Post-Quantum Cryptography

Cryptosystems that resist to quantum algorithms.

Post-Quantum Cryptography

Cryptosystems that resist to quantum algorithms. Main lines of research:

- Hash-based
 - Very efficient, large signatures.

Post-Quantum Cryptography

Cryptosystems that resist to quantum algorithms.

Main lines of research:

- Hash-based
 - Very efficient, large signatures.
- Code-based
 - Public Key Encryption schemes
 - Singatures (one-time, large keys)

Post-Quantum Cryptography

Cryptosystems that resist to quantum algorithms.

Main lines of research:

- Hash-based
 - Very efficient, large signatures.
- Code-based
 - Public Key Encryption schemes
 - Singatures (one-time, large keys)
- Lattice-based
 - Encryption, Digital signatures, FHE

Post-Quantum Cryptography

Cryptosystems that resist to quantum algorithms.

Main lines of research:

- Hash-based
 - Very efficient, large signatures.
- Code-based
 - Public Key Encryption schemes
 - Singatures (one-time, large keys)
- Lattice-based
 - Encryption, Digital signatures, FHE
- Multivariate Quadratic (MQ)
 - Some digital signature schemes are robust (original UOV, 14 years)
 - Most of the encryption constructions were broken (Jintai has a new perspective about it)

- Conventional Public Key Cryptography
 - Need coprocessors in smartcards.
 - Low flexibility for use or optimizations.

- Conventional Public Key Cryptography
 - Need coprocessors in smartcards.
 - Low flexibility for use or optimizations.
- Advantages of MPKC
 - Simplicity of Operations (matrices and vectors).
 - Small fields avoid multiple-precision arithmetic.
 - Long term security. (prevention against spying)
 - Efficiency

Signature generation in 804 cycles by Ding [ASAP 2008].

- Conventional Public Key Cryptography
 - Need coprocessors in smartcards.
 - Low flexibility for use or optimizations.
- Advantages of MPKC
 - Simplicity of Operations (matrices and vectors).
 - Small fields avoid multiple-precision arithmetic.
 - Long term security. (prevention against spying)
 - Efficiency

Signature generation in 804 cycles by Ding [ASAP 2008].

- Main Challenge
 - Relatively large key sizes.

MPKC Constructions

Multivariate Public Key Cryptography

- Basic Property:
 - Cryptosystems whose public keys are a set of multivariate polynomials.

Multivariate Public Key Cryptography

- Basic Property:
 - Cryptosystems whose public keys are a set of multivariate polynomials.

• Notation: the public key is given as:

$$P(x_1, \dots, x_n) = (p_1(x_1, \dots, x_n), p_2(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n))$$

MPKC Encryption

• Given a plaintext $M = (x_1, \dots, x_n)$.

MPKC Encryption

- Given a plaintext $M = (x_1, \dots, x_n)$.
- Ciphertext is simply a polynomial evaluation:

$$P(M) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)) = (c_1, \cdots, c_m)$$

MPKC Encryption

- Given a plaintext $M = (x_1, \dots, x_n)$.
- Ciphertext is simply a polynomial evaluation:

$$P(M) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)) = (c_1, \cdots, c_m)$$

• To decrypt one needs to know a trapdoor so that it is feasible to invert the quadratic map to find the plaintext:

$$(x_1,\cdots,x_n)=P^{-1}(c_1,\cdots,c_m)$$

$$P(x_1, \cdots, x_n) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n))$$

• Public Key:

$$P(x_1, \cdots, x_n) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n))$$

• Private Key: a trapdoor for computing P^{-1} .

$$P(x_1, \cdots, x_n) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n))$$

- Private Key: a trapdoor for computing P^{-1} .
- Sign: given a hash (h_1, \dots, h_m) , compute

$$(x_1,\cdots,x_n)=P^{-1}(h_1,\cdots,h_m)$$

$$P(x_1, \cdots, x_n) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n))$$

- Private Key: a trapdoor for computing P^{-1} .
- Sign: given a hash (h_1, \cdots, h_m) , compute

$$(x_1, \cdots, x_n) = P^{-1}(h_1, \cdots, h_m)$$

• Verify:
$$(h_1, \dots, h_n) = P(x_1, \dots, x_m)$$

$$P(x_1, \cdots, x_n) = (p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n))$$

- Private Key: a trapdoor for computing P^{-1} .
- Sign: given a hash (h_1, \cdots, h_m) , compute

$$(x_1, \cdots, x_n) = P^{-1}(h_1, \cdots, h_m)$$

- Verify: $(h_1, \dots, h_n) = P(x_1, \dots, x_m)$
- All vars. and coeffs. are in the small field k.

Security

• Direct attack is to solve the set of equations:

$$P(M) = P(p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)) = (c_1, \cdots, c_m)$$

Security

• Direct attack is to solve the set of equations:

 $P(M) = P(p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)) = (c_1, \cdots, c_m)$

• Solving a set of *m* randomly chosen (nonlinear) equations with *n* variables is NP-complete.

Security

• Direct attack is to solve the set of equations:

 $P(M) = P(p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)) = (c_1, \cdots, c_m)$

- Solving a set of *m* randomly chosen (nonlinear) equations with *n* variables is NP-complete.
- But this does not necessarily ensure the security of the systems.

• Most of the schemes do not use exactly random maps.

- Most of the schemes do not use exactly random maps.
- Many systems have the structure

$$P(x_1, \cdots, x_n) = L_1 \circ F \circ L_2(x_1, \cdots, x_n)$$

- Most of the schemes do not use exactly random maps.
- Many systems have the structure

$$P(x_1, \cdots, x_n) = L_1 \circ F \circ L_2(x_1, \cdots, x_n)$$

• *F* is a quadratic map with certain structure. (central map)

- Most of the schemes do not use exactly random maps.
- Many systems have the structure

$$P(x_1, \cdots, x_n) = L_1 \circ F \circ L_2(x_1, \cdots, x_n)$$

- *F* is a quadratic map with certain structure. (central map)
- This structure enables computing F^{-1} easily.

- Most of the schemes do not use exactly random maps.
- Many systems have the structure

$$P(x_1, \cdots, x_n) = L_1 \circ F \circ L_2(x_1, \cdots, x_n)$$

- *F* is a quadratic map with certain structure. (central map)
- This structure enables computing F^{-1} easily.
- L_1 and L_2 are full-rank linear maps used to hide F.

• **MQ-Problem**: Given a set of *m* **quadratic** polynomials in *n* variables $x = (x_1, \dots, x_n)$, solve the system:

$$p_1(x) = \dots = p_m(x) = 0$$

Security

• **MQ-Problem**: Given a set of *m* **quadratic** polynomials in *n* variables $x = (x_1, \dots, x_n)$, solve the system:

$$p_1(x) = \dots = p_m(x) = 0$$

• **IP-Problem**: Given two polynomial maps $F_1, F_2: K^n \to K^m$. The problem is to look for two linear transformations L_1 and L_2 (if they exist) s.t.:

$$F_1(x_1, \cdots, x_n) = L_1 \circ F \circ L_2(x_1, \cdots, x_n)$$

Multivariate Quadratic Construction

• MQ system with m equations in n vars, all coefs. in \mathbb{F}_q :

Polynomial notation:

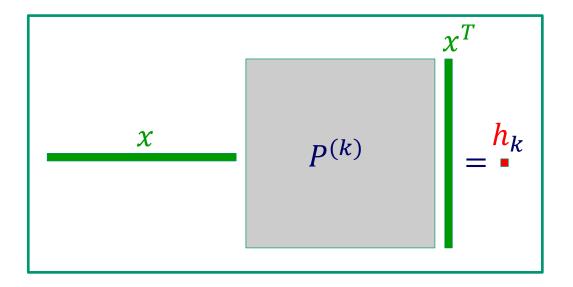
$$p_k(x_1,\ldots,x_n) \coloneqq \sum_{i,j} P_{ij}^{(k)} x_i x_j + \sum_i L_i^{(k)} x_i + c^{(k)}$$

Vector notation:

$$p_k(x_1, \dots, x_n) = x P^{(k)} x^T + L^{(k)} x + c^{(k)}$$

(Pure) Quadratic Map

$$\mathcal{P}(x) = \mathbf{h} \iff$$
$$x P^{(k)} x^T = \mathbf{h}_k \ (k = 1, ..., m)$$



- Previously, many unsuccesfull attempts to construct an encryption scheme.
 - Small number of variables.
 - Huge key sizes.
- In 1988, Matsumoto and Imai adopted a "Big" Field in their C* construction.

• k is a small finite field with |k| = q.

- k is a small finite field with |k| = q.
- $\overline{K} = k[x]/(g(x))$ a degree *n* extension of *k*.

- k is a small finite field with |k| = q.
- $\overline{K} = k[x]/(g(x))$ a degree *n* extension of *k*.
- The linear map $\phi: \overline{K} \to k^n$ and $\phi^{-1}: k^n \to \overline{K}$. $\phi(a_0 + a_1x + \dots + a_{n-1}x^{n-1}) = (a_0, a_1, \dots, a_{n-1})$

- k is a small finite field with |k| = q.
- $\overline{K} = k[x]/(g(x))$ a degree *n* extension of *k*.
- The linear map $\phi: \overline{K} \to k^n$ and $\phi^{-1}: k^n \to \overline{K}$. $\phi(a_0 + a_1x + \dots + a_{n-1}x^{n-1}) = (a_0, a_1, \dots, a_{n-1})$
- Build a map \overline{F} over \overline{K} :

$$\bar{F} = L_1 \circ \phi \circ F \circ \phi^{-1} \circ L_2$$

where the L_i are randomly chosen invertible maps over k^n

- k is a small finite field with |k| = q.
- $\overline{K} = k[x]/(g(x))$ a degree *n* extension of *k*.
- The linear map $\phi: \overline{K} \to k^n$ and $\phi^{-1}: k^n \to \overline{K}$. $\phi(a_0 + a_1x + \dots + a_{n-1}x^{n-1}) = (a_0, a_1, \dots, a_{n-1})$
- Build a map \overline{F} over \overline{K} :

$$\bar{F} = L_1 \circ \phi \circ F \circ \phi^{-1} \circ L_2$$

where the L_i are randomly chosen invertible maps over k^n

• Inversion of \overline{F} is related to the IP Problem

• The map F adopted was:

$$F : \overline{K} \longrightarrow \overline{K}$$
$$X \longmapsto X^{q^{\theta} + 1}$$

• The map F adopted was:

$$F : \overline{K} \longrightarrow \overline{K}$$
$$X \longmapsto X^{q^{\theta} + 1}$$

• Let

$$\widetilde{F}(x_1, \cdots, x_n) = \phi \circ F \circ \phi^{-1}(x_1, \cdots, x_n) = (\widetilde{F_1}(x_1, \cdots, x_n), \cdots, \widetilde{F_m}(x_1, \cdots, x_n))$$

• The map F adopted was:

$$F : \overline{K} \longrightarrow \overline{K}$$
$$X \longmapsto X^{q^{\theta} + 1}$$

• Let

$$\widetilde{F}(x_1, \cdots, x_n) = \phi \circ F \circ \phi^{-1}(x_1, \cdots, x_n) = (\widetilde{F_1}(x_1, \cdots, x_n), \cdots, \widetilde{F_m}(x_1, \cdots, x_n))$$

• \widetilde{F}_i are quadratic polynomials because the map $X \mapsto X^{q^{\theta}}$ is linear (it is the Frobenius automorphism of order θ).

• Encryption is done by the quadratic map over k^n

$$\overline{F} = L_1 \circ \phi \circ F \circ \phi^{-1} \circ L_2$$

where L_i are affine maps over k^n .

• Encryption is done by the quadratic map over k^n

$$\overline{F} = L_1 \circ \phi \circ F \circ \phi^{-1} \circ L_2$$

where L_i are affine maps over k^n .

• Decryption is the inverse process

$$\bar{F}^{-1} = L_2^{-1} \circ \phi \circ F^{-1} \circ \phi^{-1} \circ L_1^{-1}$$

• Requirement: G.C.D. $(q^{\theta} + 1, q^n - 1) = 1$

to ensure the invertibility of the decryption map \bar{F}^{-1}

• Requirement: G.C.D. $(q^{\theta} + 1, q^{n} - 1) = 1$

to ensure the invertibility of the decryption map \bar{F}^{-1}

- $F^{-1}(X) = X^t, X \in \overline{K}$ where $t \times (q^{\theta} + 1) \equiv 1 \mod (q^n 1)$.
- The public key includes k and $\overline{F} = (\overline{F_1}, \cdots, \overline{F_n})$
- The private key includes L_1 , L_2 and \overline{K} .

• Trapdoor to invert F [Patarin]

- Trapdoor to invert F [Patarin]
- h = Hash(M)

- Trapdoor to invert F [Patarin]
- h = Hash(M)
- Split vars. into 2 sets: oil variables: $0 \coloneqq (x_1, \dots, x_o)$ vinegar variables: $V \coloneqq (x'_1, \dots, x'_p)$

- Trapdoor to invert F [Patarin]
- h = Hash(M)
- Split vars. into 2 sets: oil variables: $0 \coloneqq (x_1, \dots, x_o)$ vinegar variables: $V \coloneqq (x'_1, \dots, x'_v)$

$$f_k(x_1, \cdots, x_o, x'_1, \dots, x'_v) = h_k =$$

= $\sum_{O \times V} F_{ij}^{(k)} x_i x'_j + \sum_{V \times V} F_{ij}^{(k)} x'_i x'_j + \sum_O L_i^{(k)} x_i + \sum_V L_i^{(k)} x'_i + c^{(k)}$

- Trapdoor to invert F [Patarin]
- h = Hash(M)
- Choose uniformly at random vinegars: $V \coloneqq (x'_1, ..., x'_v)$

$$f_k(x_1, \cdots, x_o, x'_1, \dots, x'_v) = h_k =$$

= $\sum_{O \times V} F_{ij}^{(k)} x_i x'_j + \sum_{V \times V} F_{ij}^{(k)} x'_i x'_j + \sum_O L_i^{(k)} x_i + \sum_V L_i^{(k)} x'_i + c^{(k)}$

- Trapdoor to invert F [Patarin]
- h = Hash(M)
- Fix vinegars: $V \coloneqq (x'_1, ..., x'_{\nu})$

$$f_k(x_1, \cdots, x_o, x'_1, \dots, x'_v) = h_k$$

= $\sum_{O \times V} F_{ij}^{(k)} x_i x'_j + \sum_{V \times V} F_{ij}^{(k)} x'_i x'_j + \sum_O L_i^{(k)} x_i + \sum_V L_i^{(k)} x'_i + c^{(k)}$

• This becomes an *oxo* system of linear equations.

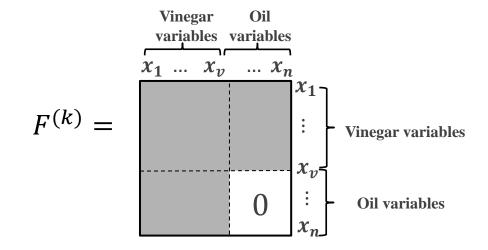
- Trapdoor to invert F [Patarin]
- h = Hash(M)
- Fix vinegars: $V \coloneqq (x'_1, ..., x'_v)$

$$f_k(x_1, \cdots, x_o, x'_1, \dots, x'_v) =$$

$$= \sum_{O \times V} F_{ij}^{(k)} x_i x'_j + \sum_{V \times V} F_{ij}^{(k)} x'_i x'_j + \sum_O L_i^{(k)} x_i + \sum_V L_i^{(k)} x'_i + c^{(k)}$$

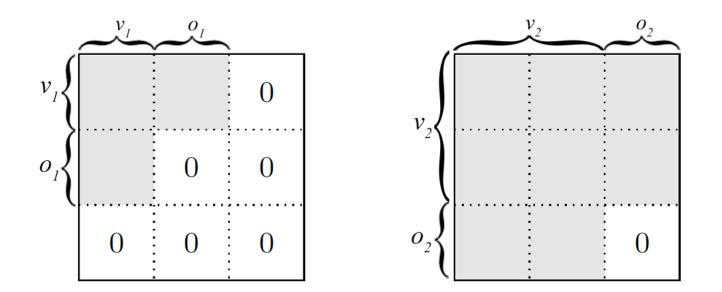
- This becomes an *oxo* system of linear equations.
- It has a solution with high probability ($\approx 1 1/q$).

- Trapdoor to invert F [Patarin]
- Oil variables not mixed.



Rainbow Signature

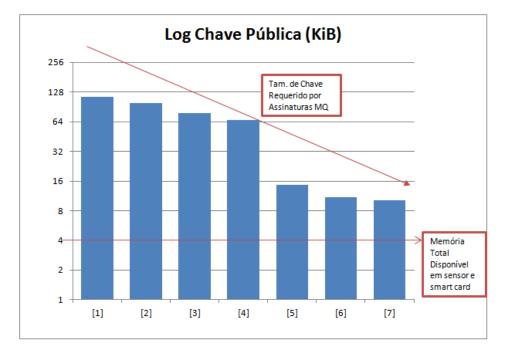
Rainbow Quadratic Map



Slide 64

MQ Signatures

• UOV key sizes.



Scheme	Public Key (KiB)
Rainbow(\mathbb{F}_{2^4} , 30, 29, 29)	113.4
Rainbow(\mathbb{F}_{2^8} , 29, 20, 20)	99.4
Rainbow(\mathbb{F}_{31} , 25, 24, 24)	77.7
NC-Rainbow(\mathbb{F}_{2^8} , 17, 13, 13)	66.7
$CyclicUOV(\mathbb{F}_{2^8}, 26, 25)$	14.5
$UOVLRS(\mathbb{F}_{2^8}, 26, 52, 26)$	11.0
$CyclicRainbow(\mathbb{F}_{2^8}, 17, 13, 13)$	10.2

•Technique for Key Size Reduction

• Technique for reduction of UOV public keys.

• Technique for reduction of UOV public keys.

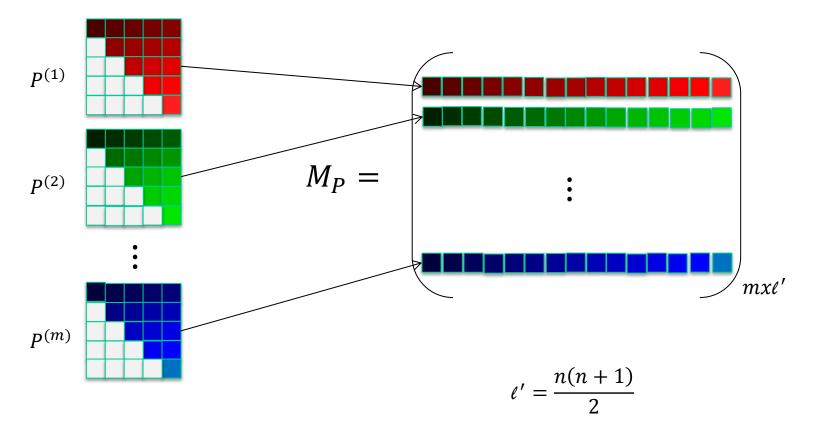
• Part of the public key with short representation.

• Technique for reduction of UOV public keys.

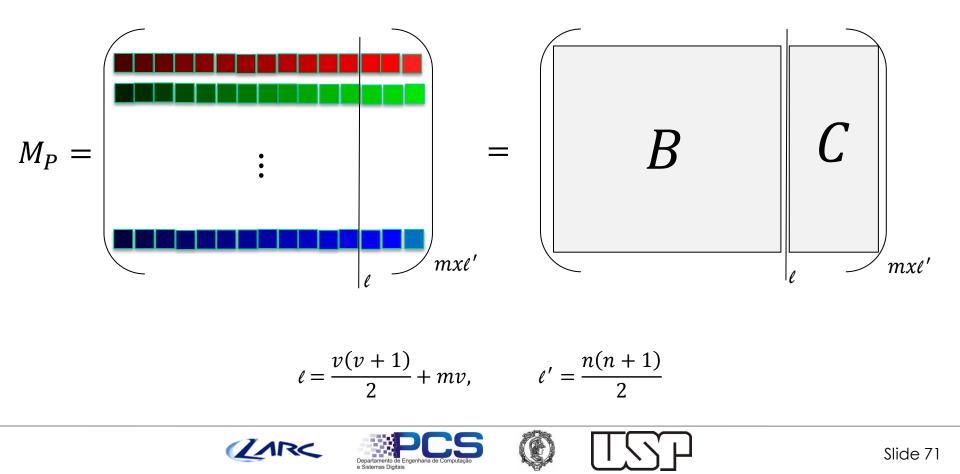
• Part of the public key with short representation.

• Achieves a 6x reduction factor for 80-bit security.

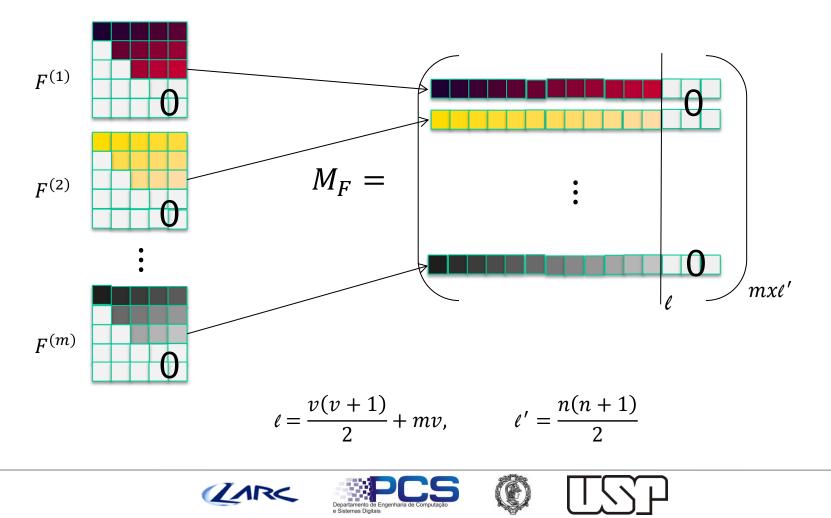
Public matrix of coefficients M_P



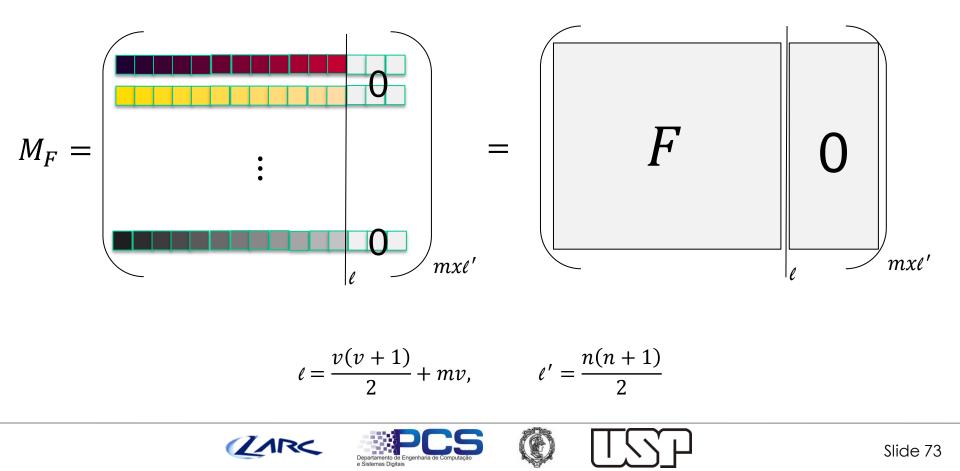
Public matrix of coefficients M_P



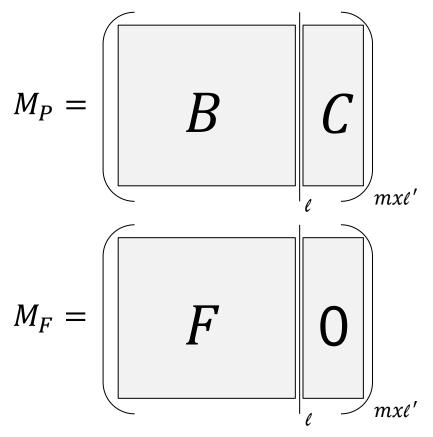
Private matrix of coefficients M_F



Private matrix of coefficients M_F



• There is a linear relation between *B* and *F* which only depends on *B*,*F* and *S* [Petzoldt et. al, 2010]



$$B = F \cdot A_{UOV}(S)$$

$$a_{ij}^{rs} = \begin{cases} s_{ri} \cdot s_{si}, & i = j \\ s_{ri} \cdot s_{sj} + s_{rj} \cdot s_{si}, & i \neq j \end{cases}$$
$$1 \le i \le v, i \le j \le n$$
$$1 \le r \le v, r \le s \le n$$

By choosing $A_{UOV}(S)$ invertible:

• F can be computed from B and A_{UOV}^{-1} $F = B \cdot A_{UOV}^{-1}$

By choosing $A_{UOV}(S)$ invertible:

- F can be computed from B and A_{UOV}^{-1} $F = B \cdot A_{UOV}^{-1}$
- Thus, the choice of *B* becomes flexible.

By choosing $A_{UOV}(S)$ invertible:

- F can be computed from B and A_{UOV}^{-1} $F = B \cdot A_{UOV}^{-1}$
- Thus, the choice of B becomes flexible.
- In particular:

B = 0 does not result in a valid F,

- B = Identity blocks, reveals too much info of A_{UOV}^{-1} ,
- B circulant was adopted by [Petzoldt et. al, 2010]

By choosing $A_{UOV}(S)$ invertible:

- F can be computed from B and A_{UOV}^{-1} $F = B \cdot A_{UOV}^{-1}$
- Thus, the choice of B becomes flexible.
- In particular:

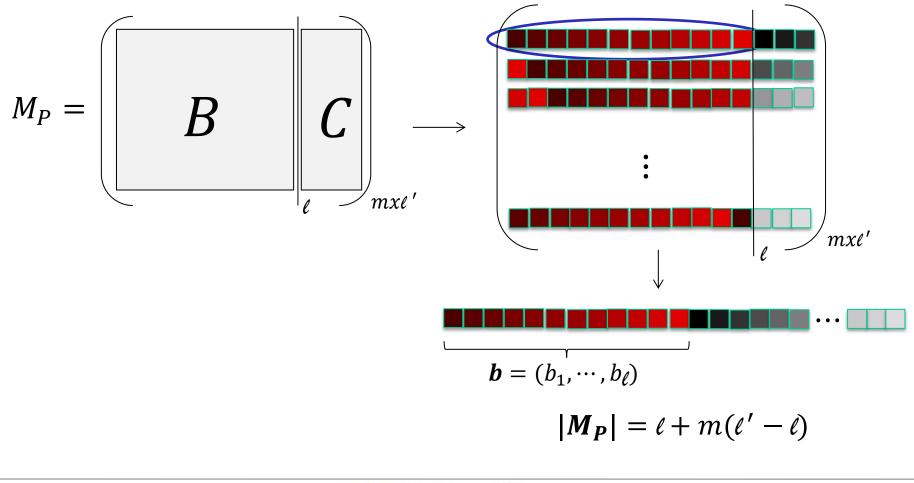
B = 0 does not result in a valid F,

- B = Identity blocks, reveals too much info of A_{UOV}^{-1} ,
- B circulant was adopted by [Petzoldt et. al, 2010]

Petzoldt et. al. showed by theorem that the choice of a circulant *B* provides consistent UOV signatures.

Adopting *B* circulant:

IARC

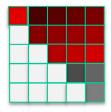


Slide 79

Public matrices $P^{(k)}$

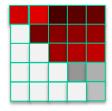
 $P^{(1)}$

Public matrices $P^{(k)}$



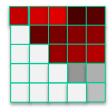
 $P^{(2)}$

Public matrices $P^{(k)}$



 $P^{(3)}$

Public matrices $P^{(k)}$



 $P^{(4)}$

. . .

Public matrices $P^{(k)}$

• Idea: Find equivalent private keys that enables solving any given public key system.

- Idea: Find equivalent private keys that enables solving any given public key system.
- A class of equivalent private keys with a simpler structure.

- Idea: Find equivalent private keys that enables solving any given public key system.
- A class of equivalent private keys with a simpler structure.
- Thus, private keys can be built using this short structure.

• UOV public key:

 $P^{(i)} = SF^{(i)}S^T, 1 \le i \le m$

• UOV public key:

$$P^{(i)} = SF^{(i)}S^T, 1 \le i \le m$$

• Question: Are there classes of keys S' and F' s.t.

$$P^{(i)} = SF^{(i)}S^T = S'F'^{(i)}S'^T, 1 \le i \le m$$

where matrices $F'^{(i)}$ share with $F^{(i)}$ the same trapdoor structure?

• Idea: Introduce a matrix Ω in $P^{(i)}$:

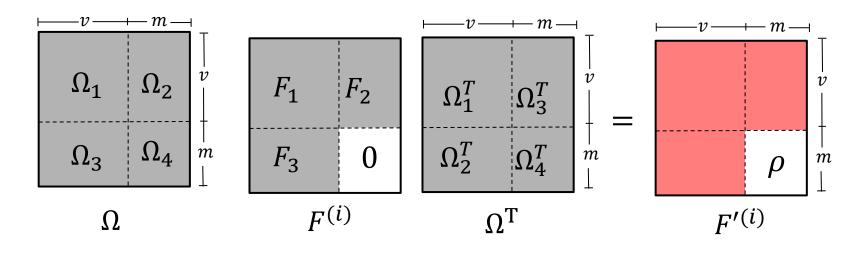
 $P^{(i)} = S \Omega^{-1} \Omega F^{(i)} \Omega^T \Omega^{T^{-1}} S^T$

• Define $F'^{(i)} \coloneqq \Omega F^{(i)} \Omega^T$

• Idea: Introduce a matrix Ω in $P^{(i)}$:

 $P^{(i)} = S \Omega^{-1} \Omega F^{(i)} \Omega^T \Omega^{T^{-1}} S^T$

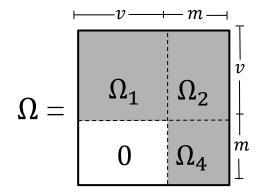
- Define $F'^{(i)} \coloneqq \mathbf{\Omega} F^{(i)} \mathbf{\Omega}^T$
- We want Ω that keeps the original F structure in F':



• From the previous equality we obtain:

$$\rho = (\Omega_3 F_1 + \Omega_4 F_3)\Omega_3^T + \Omega_3 F_2 \Omega_4^T = 0$$

and $\Omega_3 = 0$ is a solution.



- Thus, $F'^{(i)} = \Omega F^{(i)} \Omega^T$ has the same structure of $F^{(i)}$.
- Going back to definition

$$P^{(i)} = S \Omega^{-1} (\Omega F^{(i)} \Omega^T) \Omega^{T^{-1}} S^T$$

- Thus, $F'^{(i)} = \Omega F^{(i)} \Omega^T$ has the same structure of $F^{(i)}$.
- Going back to definition

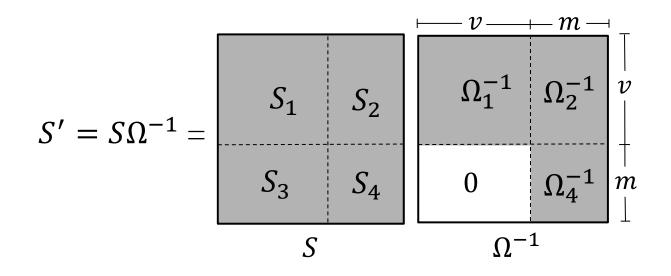
$$P^{(i)} = S \Omega^{-1} (F'^{(i)}) \Omega^{T^{-1}} S^T$$

- Thus, $F'^{(i)} = \Omega F^{(i)} \Omega^T$ has the same structure of $F^{(i)}$.
- Going back to definition

$$P^{(i)} = S \Omega^{-1} (F'^{(i)}) \Omega^{T^{-1}} S^T$$

• So, defining $S' \coloneqq S\Omega^{-1}$ one finally gets:

$$P^{(i)} = S'F'^{(i)}S'^T$$



• Note that Ω^{-1} has the same structure of Ω .

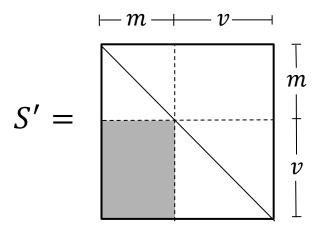
• By choosing suitable values of Ω_i^{-1} , it is possible to get:

$$S'_{1} = I_{vxv}$$
$$S'_{2} = 0_{vxm}$$
$$S'_{4} = I_{mxm}$$

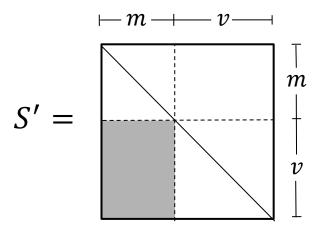
what implies

$$S'_3 = S_3 S_1^{-1} S^2 S_1^{-1} + S_4 (S_4 - S_3 S_1^{-1} S_2)^{-1}$$

• Structure of S':



• Structure of S':

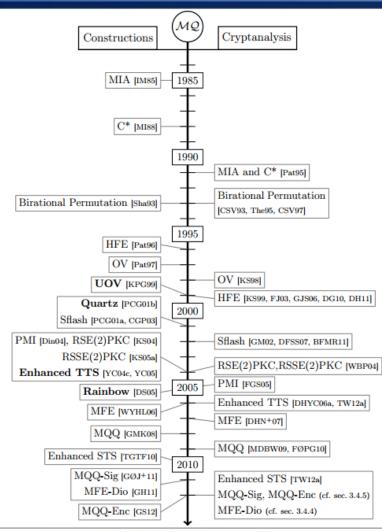


• So, the answer is **yes**, there exist equivalent S', $F'^{(i)}$ s.t.

$$S'F'^{(i)}(S')^{T} = (S\Omega^{-1})(\Omega F^{(i)}\Omega^{T})(S\Omega^{-1})^{T} = P^{(i)}$$

and $F'^{(i)}$ have the desired trapdoor structure.

Recap. MQ Schemes



Questions?

Slide 101