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ABSTRACT: We propose an approach for data clustering based on
optimum-path forest. The samples are taken as nodes of a graph,

whose arcs are defined by an adjacency relation. The nodes are

weighted by their probability density values (pdf) and a connectivity

function is maximized, such that each maximum of the pdf becomes
root of an optimum-path tree (cluster), composed by samples ‘‘more

strongly connected’’ to that maximum than to any other root. We dis-

cuss the advantages over other pdf-based approaches and present

extensions to large datasets with results for interactive image segmen-
tation and for fast, accurate, and automatic brain tissue classification

in magnetic resonance (MR) images. We also include experimental

comparisons with other clustering approaches. VVC 2009 Wiley Periodi-

cals, Inc. Int J Imaging Syst Technol, 19, 50–68, 2009; Published online in Wiley

InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20191

Key words: optimum-path forest; clustering; image segmentation;

meanshift; gm/wm classification

I. INTRODUCTION

The identification of natural groups of samples from a dataset, namely

clustering (Duda et al., 2000) is a crucial step in many applications of

data analysis. The samples are usually represented by feature vectors

(e.g., points in <n), whose similarity between them depends on a

distance function (e.g., Euclidean). Natural groups are characterized

by high concentrations of samples in the feature space, which form

the domes of the probability density function (pdf), as illustrated in

Figure 1a. These domes can be detected and separated by defining

the ‘‘influence zones’’ of their maxima (Fig. 1b). However, there

are different ways to define these influence zones (Cheng, 1995;

Herbin et al., 1996) and the desired data partition may require to

reduce the number of irrelevant clusters (Fig. 1c). To propose a

more general and robust solution, we reformulate this strategy as an

optimum-path forest problem in a graph derived from the samples.

The samples are nodes of a graph, whose arcs are defined by an

adjacency relation between them. The arcs are weighted by the dis-

tances between the feature vectors of their corresponding samples

and the nodes are also weighted by their probability density values,

which are computed from the arc weights. A path is a sequence of

adjacent nodes and a connectivity function evaluates the strength of

connectedness between its terminal nodes. Let S be a set of relevant

maxima in the pdf (e.g., samples A and B in Fig. 1a). We wish that

each sample in the dataset (e.g., sample C in Fig. 1a) be reached by

a path from S whose minimum density value along it is maximum.

The connectivity function assigns to any path in the graph, the mini-

mum between the density values along it and a handicap value of

its starting node. The handicap values work as filtering parameters

on the pdf, reducing the numbers of clusters by choosing the rele-

vant maxima. The maximization of the connectivity function for

each sample, irrespective to its starting node, partitions the graph

into an optimum-path forest, where each root (maximum of the pdf)

defines an optimum-path tree (cluster) composed of its most

strongly connected samples (Fig. 1c).

Some pdf-based approaches assume either explicitly, or often

implicitly, that the domes have known shapes and/or can be fitted to

parametric functions (MacQueen, 1967; Dempster et al., 1977;

Bezdek, 1981; Jain et al., 1988). Given that the shapes may be far

from hyper elliptical, which is the classical assumption, several

other methods aim to obtain clusters by avoiding those assumptions

(Cheng, 1995; Herbin et al., 1996). Among these approaches, the

mean-shift algorithm seems to be the most popular and actively pur-

sued in computer vision (Cheng, 1995; Comaniciu et al., 2000;

Comaniciu et al., 2002; DeMenthon, 2002; Comaniciu et al., 2003;

Wang et al., 2004; Yang et al., 2005). For each sample, it follows

the direction of the pdf’s gradient vector toward the steepest maxi-

mum around that sample. The pdf is never explicitly computed and

each maximum should define an influence zone composed of all

samples that achieve it. It is not difficult to see that this approach

may present problems if the gradient vector is poorly estimated or

has magnitude zero. Besides, if a maximum consists of neighboring

points with the same density value, it may break its influence zone

into multiple ones. This further increases the number of clusters

which is usually higher than the desired one.
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The proposed method circumvents those problems by first iden-

tifying one sample for each relevant maximum of the pdf and then

by defining the influence zone of that maximum (robustness). It

uses the image foresting transform (IFT), here extended from the

image domain to the feature space (Falcão et al., 2004). The IFT

has been successfully used to reduce image processing problems

into an optimum-path forest problem in a graph derived from the

image, by minimizing/maximizing a connectivity function. The

image operator is computed from one or more attributes of the for-

est. The connectivity function we use in the feature space is dual of

the one used for the IFT-watershed transform from a gray-scale

marker in the image domain (Falcão et al., 2001; Lotufo et al.,

2002), which computes a morphological reconstruction (Vincent,

1993) and a watershed transform (Beucher et al., 1979) in a same

operation. That is, the obtained clusters are equivalent to the dual-

watershed regions of the filtered pdf (the pdf without the irrelevant

domes), being a more general solution than the one obtained by the

popular mean-shift algorithm (Cheng, 1995).

The literature of graph-based approaches for data clustering is

vast (Zahn, 1971; Hubert, 1974; Jain et al., 1988; Wu et al., 1993;

Shi et al., 2000; Duda et al., 2000; Luxburg, 2007). Some methods

create a neighborhood graph (such as a minimum-spanning tree, the

Gabriel graph) from the data samples and then remove inconsistent

arcs based on some criterion [e.g., the single-linkage algorithm

(Hubert, 1974)]. Other approaches search for a global minimum cut

in the graph to create the clusters (Wu et al., 1993; Shi et al., 2000).

As far as we know, our approach is the first that models the cluster-

ing problem as an optimum-path forest problem. It extends the

main ideas under relative-fuzzy connectedness among seeds

(Herman et al., 2001; Saha et al., 2001) to other connectivity func-

tions and applications where the seeds (root samples) have to be

identified on-the-fly. Another approach based on optimum-path for-

est has been proposed for supervised classification (Papa et al.,

2008). Our method differs from that in the graph model, connectiv-

ity function, learning algorithm, and application, which is in our

case, unsupervised. Previous versions of our work have also been

published (Cappabianco et al., 2008; Rocha et al., 2008). The pres-

ent article merges and extends them by improving methods and

results for large datasets, such as images.

The basic concepts on pdf estimation from arc-weighted graphs

are given in Section II. The proposed method is presented in Sec-

tions III and IV describes its extension to large data sets. Experi-

mental comparisons with other methods are presented in Section

V. Results for interactive image segmentation and for fast, accu-

rate and automatic classification of brain tissues are presented in

Section VI, with experiments involving real and synthetic MR

images, and another clustering approach as baseline (Awate et al.,

2006). Section VII states our conclusions and discuss future

work.

II. WEIGHTED GRAPHS AND PDF ESTIMATION

A dataset N consists of samples from a given application, which

may be pixels, objects, images, or any other arbitrary entities. Each

sample s 2 N is usually represented by a feature vector ~vðsÞ and
the distance between samples s and t in the corresponding feature

space is given by a function d(s,t) (e.g., dðs; tÞ ¼ jj~vðtÞ �~vðsÞjj).
Our problem consists of identifying high concentrations of samples

which can characterize relevant clusters for that application. These

clusters form domes in the pdf (Fig. 1a), which can be computed by

Parzen Window (Duda et al., 2000). However, the shape of the Par-

zen kernel and its parameters may be chosen by several different

ways (Katkovnik et al., 2000; Comaniciu et al., 2001; Comaniciu,

2003; Georgescu et al., 2003).

We say that a sample t is adjacent to a sample s (i.e., t 2 AðsÞ or
ðs; tÞ 2 A) when they satisfy some adjacency relation. For example,

t 2 A1ðsÞ if dðs; tÞ � df ; or ð1Þ

t is a k-nearest neighbor of s
t 2 A2ðsÞ if

in the feature space;
ð2Þ

where df > 0 and k > 0 are real and integer parameters, respec-

tively, which must be computed by some optimization criterion,

such as entropy minimization (Awate et al., 2006). In Section III.B,

we present another equivalent option which finds the best value of k
in Eq. (2) by minimizing a graph-cut measure. Once A is defined,

we have a graph ðN ;AÞ whose nodes are the data samples in N
and the arcs are defined by the adjacency relation A. The distance

values d(s,t) between adjacent samples are arc weights and the pdf

Figure 1. (a) A pdf of two relevant clusters in a 2D feature space (brighter samples show higher density values). The maxima A and B compete
for sample C by offering it paths with some strength of connectedness. (b) The influence zones of the pdf’s maxima and (c) the influence zones of

its relevant maxima.
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values q(s) (node weights) can be computed by some kernel. For

example,

qðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p

jAðsÞj

X
t2AðsÞ

exp
�d2ðs; tÞ

2r2

� �
ð3Þ

where r can be fixed by

r ¼ max
8ðs;tÞ2A

dðs; tÞ
3

� �
ð4Þ

to guarantee that most adjacent samples are considered for pdf esti-

mation. Note that r is defined by the maximum arc-weight in

ðN ;AÞ divided by 3, which may be different depending on the

adjacency relation. Equation (2) defines a knn-graph ðN ;A2Þ and,
although the kernel is Gaussian, only the k-nearest samples of s are
used to compute its pdf value. We may also use kernels with differ-

ent shapes and, although the Gaussian shape favors round clusters,

the choice of the connectivity function leads to the detection of

clusters with arbitrary shapes (Figs. 1b and 1c).

In data clustering, we must take into account that clusters may

present different concentrations and the desired solution depends on

a data scale. We have observed that clusters with distinct concentra-

tions are better detected, when we use A2. Besides, it is easier to

find the best integer parameter k than the real parameter df for a
given application. The scale problem; however, is not possible to

solve without hard constraints. Figures 2a and 2b, for example,

illustrate a pdf by Eq. (3) and the influence zones of its maxima, for

k 5 17 in Eq. (2). The two less-concentrated clusters at the bottom

can be separated, but the largest and dense cluster at the top-left is

divided into several influence zones. The pdf estimation is

improved for the top-left cluster, when k 5 40, but the two clusters

at the bottom are merged into a single one (Fig. 2c). To obtain four

clusters, as shown in Figure 2d, we change a parameter in the con-

nectivity function such that the irrelevant clusters of Figure 2b are

eliminated.

III. DATA CLUSTERING BY OPTIMUM-PATH FOREST

In Section III.A, we show how to detect ‘‘relevant maxima’’ in the

pdf and to compute the influence zones of those maxima as an opti-

mum-path forest in ðN ;AÞ. A connectivity function is defined such

that irrelevant maxima are naturally eliminated during the process

and a single root sample is detected per maximum. These roots are

Figure 2. (a–b) A pdf by Eq. (3) and the influence zones of its maxima for k 5 17 in Eq. (2). (c) The largest top-left cluster can be detected with

k 5 40, but the two clusters at the bottom are merged into one. (d) Our approach can eliminate the irrelevant clusters of (b) by parameter choice

in the connectivity function.

52 Vol. 19, 50–68 (2009)



labeled with distinct integer numbers and their labels are propa-

gated to each of their most strongly connected samples, forming an

optimum-path tree rooted at each maximum.

For adjacency relations given by Eq. (2), different choices of k
lead to distinct optimum-path forests, whose labeled trees represent

distinct cuts in the graph ðN ;AÞ. The best value of k is chosen as

the one whose optimum-path forest minimizes a graph-cut measure

(Section III.B).

A. Influence Zones from Relevant Maxima. A path pt in
ðN ;AÞ is a sequence of adjacent nodes with terminus t. A path pt
5 hti is said trivial and pt 5 ps � hs,ti is the concatenation of a path

ps by an arc ðs; tÞ 2 A (Fig. 3a). A sample t is connected to a sam-

ple s when there is a path from s to t.

Symmetric adjacency relations [e.g., A1 in Eq. (1)] result into

symmetric connectivity relations, but A2 in Eq. (2) is an asymmet-

ric adjacency. Given that a maximum of the pdf may be a subset of

adjacent samples with a same density value, we need to guarantee

connectivity between any pair of samples in that maximum. Thus,

any sample of the maximum can be a representative and reach the

other samples in that maximum and in their influence zones by an

optimum path (Figs. 1 and 2). This requires extending the adjacency

relation A2 to be symmetric in the plateaus of q in order to compute

clusters.

if t 2 A2ðsÞ;
s =2 A2ðtÞ and

qðsÞ ¼ qðtÞ; then

A3ðtÞ  A2ðtÞ [ fsg:

ð5Þ

A connectivity function f(pt) assigns a value to any path pt, repre-
senting a ‘‘strength of connectedness’’ of t with respect to its start-

ing node R(t) (root node). A path pt is optimum when f(pt) � f(st)
for any other path st, irrespective to its root. We wish to choose t
such that its maximization for every node t will constraint the roots
of the optimum paths in the maxima of the pdf. That is, we wish to

assign to every sample t 2 N an optimum path P*(t) whose

strength of connectedness V(t) is the highest with respect to one

among the pdf’s maxima.

VðtÞ ¼ max
8pt;2ðN ;AÞ

ff ðptÞg: ð6Þ

The image foresting transform (IFT) (Falcão et al., 2004) solves the

problem by starting from trivial paths for all samples. First, the

maxima of f(hti) are detected and then optimum paths are propa-

gated from those maxima to their adjacent nodes, and from them to

their adjacents, by following a nonincreasing order of path values.

That is,

if f ps � s; th ið Þ > f ðptÞ then pt  ps � s; th i: ð7Þ

The only requirement is that f must be smooth. That is, for any sam-

ple t 2 N , there is an optimum path P*(t) which either is trivial, or

has the form P*(s) � hs,ti where

a. f(P*(s)) � f(P*(t)),
b. P*(s) is optimum,

c. for any optimum path P*(s), f(P*(s) �hs,ti)5 f(P*(t)) 5 V(t).

If we had one sample per maximum, forming a set R (bigger

dots in Fig. 3b), then the maximization of function f1 would solve

the problem.

f1 th ið Þ ¼ qðtÞ if t 2 R
�1 otherwise

�

f1 ps � hs; tið Þ ¼ min f1 psð Þ; q tð Þf g:
ð8Þ

Function f1 has an initialization term and a path propagation term,

which assigns to any path pt the lowest density value along it. Every
sample t 2 R defines an optimum trivial path hti because it is not

possible to reach t from another maximum of the pdf without pass-

ing through samples with density values lower than q(t) (Fig. 3b).
The other samples start with trivial paths of value 21 (Fig. 3c),

then any path from R has higher value than that. Considering all

possible paths from R to every sample, the optimum path P*(t) will
be the one which has the lowest density value along it is maximum.

The optimum paths are stored in a predecessor map P, forming

an optimum-path forest with roots in R—i.e., a function with no

cycles that assigns to each sample t =2 R its predecessor P(t) in the

optimum path from R or a marker nil when t 2 R. The optimum

path P*(t) with terminus t can be easily obtained by following P(t)
backwards up to its root R(t) inR (Fig. 3d).

Figure 3. (a) Path ps with possible extension hs,ti. (b) A graph
whose node weights are their pdf values q(t). There are two maxima

with values 3 and 5, respectively. The bigger dots indicate the root

set R. (c) Trivial path values f1(hti) for each sample t. (d) Optimum-
path forest P for f1 and the final path values V(t). The optimum path

P*(t) (dashed line) can be obtained by following the predecessors P(t)

up to the root R(t) for every sample t.
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Given that we do not have the maxima of the pdf, the

connectivity function must be chosen such that its handicap

values define the relevant maxima of the pdf. For f1(hti) 5

h(t) < q(t), for all t 2 N , some maxima of the pdf will be pre-

served and the others will be reached by paths from the root max-

ima, whose values are higher than their handicap values. For exam-

ple, if

hðtÞ ¼ q tð Þ � d;

d ¼ min
s;tð Þ2Ajq tð Þ6¼qðsÞ

jq tð Þ � q sð Þj; ð9Þ

then all maxima of q are preserved. For higher values of d, the
domes of the pdf with height less than d will not define influence

zones.

Figure 4 shows an example where q is an 1D pdf. If h(t) 5

q(t) 2 2, then the number of maxima is reduced from four to

two. The map V and optimum-path forest P (vectors of

the predecessor map) are shown in Figure 4, indicating the

influences zones of the two remaining maxima. The number of

clusters can also be reduced by removing domes with area or

volume below a threshold. This is done when hI results from

an area or volume opening on the pdf (Salembier et al.,

1998). We usually scale q within an interval [1, K] (e.g., K 5

100 or K 5 1000) of real numbers, such that it is easier

to set d and to guarantee that h(t) < q(t) by subtracting 1

from h(t).
We also want to avoid the division of the influence zone of a

maximum into multiple influence zones, each one rooted at a sam-

ple of that maximum. Given that the IFT algorithm first identifies

the maxima of the pdf, before propagating their influence zones, we

can change it to detect a first sample t per maximum, defining the

set R on-the-fly. We then change h(t) by q(t) and this sample will

conquer the remaining samples of the same maximum. Thus the

final connectivity function f2 becomes

f2 th ið Þ ¼
q tð Þ if t 2 R:
h tð Þ otherwise:

�

f2 ps � s; th ið Þ ¼ min f psð Þ; q tð Þf g:
ð10Þ

Algorithm 1 presents the IFT modified for a graph ðN ;AÞ and con-
nectivity function f2. It identifies a single root in each relevant max-

imum, labels it with a consecutive integer number l, and computes

optimum paths for f2 from the roots, by following a nonincreasing

order of path values. The optimum-path values are stored in V,
while the root labels L(t) and predecessors P(t) are propagated to

each sample t. The roots R(t) do not need to be propagated.

Algorithm 1: Clustering by optimum-path Forest

Line 1 initializes maps and inserts all samples in Q. At each iter-

ation of the main loop (Lines 2–9), an optimum path P*(s) with

Figure 4. The boxes show an 1D pdf q with four maxima. The map V (white) indicates the removal of two irrelevant domes (gray) when h(t) 5
q(t) 2 2. The 1D optimum-path forest P (vectors) shows the influence zones of the two remaining maxima.
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value V(s) is obtained in P when we remove its last sample s
from Q (Line 3). Ties are broken in Q using first-in-first-out

(FIFO) policy. That is, when two optimum paths reach an am-

biguous sample s with the same maximum value, s is assigned

to the first path that reached it. The test P(s) 5 nil in Line 4

identifies P*(s) as a trivial path hsi. Given that the optimum

paths are found in a nonincreasing order of values, trivial

paths indicate samples in the maxima. By changing V(s) to

q(s), as defined by Eq. (10) and indicated in Line 4, we are

forcing a first sample in each maximum to conquer the rest of

the samples in that maximum. Therefore, s 2 R becomes root of

the forest in Line 4 and a distinct label l is assigned to it. Lines 5–9

evaluate if the path that reaches an adjacent sample t through s is
better than the current path with terminus t and update Q, V, L, and
P accordingly. Note that, the condition in Line 5 avoids evaluating

adjacent nodes already removed from Q.

The computation of P was shown to facilitate the description of

the algorithm. However, it is not needed for data clustering. One

may initialize L(t) / nil in Line 1, remove P(t) / s in Line 8, and

replace P(s)5 nil by L(s)5 nil in Line 4.
Algorithm 1 runs in H Aj j þ Nj j log Nj jð Þ if Q is a balanced

heap data structure (Falcão et al., 2004). This running time may be

reduced to H Aj j þ Nj jKð Þ if we convert q and h to integer values

in the range of [0, K] and implement Q with bucket sorting (Falcão

et al., 2000). We are using the heap implementation with real path

values in this work.

B. Estimation of the Best knn-Graph. The results of Algo-

rithm 1 will also depend on the choice of A (e.g., the value of k in

the case of a knn-graph). Considering the influence zones a cut in

the graph ðN ;A3Þ [Eq. (5)], we wish to determine the value of k
which optimizes some graph-cut measure.

Clustering validity measures could be used but they usually

assume compact and well separated clusters (Theodoridis et al.,

1999; Halkidi et al., 2001). The measure should be independent of

the shape of the clusters. Thus we use the graph-cut measure for

multiple clusters as suggested in (Shi et al., 2000).

Let 1/d(s,t) be the arc weights in a knn-graph ðN ;A3Þ. Algo-
rithm 1 can provide in La graph cut for each value of

k 2 1; Nj j � 1ð Þ½ �. This cut is measured by C(k).

C kð Þ ¼
Xc
i¼1

W0i
Wi þW0i

; ð11Þ

Wi ¼
X

ðs;tÞ2A3jLðsÞ¼LðtÞ¼i

1

dðs; tÞ ; ð12Þ

W0i ¼
X

ðs;tÞ2A3jLðsÞ¼i;LðtÞ6¼i

1

dðs; tÞ ; ð13Þ

The best cut is defined by the minimum value of C(k), where Wi
0

considers all arc weights between cluster i and other clusters, and

Wi considers all arc weights within cluster i 5 1,2,. . .,c. The

desired minimum in C(k) is usually within k 2 1; kmax½ �, for

kmax � Nj j, which represents the most reasonable solution for a

given scale. Therefore, we usually constrain the search within that

interval.

IV. EXTENSIONS TO LARGE DATASETS

The choice of the adjacency parameter, df or k, by optimization

requires the execution of Algorithm 1 several times (e.g., kmax).

Depending on the number of nodes and executions, the clustering

process may take minutes running on modern PCs. Given that we

have to compute and store the arcs, the problem becomes unsur-

mountable for 2D and 3D images with thousands of pixels and mil-

lions of voxels. Therefore, we present two possible extensions for

large datasets.

A. Clustering with Size Constraint. Algorithm 1 is com-

puted within a small subset N 0 � N and then the

classification of the remaining samples in N n N 0 is done one by

one, as though the sample were part of the forest. In general, N 0
may be chosen by some random procedure. One can repeat the pro-

cess several times and take a final decision by majority vote (Sec-

tion VI.B). We then compute the best knn-graph ðN 0;A3Þ as

described before.

Let V and L be the optimum maps obtained from ðN 0;A3Þ by
Algorithm 1. A sample t 2 N n N 0 is classified in one of the

clusters by identifying which root would offer it an optimum path.

By considering the adjacent samples s 2 A3ðtÞ � N 0, we compute

q by Eq. (3), evaluate the paths ps � hs,ti, and select the one that

satisfies

V tð Þ ¼ max
8ðs;tÞ2A3

minfVðsÞ; qðtÞgf g: ð14Þ

Let the node s� 2 N 0 be the one that satisfies Eq. (15). The classifi-
cation simply assigns as the cluster of t.

B. Clustering with Spatial Constraint. If we considerably

reduce the number of arcs by adding some spatial constraint to the

adjacency computation, then the entire image domain N can be

used to form the nodes of the graph. For example, Algorithm 1 can

be directly executed in ðN ;A4Þ, where

t 2 A4ðsÞ if dðs; tÞ � df and jjt� sjj � di: ð15Þ

The parameter df can be computed using the first approach in a

small subset N 0 � N . This subset may consist, for example, of ev-

ery 16 3 16 pixels obtained by uniform sampling in the original

image (Section VI.A). The best knn-graph ðN 0;A3Þ is computed

and the maximum arc weight used to set r by Eq. (4) and df in Eq.

(16). Figure 5 illustrates four images and their respective pdfs,

when di 5 5 in Eq. (16) and the density values in Eq. (3) are scaled

from 1� 100d e.
Smaller values of di increase efficiency, but they also increase

the number of clusters. The choice of h in Eq. (10) then becomes

paramount to reduce the number of irrelevant clusters. The next

section shows results of both extensions to large datasets.

V. EXPERIMENTAL COMPARISONS WITH
OTHER METHODS

OPF finds natural groups in a dataset, but does not guarantee a

desired number of clusters. Other clustering methods can output a

desired number of groups, but which groups correspond to each

class cannot be solved based only on similarity functions and
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optimality criteria. Even the number of groups per class is

unknown in several applications. We illustrate the problem by

evaluating OPF and those clustering methods in various labeled

datasets.

Consider a labeled dataset N , where we know the correct class

of each sample. A good clustering approach should find natural

groups without mixing samples from distinct classes. By forcing the

number of groups to be the same of the number of classes, for

Figure 5. (a–d) Natural images and (e–h) their pdfs, computed with di 5 5 in Eq. (16) and density values scaled from 1� 100½ � in Eq. (3).
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example, one may observe more mixture of distinct classes in some

datasets. For the experiments of this section, we have selected syn-

thetic datasets (Figs. 6 and 7), in which we expect one group per

class, and three real datasets, MPEG-7 (MPEG-7, 2002), Wisconsin

Breast Cancer (WBC), and Letter Recognition (LR) (Newman,

2007), in which we do not know the number of clusters per class.

MPEG-7 consists of shapes (Fig. 8) and so we cluster it by using

three shape descriptors: Beam Angle Statistics (BAS) (Arica and

Vural, 2003), Fourier Coefficients (FC) (Persoon et al., 1977), and

Multi-Scale Fractal dimensions (MSF) (Torres et al., 2004). These

descriptors provide different degrees of class separation in the fea-

ture space. We expect better clustering performance as more sepa-

rated are the classes in the feature space.

In OPF, all samples in a given optimum-path tree are

assumed to have the same label of their root. To measure the

mixture of classes in the clusters, we can verify the roots of

the forest, assign the correct class to the label of each root,

and propagate this label to the remaining samples of its opti-

mum-path tree. The purity of the clustering is then measured

as the percentage of correct classifications by this procedure.

For other methods, which are not based on the optimum-path

forest, we assign to each cluster the class of the majority of

its samples and use the same measure of purity.

We have chosen the library CLUTO* for the experiments,

because it provides six clustering methods, four similarity func-

tions and 12 optimality criteria. We have evaluated all possible

combinations for each dataset and Table I shows only the combi-

nations with the highest purity values. We assigned a code to

each combination and Table II shows their purity values for each

dataset. We are using the same nomenclature of CLUTO for its

parameters. The best methods were: graph—it computes a c-way
clustering of a nearest-neighbor graph by the min-cut algorithm,

bagglo—it is an agglomerative approach into c clusters, and rbr—

it is a partitional approach into c clusters with global optimiza-

tion. For at least one case, each similarity function presented the

best result: cos, cosine function; corr, correlation coefficients;

dist, inverse of the Euclidean distance; and jacc, extended Jaccard

coefficient. The best optimality criteria were: i2—it maximizes

the total similarity within each group; clink—the traditional

Figure 6. Datasets of 2D points: (a) cone-torus, (b) saturn, (c) petals, and (d) boat.

*URL: http://www.caip.rutgers.edu/riul/research/code/EDISON
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complete-link criterion; and g1p—it minimizes the similarity

between distinct groups.

The number c of clusters in CLUTO is set to be the same num-

ber of classes for each dataset. Good purity values above 70.00%

can be observed in Table II for the cases where each class can be

represented by one group (data1-data5 and petals, cone-torus, and

boat), except for saturn. Such one-to-one correspondence seems

to be not valid for LR and MPEG-7, but it holds for WBC. The

purity values indicate that the shape descriptor BAS can better

separate the classes in the feature space than MSF and FC. Table

II also presents the purity values obtained by OPF for each

dataset.

The optimality criterion is the optimum-path forest with

normalized minimum cut [Eq. (11)] and the similarity function

is equivalent to dist in Table I. One may improve the results

of OPF with better similarity function and optimality criterion

Figure 7. Datasets of 2D points: (a) data1, (b) data2, (c) data3, (d) data4, and (d) data5.
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for the best k. The parameters kmax and h(t) were found exper-

imentally and using the volume opening on the pdf (Salembier

et al., 2000). The general idea was to minimize the number of

clusters for purity values above 70.00%. For data1-data5, pet-

als, boat and cone-torus, OPF obtained good purity values,

sometimes higher than CLUTO, with the desired number of

classes, except for saturn. For WBC, OPF required four clus-

ters to achieve result similar to CLUTO. In MPEG-7, higher

is the separability of the classes in the feature space, less is

the number of clusters obtained with each shape descriptor,

but this number is much higher than the number of classes.

Any attempt to further reduce the number of clusters will

drastically reduce the purity values.

We may conclude that it is possible to obtain good and some-

times better results with OPF (e.g., see data3-data5). For a given

application, we need to investigate the best distance (similarity)

function, optimality criterion for the best k, kmax, and h(t).

VI. RESULTS IN IMAGE SEGMENTATION

A multidimensional and multiparametric image Î is a pair ðN ;~IÞ
where ðN � ZnÞ is the image domain in n dimensions and
~I sð Þ ¼ I1 sð Þ; I2 sð Þ; . . . ; Im sð Þf g is a vectorial function, which assigns

Figure 8. Examples of shapes in MPEG-7 from the classes (a–c) fish and (d–f) camel.
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m image properties (parameters) to each pixel t 2 N . For example,

I1 tð Þ; I2 tð Þ; I3 tð Þf g may be the red, green, and blue values of t in a

color image Î. We present segmentation results for 2D (natural

scenes) and 3D (MR-images) datasets in this section.

A. Natural Scenes. Objects in natural scenes usually consist of a

single connected component each, but parts of the background may

present similar image features. The clustering with spatial con-

straint seems to be more suitable in this case, because the clusters

can be broken into disconnected regions such that similar parts of

object and background are more likely to fall in different regions

(Fig. 10).

The graph ðN ;A4Þ can be created as described in Section IV.B,

but the image features play an important role in the segmentation

results. Instead of using ~IðsÞ as the image features of each pixel

s 2 N , we describe in Section VI.A.1 other options based on image

smoothing in several scales. Note that the choice of the best feature

set for a given segmentation task is subject for a future work, given

the variability of the natural scenes.

Algorithm 1 computes a filtered pdf in V (inferior reconstruction

of q from h) and the dual-watershed regions of it in L (the influence

zones of the maxima of V). This represents an extension of the IFT-

watershed transform from gray-scale marker (Lotufo et al., 2002)

from the image domain to the feature space. Section 6.1.2 then

Figure 9. (a–d) Gradient images computed from the images in Figures 5a–5d using Eq. (19). Lower brightness values indicate higher gradient
values.
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presents a comparative analysis of the proposed approach with

respect to (Lotufo et al., 2002) and the mean-shift algorithm

(Cheng, 1995).

Finally, the clustering results are not usually enough to solve

image segmentation. Some global information is needed to indicate

which regions compose the object (Fig. 10). We then take the user’s

help for this task. Section VI.A.3 presents an interactive approach,

where the user involvement is reduced to draw markers that either

merge object regions or split a selected region, when clustering fails

in separating object and background (Figs. 11a–11h). The method

used for region splitting is the IFT-watershed transform from la-

beled markers (Lotufo et al., 2000).

A.1. Multiscale Image Features. Multiscale image smoothing

can be computed by linear convolutions with Gaussians (Lindeberg,

1994) and/or by various types of levelings (Vincent, 1993; Sale-

mbier et al., 1995; Salembier et al., 1998; Meyer, 2004). In this arti-

cle, we are using sequences of opening by reconstruction and clos-

ing by reconstruction, computed over each image band Ii, i 5

1,2,. . .m, for disks of radii j 5 1,2,. . .,S (e.g., S 5 4). Gaussian fil-

ters can provide smoother contours than morphological reconstruc-

tions, but the latter better preserves the natural indentations and pro-

trusions of the shapes.

Let ~vi sð Þ ¼ vi:1 sð Þ; vi:2 sð Þ; . . . ; vi:S sð Þð Þ be the pixel intensities

vi;j sð Þ; j ¼ 1; 2; . . . ; S, of the multiscale smoothing on each band Ii,
i 5 1,2,3 of an RGB image. The feature vector ~vðsÞ assigned

to each pixel s 2 N is ðv1:1ðsÞ; . . . ; v1:SðsÞ; v2:1ðsÞ; . . . ; v2:SðsÞ;
v3:1ðsÞ; . . . ; . v3,s(s)), and the distance d(s,t) between these vectors is

Euclidean.

The multiscale image features are also used for gradient compu-

tation in both IFT-watershed transforms, from gray-scale marker

(Lotufo et al., 2002) and from labeled marker (Lotufo et al., 2000).

A gradient image ðN ;G) is computed using adjacency relation A5

(8-neighborhood), as follows.

t 2 A5ðsÞ if t� sj jj j �
ffiffiffi
2
p

; ð16Þ

~GiðsÞ ¼
XS
j¼1

X
8t2A5ðsÞ

jvi;jðtÞ � vi;jðsÞ�s~t; ð17Þ

GðsÞ ¼ max
i¼1;2;3

~Gi sð Þ
��� ������ ��� ð18Þ

where s~t is the unit vector connecting s to t in the image domain

(Fig. 9).

A.2. Comparative Analysis. When comparing segmentation

methods, we must be careful to avoid experimental comparisons

between different implementations. The mean-shift codey requires

adjustments of some parameters, uses different image features, and

merges the labeled clusters based on a distance criterion between

maxima (Comaniciu et al., 2000). The same criterion could be

applied in our approach, with no guarantee that object and back-

ground will be separated. For this reason, we believe that the clus-

tering should minimize the number of object’s regions as much as

possible and let the user to complete the process (Section VI.A.3).

Figures 10a–10d present the labeled clusters of Algorithm 1 for

f2 with h(t) 5 q(t) 2 1 and q(t) [ [1,100] (Figs. 5e–5h). These

results are similar to those of the mean-shift approach (Cheng, 1995),

when the mean-shift merges the influence zones of samples in a same

maximum and solves gradient problems on plateaus (Section I. These

objects are divided into several regions, but their boundaries are pre-

served. To reduce the number of regions for interactive segmentation,

we run Algorithm 1 with h computed by volume opening on q (Sale-

mbier et al., 2000) (Figs. 10e–10h). The IFT-watershed transform

from gray-scale marker uses the volume closing to create a marker

h(t) > G(t) and runs the IFT on an image graph ðN ;A5Þ to minimize

a connectivity function f4 [see the duality with Eq. (10)].

f4 th ið Þ ¼
G tð Þ if t 2 R

h tð Þ otherwise

�

f4 ps � s; th ið Þ ¼ max f4 psð Þ;G tð Þf g
ð19Þ

where R is the set of the relevant minima in G, which become the

only minima of V (superior reconstruction of G from the marker h).
Their influence zones appear in L. The constraint df in Eq. (16)

allows a higher radius di 5 5 than the one used in Eq. (17). This to-

gether with the use of q rather than G usually reduces the number

of regions with respect to the number obtained by the IFT-water-

shed from gray-scale marker (Figs. 10i–10l).

A.3. Interactive Segmentation. The regions in Figures 10e–10h

are obtained by separating the clusters into 4-connected image com-

ponents. The partition helps the user to identify which regions com-

pose the object and select markers to merge them (Figs. 11a–11d).

It also shows when a region includes object and background (e.g.,

Fig. 11d), but their pixels can be easily separated with an IFT-

watershed transform from labeled markers (Lotufo et al., 2000) con-

strained to that region. The markers are labeled as internal and

external seed pixels, forming a set R. The IFT algorithm runs on an

Table II. The columns show the datasets and their number of classes

(nclasses), the purity values obtained by CLUTO with the parameter

combination (code) indicated in Table I, and the purity values of OPF to

obtain a minimum number of groups (ngroups) with purity above 70.00%.

Dataset (nclasses) CLUTO (code) OPF (ngroups)

Data1 (2) 99.37 (1) 99.09 (2)

Data2 (2) 98.59 (1) 97.53 (2)

Data3 (5) 88.24 (1) 99.71 (5)

Data4 (3) 74.64 (3) 100.00 (3)

Data5 (2) 97.73 (2) 100.00 (2)

LR (26) 39.43 (1) 70.83 (256)

MPEG7-BAS (70) 57.36 (4) 82.86 (258)

MPEG7-FC (70) 33.36 (1) 76.86 (671)

MPEG7-MSF (70) 43.29 (1) 77.00 (587)

Petals (4) 100.00 (2) 98.00 (4)

Saturn (2) 58.00 (2) 82.50 (13)

Boat (3) 79.00 (1) 74.00 (3)

Cone-torus (3) 72.00 (1) 72.00 (3)

WBC (2) 95.70 (1) 94.84 (4)

Table I. Code for the best combinations of method, similarity function, and

optimality criterion in CLUTO.

Code Method Similarity Optimality Criterion

1 Graph dist i2

2 Graph jacc i2

3 Bagglo cos clink

4 rbr corr g1p

The purity values for these combinations in the respective datasets are listed in Table
II. We are using the same nomenclature of CLUTO for its parameters, as described in
the text.

yURL: http://www.bic.mni.mcgill.ca/brainweb
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Figure 10. Clustering results using Algorithm 1 for f2 with (a–d) h(t) 5 q(t)2 1 and (e–h) h from volume opening on q. (i-l) Results with IFT-water-

shed from gray-scale marker (Lotufo et al., 2002).
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Figure 10. (Continued)
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image graph ðN ;A5Þ to minimize a connectivity function f3 [see

the duality with Eq. (8)].

f3 th ið Þ ¼
G tð Þ if t 2 R
þ1 otherwise

�

f3 ps � s; th ið Þ ¼ max f3 psð Þ;G tð Þf g:
ð20Þ

The object region is redefined by the optimum-path forest rooted at

the internal seeds.

Figures 11e–11h show the resulting segmentation from the

markers and regions of Figures 11a–11d. Similar results could be

obtained from the gradient images in Figures 9a–9d by using only

the IFT-watershed transform from labeled markers (Figs. 11i–11l).

Figure 11. (a–d) The user selects markers to merge regions and/or separate object and background in a given region. (e–h) Segmentation
results. (i–l) Similar results with the IFT-watershed transform from labeled markers. User’s involvement can be reduced with the visual guidance

of (a–d).
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However, the proposed method helps the user to find directly the

effective locations for the markers, usually reducing the number of

markers and user’s involvement.

B. MR-Images of the Brain. The classification of the brain tis-

sues is a fundamental task in several medical applications (Kesslak

et al., 1991; Jack et al., 1992; Zijdenbos et al., 1994; Juottonen

et al., 1998). In this section, we present a fast, accurate and auto-

matic approach for gray-matter (GM) and white-matter (WM) clas-

sification in MRT1-images of the brain, but it can be extended to

other imaging protocols.

An MRT1-image of the brain is a pair ðN ; IÞ, where N contains

millions of voxels whose intensities I(t) are usually darker in GM

than in WM (exceptions might occur because of noise, inhomoge-

neity, and partial volume). Our problem consists of finding two

clusters, one with GM voxels and the other with WM voxels. The

clustering with size constraint is used for this purpose (Section

IV.A.).

The most critical problem is the inhomogeneity. We first reduce

it by transforming I(t) into a new voxel intensity J(t), 8t 2 N (Sec-

tion VI.B.1). A graph ðN 0;A3Þ is created by subsampling 0.02% of

the voxels in N , such that 0.01% of these voxels have values below

the mean intensity inside the brain and 0.01% above it. This usually

Figure 11. (Continued)

Figure 12. The effect of inhomogeneity in the original image (a) is not present in the corrected one (b). In (a), the inhomogeneity does not affect

nearby voxels, such as Si and Ti for i 5 0,1,2, independent of their tissues. However, far away voxels from distinct tissues, such as S1 and T2,

may be classified in the same cluster due to their nearby intensities (I(S1) 5 1737 and I(T2) 5 1712) and the interval of intensities between voxels
from a same tissue (I(S2 2 I(S1) 5 485) and I(T2) 2 I(T1) 5 429). In (b), the intensities within a same tissue are considerably reduced (J(S1) 5 J (S2)

5 156 and J(T1) 2 J(T2)5 107), while the intensity difference between voxels from distinct tissues increases (J(S1) 2 J (T2) 5 704).
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allows a fair amount of samples from both GM and WM tissues. A

feature vector ~vðtÞ consists of the value J(t) and the values of its 18

closest neighbors in the image domain. When a neighbor is out of

the brain, we repeat J(t) in the vector. The arc-weights are Euclid-

ean distances between their corresponding feature vectors and the

pdf is computed by Eq. (3) using the best value of k 2 1; 30d e. The
method usually finds two clusters within this range. When it finds

more than two clusters, we force two clusters by assigning a GM

label to those with mean intensity below the mean intensity in the

brain and a WM label otherwise. Equation (15) is evaluated to clas-

sify the remaining voxels in N n N 0. Finally, the whole process is

executed a few times (e.g., 7) and the class with majority vote is

chosen for every voxel in order to guarantee stability. The method

has been evaluated for real and synthetic images (Section VI.B.2).

It represents an advance with respect to our previous approach

(Cappabianco et al., 2008), which did not use neither inhomogene-

ity reduction nor majority vote.

B.1. Inhomogeneity Reduction. We reduce inhomogeneity based

on three observations. First, it affects little the intensities of nearby

voxels in a same tissue (e.g., So and To in Fig. 12a). Second, similar

observation is valid for intensity differences between WM and GM

voxels (e.g., Si and Ti, i 5 1, 2, in Figure 12a, respectively) in

nearby regions of the image domain. Third, most voxels on the sur-

face of the brain belongs to GM. The third observation led us to

identify reference voxels for GM on the surface of the brain.

Another clustering by optimum-path forest (OPF) is executed to

divide the voxels on the surface of the brain into GM and WM vox-

els. The GM voxels are used as reference. Let t be a voxel in the

brain, C(t) be the closest reference voxel of t on the surface of the

brain, and VCðtÞ be the set of reference voxels within an adjacency

radius equal to 6 mm from C(t) in the image domain. The purpose

VCðtÞ is to avoid outliers among reference voxels. The new intensity

J(t) is the average of the following intensity differences.

J tð Þ ¼ 1

VCðtÞ
�� ��

X
8r2VcðtÞ

I tð Þ � I rð Þj j: ð21Þ

After transformation, we expect similar intensities for GM voxels

and similar intensities for WM voxels all over the brain (Fig. 12b),

with higher differences between these tissues.

B.2. Evaluation. We selected eight synthetic images with 181 3

217 3 181 voxels from the Brainweb database,y with noise from 3,

5, 7, and 9%, and inhomogeneity 20 and 40%, respectively. We

have also performed the same experiment for the first eight real

images (with 9-bit intensity values) from the IBSR dataset.{ In

those datasets, ground-truth images are available, and so we com-

puted the Dice similarity between ground truth and the segmenta-

tion results. For each image, we executed the methods 9 times to

compute mean and standard deviation of the Dice similarities. The

methods OPF1 and OPF2 represent our previous (Cappabianco

et al., 2008) and current approaches for GM/WM classification. The

majority vote in OPF2 was computed over seven executions. The

classification of the remaining voxels by Eq. (15) can be substituted

by a Bayesian classifier. By doing that, any loss in effectiveness

reinforce the importance of the connectivity in the feature space for

pattern classification. We then include a third approach, which uses

OPF2 to classify the subsamples N 0 followed by a Bayesian classi-

fier on N n N 0 and majority vote over seven executions (OPF2 1

Bayes). We have also obtained from Awate the results of their clus-

tering approach based on Markov model and registration with a

probabilistic atlas (Awate et al., 2006).

Tables III and IV show the classification results for GM and

WM on the synthetic images. The results on the ISBR images are

shown in Tables V and VI. In the case of the ISBR images, there

are two variants of the Awate’s method based on different affinity

thresholds for registration with the probabilistic atlas. The mean

effectiveness of OPF2 is superior than those obtained by OPF1 and

OPF2 1 Bayes. The inhomogeneity reduction and majority vote

usually improve the clustering by OPF, and the connectivity in the

Table IV. WM classification of the synthetic images: mean and standard

deviation of the Dice similarities using OPF1 (Cappabianco, et al., 2008),

the proposed method OPF2, the hybrid approach of OPF with Bayes

OPF21Bayes, and the Awate’s method (Awate, 2006).

Phantom WM

Dice Similarity Mean 	 Std. Dev. (%)

OPF1 OPF2 OPF21Bayes Awate

3%, 20% 93.43 	 0.19 94.10 	 0.04 93.74 	 0.06 94.85

5%, 20% 93.40 	 0.20 93.89 	 0.04 93.75 	 0.09 94.27

7%, 20% 92.55 	 0.93 93.91 	 0.02 92.79 	 0.16 93.66

9%, 20% 91.93 	 0.54 93.08 	 0.05 91.01 	 0.09 92.94

3%, 40% 88.30 	 0.64 91.75 	 0.06 91.23 	 0.04 94.85

5%, 40% 88.19 	 0.67 91.40 	 0.05 91.04 	 0.10 94.27

7%, 40% 87.77 	 0.81 91.39 	 0.03 89.93 	 0.13 93.66

9%, 40% 87.03 	 0.73 90.45 	 0.04 88.48 	 0.10 92.94

Table V. GM classification of the ISBR images: mean and standard

deviation of the Dice similarities using OPF1 (Cappabianco, et al., 2008),

the proposed method OPF2, the hybrid approach OPF21Bayes, and two

variants of the Awate’s method (Awate, 2006) with different affinity

thresholds.

IBSR GM

Dice Similarity 	 Std. Dev. (%)

OPF1 OPF2 OPF2 1 Bayes Awate

1 92.22 	 0.87 90.33 	 0.09 90.34 	 0.12 83.33

2 90.99 	 2.93 91.72 	 0.02 87.54 	 0.30 85.34

3 93.86 	 0.14 91.99 	 0.10 91.13 	 0.13 87.25

4 88.19 	 5.97 92.32 	 0.10 90.33 	 0.18 83.24

5 90.20 	 1.73 90.33 	 0.02 88.00 	 0.09 86.41

6 85.02 	 4.21 89.42 	 0.05 89.68 	 0.11 81.62

7 91.22 	 3.35 91.34 	 0.08 87.29 	 0.15 81.07

8 88.46 	 4.39 90.80 	 0.02 88.27 	 0.10 78.06

Table III. GM classification of the synthetic images: mean and standard

deviation of the Dice similarities using OPF1 (Cappabianco, et al., 2008) the

proposed method OPF2, the hybrid approach of OPF with Bayes

OPF21Bayes, and the Awate’s method (Awate, 2006).

Phantom GM

Dice Similarity Mean 	 Std. Dev. (%)

OPF1 OPF2 OPF2 1 Bayes Awate

3%, 20% 95.15 	 0.17 95.47 	 0.05 95.50 	 0.02 91.32

5%, 20% 95.10 	 0.17 95.30 	 0.05 95.51 	 0.04 90.78

7%, 20% 94.36 	 1.03 95.49 	 0.02 95.00 	 0.08 90.13

9%, 20% 94.06 	 0.27 94.95 	 0.01 93.98 	 0.04 89.32

3%, 40% 90.90 	 1.28 93.57 	 0.07 93.50 	 0.03 91.32

5%, 40% 91.23 	 1.25 93.27 	 0.08 93.51 	 0.04 90.78

7%, 40% 91.10 	 0.72 93.50 	 0.03 92.91 	 0.05 90.13

9%, 40% 90.66 	 1.21 92.84 	 0.02 92.30 	 0.04 89.32

yURL: http://www.bic.mni.mcgill.ca/brainweb
{URL: www.cma.mgh.harvard.edu/ibsr

66 Vol. 19, 50–68 (2009)



feature space [Eq. (15)] seems to be important for classification.

These results are also good as compared with those obtained by the

Awate’s method. Given that the standard deviation of their method

seems to be very small (Awate et al., 2006), we may conclude that

their approach better classifies WM than GM, as compared with

OPF2. The computational time for each execution of the OPF clus-

tering is about 50 seconds on modern PCs, plus 20 seconds for inho-

mogeneity reduction. Five executions are usually enough to obtain

good results with majority vote. Therefore GM/WM classification

can take about 5.33 minutes using OPF2, being about six times

faster than the approach proposed in (Awate et al., 2006).

VII. CONCLUSIONS

We presented a clustering approach based on optimum-path forest

(OPF) with two possible extensions to large datasets. The method

identifies the influence zones of relevant maxima of the pdf based

on the choice of a connectivity function. We showed the advantages

of the OPF clustering over some baseline approaches, which

include theoretical aspects and practical results. We also included

experimental comparisons with other clustering methods, which

output a desired number of clusters, and showed that OPF can

achieve good and better results in some cases. OPF was shown to

be fast and accurate for automatic GM/WM classification using real

and synthetic images, and useful to guide the user’s actions in the

interactive segmentation of natural scenes. The results of OPF for

GM/WM classification were similar to those obtained by (Awate

et al., 2006), being usually better for GM than WM and about six

times faster than that.

The effectiveness of the OPF clustering depends on the features,

distance function, optimality criterion for the best k, kmax, and h(t).
In the case of large datasets, it also depends on a representative sub-

sampling process. These aspects need further investigation in the

context of each application. The user can also provide labeled sub-

samples by drawing markers in the image and the OPF approach

can be easily extended to supervised and semisupervised classifica-

tion. This was not exploited for interactive segmentation, but the

idea is the same. The subsampling process and pdf estimation can

also take advantage of the registration with a probabilistic atlas for

GM/WM separation. Our future work goes in this direction.
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