
Supervised Pattern Classification based on Optimum-Path Forest

João P. Papa, Alexandre X. Falcão and Celso T. N. Suzuki
Institute of Computing, University of Campinas

Email: {jpaulo,afalcao}@ic.unicamp.br, celso.suzuki@gmail.com

Corrected version (for Figs. 3a and 3b) of the paper published in Intl. Journal of Imaging Systems
and Technology, Wiley, Vol. 19, Issue 2, pp. 120–131, Jun 2009, ISSN: 0899-9457,

doi.wiley.com/10.1002/ima.20188

Abstract

We present a supervised classification method which rep-
resents each class by one or more optimum-path trees
rooted at some key samples, called prototypes. The train-
ing samples are nodes of a complete graph, whose arcs are
weighted by the distances between the feature vectors of
their nodes. Prototypes are identified in all classes and
the minimization of a connectivity function by dynamic
programming assigns to each training sample a minimum-
cost path from its most strongly connected prototype.
This competition among prototypes partitions the graph
into an optimum-path forest rooted at them. The class
of the samples in an optimum-path tree is assumed to
be the same of its root. A test sample is classified sim-
ilarly, by identifying which tree would contain it, if the
sample were part of the training set. By choice of the
graph model and connectivity function, one can devise
other optimum-path forest classifiers. We present one of
them, which is fast, simple, multi-class, parameter inde-
pendent, does not make any assumption about the shapes
of the classes, and can handle some degree of overlapping
between classes. We also propose a general algorithm to
learn from errors on an evaluation set without increasing
the training set, and show the advantages of our method
with respect to SVM, ANN-MLP, and k-NN classifiers in
several experiments with datasets of various types.

1 Introduction

Patterns are usually represented by feature vectors (set
of measures or observations) obtained from samples of a
dataset [1]. Two fundamental problems in pattern recog-
nition are: (i) the identification of natural groups (clus-
tering) composed by samples with similar patterns and
(ii) the classification of each sample in one of c possi-
ble classes (labels). The dataset is usually divided in
two parts, a training set and a test set, being the first
used to project the classifier and the second used for val-

idation, by measuring its classification errors (accuracy).
This process must be also repeated several times with
randomly selected training and test samples to achieve a
conclusion about the statistics of its accuracy (robustness
and precision). While problem (i) has no prior informa-
tion about the labels of the samples, the training in prob-
lem (ii) can count with unlabeled samples (unsupervised
learning), labeled samples (supervised learning) or part of
the samples labeled and the other part unlabeled (semi-
supervised learning [2–4]). Our focus is on the supervised
learning approaches.

Figure 1 illustrates three typical cases in 2D feature
spaces using two classes: (a) linearly separable, (b) piece-
wise linearly separable, and (c) overlapping classes with
arbitrary shapes. Any reasonable approach should han-
dle (a) and (b), being (c) the most interesting chal-
lenge. An artificial neural network with multi-layer per-
ceptrons (ANN-MLP), for example, can address (a) and
(b), but not (c) [5]. As an unstable classifier, collec-
tions of ANN-MLP [6] can improve its performance up
to some unknown limit of classifiers [7]. Support vec-
tor machines (SVMs) have been proposed to overcome
the problem, by assuming linearly separable classes in a
higher-dimensional feature space [8]. Its computational
cost rapidly increases with the training set size and the
number of support vectors. As a binary classifier, multi-
ple SVMs are required to solve a multi-class problem [9].
Tang and Mazzoni [10] proposed a method to reduce the
number of support vectors in the multi-class problem.
Their approach suffers from slow convergence and high
computational cost, because they first minimize the num-
ber of support vectors in several binary SVMs, and then
share these vectors among the machines. Panda et al. [11]
presented a method to reduce the training set size before
computing the SVM algorithm. Their approach aims to
identify and remove samples likely related to non-support
vectors. However, in all SVM approaches, the assumption
of separability may also not be valid in any space of finite
dimension [12].

1

1 INTRODUCTION 2

We propose a supervised classifier based on optimum-
path forest (OPF), which is fast, simple, multi-class,
parameter independent, does not make any assumption
about the shapes of the classes, and can handle some de-
gree of overlapping between classes. The training set is
thought of as a complete graph, whose nodes are the sam-
ples and arcs link all pairs of nodes. The arcs are weighted
by the distances between the feature vectors of their corre-
sponding nodes. Any sequence of distinct samples forms
a path connecting the terminal nodes and a connectivity
function assigns a cost to that path (e.g., the maximum
arc-weight along it). The idea is to identify prototypes in
each class such that every sample is assigned to the class
of its most strongly connected prototype. That is, the
one which offers to it a minimum-cost path, considering
all possible paths from the prototypes. Figure 1 shows
two sets of prototypes, S1 and S2, in classes 1 and 2. The
connection from Si to a sample t is represented by a path

π
(i)
t with terminus t and root in some prototype of Si,

i = 1, 2. In all cases, the optimum path (to which the
maximum arc-weight is minimum) comes from a proto-
type of the same class of t. Our approach can handle all
three cases with the maximum arc-weight function and
prototypes estimated as the closest samples from distinct
classes. In the case of overlapping between classes, these
prototypes work as class defenders in the overlapped re-
gions of the feature space (Figure 1c).

The classifier is an optimum-path forest rooted at the
prototypes. That is, each training sample belongs to one
optimum-path tree rooted at its most strongly connected
prototype. The classification of a test sample evaluates
the optimum paths from the prototypes to this sample
incrementally, as though it were part of the forest, and
assigns to it the label of the most strongly connected
root. Note the difference between the proposed method
with the maximum arc-weight function and the nearest
neighbor approach [13]. A test/training sample may be
assigned to a given class, even when its closest labeled
sample is from another class (Figure 1b).

The optimum paths from the prototypes to the other
samples are computed by the algorithm of the image
foresting transform (IFT) — a tool for the design of image
processing operators based on connectivity [14] — which
is extended here from the image domain to the feature
space. The IFT algorithm is essentially Dijkstra’s algo-
rithm [15] modified for multiple sources and more general
path-value functions [14]. It first identifies the minima
(maxima) of the path-value function as source nodes and
then propagates optimum paths from those sources in a
non-decreasing (non-increasing) order of optimum-path
values, partitioning the graph into an optimum-path for-
est rooted at the source nodes. It is a dynamic program-
ming strategy in which, by choice of the path-value func-
tion (Equation 1 in Section 2.1), we force the prototypes

t

(2)
tπ

S2

(1)
tπ

S
1

2S

S1

t

πt
(1)

(2)πt

(a) (b)

S1

S2

t

π(1)
t π(2)

t

(c)

Figure 1: Examples of 2D feature spaces using two classes:
(a) linearly separable, (b) piecewise linearly separable,
and (c) overlapping classes with arbitrary shapes. Proto-
types can be identified in each class, forming the sets S1

and S2. Every sample t can be connected to a prototype

in Si, i = 1, 2, by a sequence π
(i)
t of distinct samples. The

classification is done based on optimal connections to the
prototypes.

to be the roots of the forest.

The dataset partition by the proposed classifier in
the feature space is equivalent to an image segmenta-
tion by the IFT-watershed transform from labeled mark-
ers [16, 17] in the image domain. Similar important rela-
tions can be obtained with other image operators, such
as relative-fuzzy connected segmentation [18–21]. In our
case, the markers are the prototypes and we have a spe-
cial way to estimate them. Figure 2 helps to understand
this comparison and why the proposed method works in
the feature space, when prototypes are estimated as the
closest samples from distinct classes. Figure 2a shows an
image with one internal marker (white) and one exter-
nal marker (black) for an object of interest. The pixels
are the nodes of a graph whose arcs link the 8-neighbors
of each pixel. The arc weights are dissimilarity values
between pixels, computed based on their image prop-
erties. The dissimilarity function between pixels plays
the same role of the distance function between samples
and distinct classes are represented by object and back-
ground. The connectivity function is the maximum arc-
weight along the path. Figure 2b gives an idea of the
arc weights by displaying the complement of a gradient-
like image, which is created by assigning to each pixel
the maximum among the arc weights between it and its

1 INTRODUCTION 3

eight neighbors. By selecting markers around the weaker
parts (lower arc weights) of the boundary (Figure 2a), we
force the minimum-cost paths from internal and exter-
nal markers to meet first at the weaker parts of the ob-
ject’s boundary, blocking these passages for paths from
the other side. Therefore, possible paths from one side
to the other will have costs higher than paths from the
same side with respect to each marker. The optimum-
path propagation from both markers describes an ordered
region growing (flooding) process where the wavefronts
from each marker meet at the object’s boundary (Fig-
ure 2c). The object is defined by the optimum-path forest
rooted at the pixels of the internal marker. In the case of
multiple internal and external markers, the object is com-
posed by multiple internal forests. Three frames of this
process are presented in Figures 2d- 2f. Note that internal
(external) pixels, which are only reachable by high-cost
paths, are initally surrounded by optimum paths from the
internal (external) marker and finally conquered by this
marker. We can also exploit other connectivity functions,
but this work presents only the results for the maximum
arc-weight function.

(a) (b)

(c) (d)

(e) (f)

Figure 2: IFT-watershed segmentation. (a) Image with
internal (white) and external (black) markers. (b) The
complement of a gradient-like image which gives an idea
of the arc weigths. The markers are selected around the
wearker parts of the boundary (brighter values in b). (c)
The result of segmentation and (d-f) three frames of the
IFT flooding process that leads to (c).

Supervised classification based on prototypes is not
new. For example, methods such as the k-nearest neigh-
bors (k-NN) use all training samples as prototypes [22].
Its classification relies on the direct distance between sam-
ples. As far as we know, our approach is the first to con-
sider optimum-path forests rooted at automatically se-
lected prototypes in the feature space. Besides, by chang-
ing the graph model and path-value function, one can de-
rive other types of optimum-path forest classifiers, such as
the unsupervised learning approach proposed in [23, 24],
which also relies on a different strategy to estimate pro-
totypes. Most approaches for pattern classification based
on graphs and/or paths in graphs are either unsuper-
vised [25–28] or semi-supervised [29–32]. The proposed
method can be easily extended to semi-supervised classi-
fication, given that the optimum-path forest can include
unlabeled non-prototype samples. Previous versions of
it have also been published [33–37]. We have simplified
the learning procedure with better results, corrected some
mistakes, improved explanations and added several ex-
periments using more datasets, baseline classifiers, and
image descriptors based on texture, shape and color.

Other contribution of this work concerns learning al-
gorithms, which can teach a classifier from its errors on
a third evaluation set without increasing the size of the
training set. As the samples in the test set can not be seen
during the project, the evaluation set is necessary for this
purpose. The basic idea is to randomly interchange sam-
ples of the training set with misclassified samples of the
evaluation set, retrain the classifier and evaluate it again,
repeating this procedure during a few iterations. The ef-
fectiveness is measured by comparing the results on the
unseen test set before and after the learning algorithm. It
is expected an improvement in performance for any stable
classifier.

The learning with fixed training set size is usually re-
quired in large datasets with thousands/millions of sam-
ples (e.g., pixels/voxels in 2D/3D images). It also stems
from applications where the classifier is part of an expert
system, which performs a laborious data analysis (some-
times inviable for human beings) and emits its opinion
to a human expert. The human expert may agree or
not based on other evidences, but the feedback about the
classification errors is important to improve performance
in a future analysis. The diagnosis of parasites from mi-
croscopy images of biological slides is an example [38].
The human visual inspection is very difficult and error
prone in several situations due to the amount of impuri-
ties and small sizes of some parasites (e.g., protozoa in
samples of feces). We aim to improve the performance
of the expert system along time of use and we are tak-
ing into account the fact that computers have a limited
storage and processing capacity for the training set.

This paper describes the supervised OPF classifier in

2 OPTIMUM-PATH FOREST CLASSIFIER 4

Section 2, presents a general learning algorithm in Sec-
tion 3, which follows the same aforementioned strategy
for all classifiers, shows results that compare the OPF
classifier with SVM [8], ANN-MLP [5] and k-NN [22] in
Section 4, and states conclusions in Section 5.

2 Optimum-path forest classifier

Let Z1, Z2, and Z3 be training, evaluation, and test sets
with |Z1|, |Z2|, and |Z3| samples of a given dataset. We
use samples as points, images, voxels, and contours in
this paper. As already explained, this division of the
dataset is necessary to validate the classifier and evaluate
its learning capacity from the errors. Z1 is used to project
the classifier and Z3 is used to measure its accuracy, being
the labels of Z3 kept unseen during the project. A pseudo-
test on Z2 is used to teach the classifier by randomly
interchanging samples of Z1 with misclassified samples
of Z2. After learning, it is expected an improvement in
accuracy on Z3.

Let λ(s) be the function that assigns the correct label
i, i = 1, 2, . . . , c, of class i to any sample s ∈ Z1∪Z2∪Z3,
S ⊂ Z1 be a set of prototypes from all classes, and v be
an algorithm which extracts n features (color, shape, tex-
ture properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and
returns a vector ~v(s). The distance d(s, t) ≥ 0 between
two samples, s and t, is the one between their feature
vectors ~v(s) and ~v(t). One can use any distance func-
tion suitable for the extracted features. The most com-
mon is the Euclidean norm ‖~v(t)−~v(s)‖, but some image
features require special distance algorithms [39, 40]. A
pair (v, d) then describes how the samples of a dataset
are distributed in the feature space. Therefore, we call
(v, d) a descriptor and the experiments in Section 4 use
shape [41], texture [35] and color [42] descriptors based
on this definition.

Our problem consists of projecting a classifier which
can predict the correct label λ(s) of any sample s ∈ Z3.
Training consists of finding a special set S∗ ⊂ Z1 of proto-
types and a discrete optimal partition of Z1 in the feature
space (i.e., an optimum-path forest rooted in S∗). The
classification of a sample s ∈ Z3 (or s ∈ Z2) is done by
evaluating the optimum paths incrementally, as though
it were part of the forest, and assigning to it the label of
the most strongly connected prototype.

2.1 Training

Let (Z1, A) be a complete graph whose nodes are the
training samples and any pair of samples defines an arc
in A = Z1 × Z1 (Figure 3a). The arcs do not need to
be stored and so the graph does not need to be explicitly
represented. A path is a sequence of distinct samples
πt = 〈s1, s2, . . . , t〉 with terminus at a sample t. A path

is said trivial if πt = 〈t〉. We assign to each path πt a
cost f(πt) given by a connectivity function f . A path πt

is said optimum if f(πt) ≤ f(τt) for any other path τt.
We also denote by πs · 〈s, t〉 the concatenation of a path
πs and an arc (s, t).

(a) (b)

(0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)

(0.2,2)0.3
0.4

(?,?)

0.5

0.7
0.6 (0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)
(0.2,2)

(0.4,2)

(c) (d)

Figure 3: (a) Complete weighted graph for a simple train-
ing set. (b) Resulting optimum-path forest for fmax and
two given prototypes (circled nodes). The entries (x, y)
over the nodes are, respectively, the cost and the label
of the samples. The directed arcs indicate the predeces-
sor nodes in the optimum path. (c) Test sample (gray
square) and its connections (dashed lines) with the train-
ing nodes. (d) The optimum path from the most strongly
connected prototype, its label 2, and classification cost
0.4 are assigned to the test sample. The test sample is
classified in the class hexagon, although its nearest train-
ing sample is from the class circle.

We will address the connectivity function fmax.

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)} (1)

such that fmax(πs ·〈s, t〉) computes the maximum distance
between adjacent samples along the path πs · 〈s, t〉. The
minimization of fmax assigns to every sample t ∈ Z1 an
optimum path P ∗(t) from the set S ⊂ Z1 of prototypes,
whose minimum cost C(t) is

C(t) = min
∀πt∈(Z1,A)

{fmax(πt)}. (2)

The minimization of fmax is computed by Algorithm 1,
called OPF algorithm, which is an extension of the gen-
eral image foresting transform (IFT) algorithm [14] from
the image domain to the feature space, here specialized

2 OPTIMUM-PATH FOREST CLASSIFIER 5

for fmax. As explained in Section 1, this process assigns
one optimum path from S to each training sample t in
a non-decreasing order of minimum cost, such that the
graph is partitioned into an optimum-path forest P (a
function with no cycles which assigns to each t ∈ Z1\S
its predecessor P (t) in P ∗(t) or a marker nil when t ∈ S,
as shown in Figure 3b). The root R(t) ∈ S of P ∗(t) can
be obtained from P (t) by following the predecessors back-
wards along the path, but its label is propagated during
the algorithm by setting L(t)← λ(R(t)).

Algorithm 1 – OPF Algorithm

Input: A training set Z1, λ-labeled prototypes S ⊂ Z1

and the pair (v, d) for feature vector and distance
computations.

Output: Optimum-path forest P , cost map C and label
map L.

Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s)← +∞.
2. For each s ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do
7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then remove t from Q.
10. P (t)← s, L(t)← L(s) and C(t)← cst.
11. Insert t in Q.

Lines 1− 3 initialize maps and insert prototypes in Q.
The main loop computes an optimum path from S to
every sample s in a non-decreasing order of minimum
cost (Lines 4−11). At each iteration, a path of minimum
cost C(s) is obtained in P when we remove its last node
s from Q (Line 5). Ties are broken in Q using first-in-
first-out policy. That is, when two optimum paths reach
an ambiguous sample s with the same minimum cost, s

is assigned to the first path that reached it. Note that
C(t) > C(s) in Line 6 is false when t has been removed
from Q and, therefore, C(t) 6= +∞ in Line 9 is true only
when t ∈ Q. Lines 8−11 evaluate if the path that reaches
an adjacent node t through s is cheaper than the current
path with terminus t and update the position of t in Q,
C(t), L(t) and P (t) accordingly.

One can use other smooth connectivity functions, as
long as they group samples with similar properties [14].
A function f is smooth in (Z1, A) when for any sample
t ∈ Z1, there exists an optimum path πt which either is
trivial or has the form πs · 〈s, t〉, where

(a) f(πs) ≤ f(πt),

(b) πs is optimum,

(c) for any optimum path τs, f(τs · 〈s, t〉) = f(πt).

We say that S∗ is an optimum set of prototypes when
Algorithm 1 minimizes the classification errors in Z1. S∗

can be found by exploiting the theoretical relation be-
tween minimum-spanning tree (MST) [15] and optimum-
path tree for fmax [21, 43].

By computing a MST in the complete graph (Z1, A),
we obtain a connected acyclic graph whose nodes are all
samples of Z1 and the arcs are undirected and weighted
by the distances d between adjacent samples (Figure 4a).
The spanning tree is optimum in the sense that the sum
of its arc weights is minimum as compared to any other
spanning tree in the complete graph. In the MST, every
pair of samples is connected by a single path which is opti-
mum according to fmax. That is, the minimum-spanning
tree contains one optimum-path tree for any selected root
node.

0.5

0.6
0.2

0.1

S*
1Z

s*

R(t)

P*(t)

t

(a) (b)

Figure 4: (a) MST of the graph shown in Figure 3a where
the optimum prototypes share the arc of weight 0.6. (b)
The classification of a test sample (gray square) t as in
Figure 3c assigns the optimum path P ∗(t) from R(t) ∈ S∗

to t passing through s∗.

The optimum prototypes are the closest elements of
the MST with different labels in Z1. By removing the
arcs between different classes, their adjacent samples be-
come prototypes in S∗ and Algorithm 1 can compute an
optimum-path forest in Z1 (Figure 3b). Note that, a
given class may be represented by multiple prototypes
(i.e., optimum-path trees) and there must exist at least
one prototype per class.

It is not difficult to see that the optimum paths between
classes tend to pass through the same removed arcs of
the minimum-spanning tree. The choice of prototypes as
described above aims to block these passages, reducing
the chances of samples in any given class be reached by
optimum paths from prototypes of other classes.

2.2 Classification

For any sample t ∈ Z3, we consider all arcs connecting t

with samples s ∈ Z1, as though t were part of the training
graph (Figure 3c). Considering all possible paths from S∗

to t, we find the optimum path P ∗(t) from S∗ and label t

3 LEARNING FROM ERRORS ON THE EVALUATION SET 6

with the class λ(R(t)) of its most strongly connected pro-
totype R(t) ∈ S∗ (Figure 4b). This path can be identified
incrementally, by evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (3)

Let the node s∗ ∈ Z1 be the one that satisfies Equa-
tion 3 (i.e., the predecessor P (t) in the optimum path
P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t (Figure 3d). An
error occurs when L(s∗) 6= λ(t).

Similar procedure is applied for samples in the evalua-
tion set Z2. In this case, however, we would like to use
misclassified samples of Z2 to learn the distribution of the
classes in the feature space and improve the classification
performance on Z3.

3 Learning from errors on the

evaluation set

There are many situations that limit the size of Z1: large
datasets, limited computational resources, and high com-
putational time as required by some approaches. Mainly
in applications with large datasets, it would be interesting
to select for Z1 the most informative samples, such that
the accuracy of the classifier is little affected by this size
limitation. It is also important to show that a classifier
can improve its performance along time of use, when we
are able to teach it from its errors. This section presents
a general learning algorithm which uses a third evalua-
tion set Z2 to improve the composition of samples in Z1

without increasing its size.
From an initial choice of Z1 and Z2, the algorithm

projects an instance I of a given classifier from Z1 and
evaluates it on Z2. The misclassified samples of Z2 are
randomly selected and replaced by samples of Z1 (under
certain constraints). This procedure assumes that the
most informative samples can be obtained from the er-
rors. The new sets Z1 and Z2 are then used to repeat the
process during a few iterations T . The instance of classi-
fier with highest accuracy is selected along the iterations.
The accuracy values L(I) obtained for each instance I

form a learning curve, whose non-decreasing monotonic
behavior indicates a positive learning rate for the clas-
sifier. Afterwards, by comparing the accuracies of the
classifier on Z3, before and after the learning process, we
can evaluate its learning capacity from the errors.

The accuracies L(I), I = 1, 2 . . . , T , are measured by
taking into account that the classes may have different
sizes in Z2 (similar definition is applied for Z3). If there
are two classes, for example, with very different sizes and
a classifier always assigns the label of the largest class, its
accuracy will fall drastically due to the high error rate on
the smallest class.

Let NZ2(i), i = 1, 2, . . . , c, be the number of samples
in Z2 from each class i. We define

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)

|NZ2(i)|
, i = 1, . . . , c

(4)
where FP (i) and FN(i) are the false positives and false
negatives, respectively. That is, FP (i) is the number of
samples from other classes that were classified as being
from the class i in Z2, and FN(i) is the number of samples
from the class i that were incorrectly classified as being
from other classes in Z2. The errors ei,1 and ei,2 are used
to define

E(i) = ei,1 + ei,2, (5)

where E(i) is the partial sum error of class i. Finally, the
accuracies L(I), I = 1, 2 . . . , T , are written as

L(I) =
2c−

∑c
i=1 E(i)

2c
= 1−

∑c
i=1 E(i)

2c
. (6)

Algorithm 2 presents this learning procedure which
has been used for OPF, SVM, ANN-MLP and k-NN, by
changing Lines 4 and 19− 20.

Algorithm 2 – General Learning Algorithm

Input: Training and evaluation sets, Z1 and Z2, labeled
by λ, number T of iterations, and the pair (v, d)
for feature vector and distance computations.

Output: Learning curve L and the OPF/SVM/ANN-
MLP/k-NN classifier with highest accuracy.

Auxiliary: Arrays FP and FN of sizes c for false positives
and false negatives and list LM of misclassified
samples.

1. Set MaxAcc← −1.
2. For each iteration I = 1, 2, . . . , T , do
3. LM ← ∅
4. Train OPF/SVM/ANN-MLP/k-NN with Z1.
5. For each class i = 1, 2, . . . , c, do
6. FP (i)← 0 and FN(i)← 0.
7. For each sample t ∈ Z2, do
8. Use the classifier obtained in Line 3 to classify t

9. with a label L(t).
10. If L(t) 6= λ(t), then
11. FP (L(t))← FP (L(t)) + 1.
12. FN(λ(t))← FN(λ(t)) + 1.
13. LM ← LM ∪ t.
14. Compute accuracy L(I) by Equation 6.
15. If L(I) > MaxAcc then save the current instance
16. of the classifier and set MaxAcc← L(I).
17. While LM 6= ∅
18. LM ← LM\t
19. Replace t by a randomly selected sample of the
20. same class in Z1, under some constraints.

In OPF, Line 4 is implemented by computing S∗ ⊂ Z1

as described in Section 2.1 and the predecessor map P ,
label map L and cost map C by Algorithm 1. The clas-
sification is done by setting L(t)← L(s∗), where s∗ ∈ Z1

is the sample that satisfies Equation 3. The constraints

4 EVALUATION 7

in Lines 19 − 20 refer to keep the prototypes out of the
sample interchanging process between Z1 and Z2. We
do the same with the support vectors in SVM. However,
they may be selected for interchanging in future itera-
tions if they are no longer prototypes or support vectors.
For SVM, we use the latest version of the LibSVM pack-
age [44] with Radial Basis Function (RBF) kernel, param-
eter optimization and the one-versus-one strategy for the
multi-class problem to implement Line 4.

We use the Fast Artificial Neural Network Library
(FANN) [45] to implement the ANN-MLP. The network
configuration is x:y:z, where x = n (number of features),
y = |Z1| − 1 and z = c (number of classes) are the num-
ber of neurons in the input, hidden and output layers,
respectively [46]. In Line 4, the ANN-MLP is trained by
back propagation. There is no constraint in Lines 19−20.
However, we keep the weights of the neurons as initial set-
ting for training in the next iteration. For k-NN, train-
ing in Line 4 involves the computation of the value of
k which provides the highest accuracy on Z1 according
to the Leave-One-Out approach [47]. Lines 19 − 20 are
implemented without constraints.

Lines 5 − 6 initialize the false positive and false nega-
tive arrays for accuracy computation. The classification
of each sample is performed in Lines 7 − 13, updating
the false positive and false negative arrays. Misclassified
samples are stored in the list LM (Line 13). Line 14
computes the accuracy L(I) and Lines 15 − 16 save the
best instance of classifier so far. The inner loop in Lines
17 − 20 changes the misclassified samples of Z2 by ran-
domly selected samples of Z1, under the aforementioned
constraints.

Figure 5 illustrates the learning curve of each classi-
fier for the same dataset and descriptor. Oscillations in-
dicate instability of the classifier (e.g., ANN − MLP)
or presence of outliers. The monotonic behavior of the
OPF’s learning curve is usually observed. Nevertheless,
the choice of the classifier instance with highest accuracy
aims to avoid outliers in Z1.

4 Evaluation

This section presents the datasets, descriptors, and ex-
periments that compare OPF with SVM, ANN-MLP and
k-NN in accuracy and efficiency (computational time).

Table 1 presents the 11 datasets used in the exper-
iments, with diverse types of samples. The dataset
MPEG-7 [48] uses shape images (Figure 6), COREL [49]
uses color images (Figure 7), presented here in gray-
scale, and Brodatz [50] uses texture images (Figure 8).
These datasets allow to evaluate the performance of the
classifiers using shape, color and texture descriptors, re-
spectively. The remaining datasets already provide their

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8 9 10

It
e

ra
tio

n
s

Classifier

Learning curves

OPF
SVM

ANN-MLP
kNN

Figure 5: Learning curve of each classifier for the dataset
B8 using descriptor D10 (Tables 1 and 2).

Dataset Code Dataset Name objects number classes number

B1 MPEG-7 1400 70

B2 COREL 1607 49

B3 Brodatz 208 13

B4 WBC 699 2

B5 IS 2310 7

B6 LR 5000 26

B7 Brain 1578 2

B8 Cone-torus 400 3

B9 Saturn 200 2

B10 Petals 100 4

B11 Boat 100 3

Table 1: Description of the datasets.

feature vectors: WBC - Wisconsin Breast Cancer, IS -
Image Segmentation, and LR - Letter Recognition [51];
Brain [52]; and Cone-torus, Saturn, Petals, and Boat [53].
The dataset Brain uses voxels as samples from gray and
white matter in magnetic resonance images of brain phan-
toms, with various levels of noise and inhomogeneity that
produce outliers. The features are the minimum, maxi-
mum, and intensity within a small 3D neighborhood of
each voxel. The last four datasets use the (x, y) coordi-
nates of 2D points as features (Figure 9).

Table 2 shows 10 different possibilities of combining fea-
ture extraction v and distance function d to form descrip-
tors (v, d). Some descriptors were designed for shape (D1-
D5), color (D6-D7) and texture (D8) images. Descriptors
D1, D2 and D3 use the Fourier coefficients (FC) [54], Mo-
ment Invariants (MI) [55] and multiscale fractal dimen-
sions (MSF) [56] as shape features, respectively, and Eu-

4 EVALUATION 8

(a) (b) (c).

(d) (e) (f)

Figure 6: Examples of the MPEG-7 shapes from the
classes (a)-(c) fish and (d)-(f) camel.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Examples of the Corel images from the classes
(a)-(b) pumpkin, (c)-(d) flowers, (e)-(f) British army, and
(g)-(h) race cars.

Figure 8: Texture images from the Brodatz dataset. Each
image, from left to right and from top to bottom, repre-
sents a class: bark, brick, bubbles, grass, leather, pigskin,
raffia, sand, straw, water, weave, wood, and wool.

clidean norm (L2) as distance function. Descriptors D4

and D5 compute three statistical measures, called bean
angle statistics (BAS), for each sample on a contour [41].
They use L2 metric and optimal correspondence subse-
quence (OCS) [39], respectively, for comparison between
feature vectors, illustrating the importance of special dis-
tance functions such as OCS. The comparison among de-
scriptors from D1 to D5 using a same classifier illustrates
their ability in representing the shapes of a given dataset.

(a) (b)

(c) (d)

Figure 9: Datasets of 2D points: (a) Cone-torus, (b) Sat-
urn, (c) Petals, and (d) Boat.

Descriptor Code Feature extraction algorithm Distance function

D1 FC L2

D2 MI L2

D3 MSF L2

D4 BAS L2

D5 BAS OCS

D6 BIC dLog

D7 CHIST L1

D8 TEX RIM

D9 OWN L2

D10 XY L2

Table 2: Descriptors used in the experiments.

Descriptor D6 classifies pixels into border/interior regions
and computes color histograms for each region [42]. It
uses as distance function the L1 metric between the log-
arithm of the histograms (dLog). Color images are also
represented by color histograms (CHIST) [57] and com-
pared with L1 metric in the descriptor D7. Descriptor
D8 uses steerable pyramid decomposition to create tex-
ture features (TEX), which are compared by a rotation-
invariant texture matching (RIM) [35]. Descriptor D9

represents all feature vectors (OWN) already available in
the datasets from B4 to B7 and D10 represents the 2D-
point (XY) features of the datasets from B8 to B11 (Ta-
ble 1). Their distance function is L2. Finally, the combi-
nations between datasets and descriptors are summarized
in Table 3.

Some classifiers assume the Euclidean feature space im-
plicitly, as the ANN-MLP, and others have the distance
function embedded in the model, as in the radial basis
function (RBF) of the SVM. When the distance function

4 EVALUATION 9

Dataset Code Descriptor Code

B1 D1,D2,D3,D4,D5

B2 D6,D7

B3 D8

B4 D9

B5 D9

B6 D9

B7 D9

B8 D10

B9 D10

B10 D10

B11 D10

Table 3: Datasets and the respective descriptors used in
the experiments.

is L2, we use as RBF for SVM

K(s, t) = exp−γ‖(~v(s)−~v(t))‖2

, (7)

where s and t are two samples (one is support vector) and
~v(s) and ~v(t) are their feature vectors. The constant γ is
found by parameter optimization. In the case of special
distances d, we have observed a considerable improvement
in the SVM’s performance when we replace its RBF by

K ′(s, t) = exp−γd2(s,t) . (8)

This can be observed in Tables 4 and 5 for dataset B1

(MPEG-7) with D4 (BAS with L2) and D5 (BAS with
OCS). Therefore, K ′ was used in all experiments involv-
ing SVM and special distance functions d, and K was
used for L2.

The experiments evaluate the accuracy on Z3 and the
computational time of each classifier, OPF, SVM, ANN-
MLP, and k-NN, for each pair dataset and descriptor
presented in Table 3. In all experiments, the datasets
were divided into three parts: a training set Z1 with
30% of the samples, an evaluation set Z2 with 20% of
the samples, and a test set Z3 with 50% of the samples.
These samples were randomly selected and each exper-
iment was repeated 10 times with different sets Z1, Z2

and Z3 to compute mean (robustness) and standard de-
viation (precision) of the accuracy values and mean value
of kappa [58]. Section 4.1 presents the accuracy results
of training on Z1 and testing on Z3. The accuracy re-
sults of training on Z1, with learning from the errors in
Z2, and testing on Z3 are presented in Section 4.2. The
average computational time of each classifier for training
and classification is divided by the number of samples and
reported in Section 4.3.

4.1 Accuracy results on Z3 without using

Z2

The results in Table 4 are presented as x± y(z)[k], where
x, y, z and k are the mean accuracy, its standard devia-
tion, mean kappa coefficient [58] and the best value of k

obtained for k-NN, respectively. Values of kappa below
0.80 indicate the difficulty in classifying some datasets us-
ing the respective descriptors. Good descriptors tend to
better separate the classes in the feature space, reducing
overlap and so facilitating the classification. The results
in B1 (MPEG-7), for example, indicate that D5 outper-
forms the remaining descriptors. Besides, D4 and D5 dif-
fer only in the distance function and the results indicate
that OCS [39] outperforms the Euclidean metric. Simi-
larly, one may conclude that D6 (BIC [42]) outperforms
D7, (color histogram [57]) in B2 (COREL). Irrespective
of that, we are comparing the relative performance of the
classifiers.

Most accuracies of OPF and SVM were clearly higher
than those of ANN-MLP and k-NN. OPF and SVM pre-
sented equivalent overall performances, being one better
than the other depending on the case. Considering only
the cases where the best k is 1 in k-NN, we can observe
that the criterion of OPF to assign the label of the most
strongly connected root to a sample is really more accu-
rate than the label of the closest sample. The instabil-
ity of ANN-MLP is reflected by the standard deviations,
which are about 10 times higher than the standard devi-
ations obtained by the other classifiers. Due to the over-
lapping between classes (Figure 9), the accuracies of the
classifiers in B8 and B9 are lower than their accuracies in
B10 and B11. Due to the quality of the descriptors, simi-
lar observation explains the increasing order of accuracy
in B1 with D1, D3, D2, D4 and D5.

4.2 Accuracy results on Z3 with learning

on Z2

In order to evaluate the ability of each classifier in learn-
ing from the errors in Z2 without increasing the size of
Z1, we executed Algorithm 2 for T = 3 iterations. The
results are presented in Table 5.

We can observe that the conclusions drawn from Ta-
ble 4 remain the same with respect to the overall perfor-
mance of the classifiers. In most cases, the general learn-
ing algorithm improved the performance of the classifiers
with respect to their results in Table 4.

4.3 Efficiency results

Table 6 shows the mean execution time in seconds divided
by the number of samples that each classifier takes for

4 EVALUATION 10

Dataset (Descriptor)
Classifiers

OPF SVM ANN-MLP k-NN

B1 (D1) 71.71±0.01(0.49) 70.07±0.01(0.40) 57.28±0.44(0.14) 59.38±0.01(0.17)[1]

B1 (D2) 79.48±0.01(0.59) 82.15±0.01(0.64) 71.48±0.26(0.46) 72.04±0.01(0.64)[1]

B1 (D3) 75.95±0.01(0.51) 74.49±0.01(0.50) 62.98±0.39(0.25) 60.16±0.01(0.19)[1]

B1 (D4) 87.37±0.01(0.74) 87.05±0.01(0.75) 77.99±0.34(0.57) 66.55±0.01(0.67)[1]

B1 (D5) 95.72±0.01(0.89) 94.92±0.01(0.88) 76.29±0.04(0.55) 92.14±0.01(0.89)[1]

B2 (D6) 86.74±0.01(0.75) 90.65±0.01(0.83) 83.07±0.10(0.64) 82.83±0.01(0.70)[1]

B2 (D7) 80.25±0.01(0.63) 83.37±0.01(0.70) 80.07±0.10(0.61) 78.03±0.01(0.61)[1]

B3 (D8) 88.85±0.02(0.77) 84.27±0.01(0.68) 86.97±0.21(0.73) 84.52±0.01(0.80)[1]

B4 (D9) 93.87±0.01(0.88) 95.46±0.01(0.90) 92.83±0.20(0.86) 91.85±0.01(0.81)[3]

B5 (D9) 79.37±0.01(0.68) 78.35±0.01(0.59) 73.35±0.10(0.68) 65.89±0.01(0.41)[2]

B6 (D9) 90.35±0.01(0.80) 93.35±0.01(0.90) 84.72±0.10(0.73) 87.20±0.01(0.79)[2]

B7 (D9) 90.53±0.01(0.81) 93.86±0.01(0.88) 92.94±0.09(0.85) 86.39±0.01(0.73)[1]

B8 (D10) 87.29±0.01(0.71) 78.41±0.24(0.71) 85.33±0.02(0.69) 81.34±0.01(0.65)[7]

B9 (D10) 88.10±0.03(0.76) 86.90±0.05(0.73) 83.60±0.54(0.67) 81.90±0.02(0.62)[1]

B10 (D10) 1.0±0.0(1.0) 1.0±0.0(1.0) 1.0±0.0(1.0) 1.0±0.0(1.0)[21]

B11 (D10) 96.76±0.01(0.93) 99.55±0.01(0.99) 97.20±0.36(0.94) 93.19±0.01(0.89)[1]

Table 4: Accuracy results x ± y(z) on Z3 without using Z2: x - mean accuracy, y - its standard deviation and z -
mean kappa. The best accuracies are indicated in bold and the best value of k is shown in brackets for the k-NN.

Dataset (Descriptor)
Classifiers

OPF SVM ANN-MLP k-NN

B1 (D1) 75.94±0.01(0.51) 74.42±0.01(0.48) 61.39±0.06(0.22) 59.38±0.01(0.17)[1]

B1 (D2) 81.20±0.01(0.60) 82.03±0.01(0.64) 75.06±0.28(0.50) 72.88±0.01(0.44)[3]

B1 (D3) 76.72±0.01(0.53) 76.52±0.01(0.53) 64.76±0.18(0.29) 61.48±0.01(0.26)[3]

B1 (D4) 87.65±0.01(0.75) 87.18±0.01(0.73) 79.23±0.22(0.58) 67.14±0.01(0.68)[1]

B1 (D5) 96.08±0.01(0.90) 95.87±0.01(0.90) 78.65±0.04(0.57) 90.70±0.01(0.90)[1]

B2 (D6) 86.90±0.01(0.76) 90.80±0.02(0.84) 85.70±0.06(0.75) 82.83±0.01(0.73)[1]

B2 (D7) 80.29±0.01(0.63) 83.66±0.01(0.71) 84.70±0.08(0.79) 79.73±0.01(0.61)[1]

B3 (D8) 88.54±0.02(0.77) 84.37±0.01(0.68) 92.29±0.16(0.84) 86.26±0.02(0.70)[1]

B4 (D9) 94.17±0.01(0.89) 96.07±0.01(0.91) 93.26±0.19(0.87) 91.26±0.01(0.81)[9]

B5 (D9) 79.90±0.01(0.70) 78.65±0.01(0.57) 74.35±0.10(0.70) 67.06±0.01(0.24)[2]

B6 (D9) 92.07±0.01(0.84) 94.31±0.01(0.93) 87.72±0.10(0.79) 89.54±0.01(0.81)[9]

B7 (D9) 91.53±0.01(0.83) 94.00±0.01(0.88) 93.73±0.06(0.87) 88.99±0.01(0.76)[1]

B8 (D10) 88.38±0.01(0.72) 87.95±0.17(0.74) 81.58±0.01(0.70) 83.43±0.01(0.68)[11]

B9 (D10) 89.30±0.02(0.78) 89.30±0.03(0.78) 88.10±0.43(0.76) 83.90±0.02(0.63)[1]

B10 (D10) 1.0±0.0(1.0) 1.0±0.0(1.0) 1.0±0.0(1.0) 1.0±0.0(1.0)[5]

B11 (D10) 97.35±0.02(0.94) 99.85±0.01(0.99) 98.23±0.26(0.96) 94.81±0.03(0.86)[1]

Table 5: Accuracy results x± y(z) on Z3 with learning on Z2: x - mean accuracy, y - its standard deviation and z -
mean kappa. The best accuracies are indicated in bold and the best value of k is shown in brackets for the k-NN.

5 CONCLUSIONS 11

training and classification (without learning on Z2) and
for each dataset and descriptor.

Dataset (Descriptor)
Classifiers

OPF SVM ANN-MLP k-NN

B1 (D1) 0.0052 1.304 0.8973 0.0450

B1 (D2) 0.0010 0.0599 0.3453 0.0034

B1 (D3) 0.0012 0.0742 0.3603 0.0038

B1 (D4) 0.0019 0.2859 0.5043 0.0126

B1 (D5) 5.8400 7.3926 0.5031 5.8432

B2 (D6) 0.0185 0.1813 0.2553 0.0199

B2 (D7) 0.0010 0.0997 0.2491 0.0254

B3 (D8) 0.2163 0.2333 0.2891 0.2164

B4 (D9) 0.0019 0.0091 0.01505 0.0042

B5 (D9) 0.0018 0.0693 0.400 0.0010

B6 (D9) 0.0012 0.0320 0.0800 0.0017

B7 (D9) 0.0011 0.1662 3.5625 0.01960

B8 (D10) 0.0010 0.1281 1.8540 0.0011

B9 (D10) 0.0011 0.1445 0.3828 0.0002

B10 (D10) 0.0018 0.0078 0.0020 0.0003

B11 (D10) 0.0019 0.0594 0.0039 0.0019

Table 6: Mean execution times in seconds for training
and classification divided by the number of samples. The
best times are indicated in bold.

Note that OPF is extremely fast, except when it uses
descriptor D5 (Table 2) because of the respective distance
function computation. Similar effect can be observed in
SVM and k-NN. Given that ANN-MLP does not use dis-
tance functions, it is free of this problem. On average,
the results indicate that our most recent implementation
of OPF was about 72 times faster than the latest imple-
mentation of SVM [44], 443 times faster than the fast
ANN-MLP [45], and 1.3 times faster than our implemen-
tation of a k-NN classifier.

The importance of speed in pattern recognition seems
to not have caught much attention. Most of the compu-
tational time is spent in training, which is done only once
in many applications. However, take the first case of B1

and D1, for example, where OPF spent 0.0052 second per
sample and SVM spent 1.304. For 100,000 samples, this
represents 8.67 minutes using OPF and 36.22 hours us-
ing SVM. In the case of 2D/3D images, for example, the
number of pixels/voxels ranges from thousands to mil-
lions, and the time for training becomes a burden. In
medical imaging, it is very likely that a new training has
to be done for every 3D image, due to their variations in
noise, inhomogeneity, and protocols.

Acknowledgments

The authors thank Paulo Miranda (IC-UNICAMP) and
Nelson Mascarenhas (UFSCar) for their previous con-
tributions and the financial support from CNPq and
FAPESP.

5 Conclusions

We presented a discrete approach for supervised classi-
fication (OPF) which computes an optimum-path forest
on a training set and classifies samples with the label of
their most strongly connected root in the forest. We also
proposed a general learning algorithm, which usually im-
proves performance of the classifiers without increasing
the training set. The source code of the supervised OPF
is available in www.ic.unicamp.br/~afalcao/libopf.

We compared OPF with SVM, ANN-MLP, and k-NN
using several datasets and descriptors. These experiments
involved datasets with shape, color and texture proper-
ties, and datasets commonly used by the machine learn-
ing community. The advantage of OPF over the others
in computational time is notorious and impressive, which
is crucial in the case of large datasets. It can be more or
less accurate than SVM, depending on the case, but its
accuracy is usually superior to those of ANN-MLP and k-
NN. OPF also presents some interesting properties. It is
fast, simple, multi-class, parameter independent, does not
make any assumption about the shape of the classes, and
can handle some degree of overlapping between classes.

The OPF classifiers are being successfully used in some
real applications: the supervised approach is being used
for oropharyngeal dysphagia identification [37], laryngeal
pathology detection [36], and diagnosis of parasites from
optical microscopy images [38], and the unsupervised ap-
proach is being used for the separation of grey-matter
and white-matter in Magnetic Resonance images of the
brain [24]. In the first three applications, the supervised
OPF outperforms SVM in accuracy and efficiency. In
all cases, there is no human interaction, however, we also
intend to evaluate the supervised OPF for interactive seg-
mentation of brain tissues, where the user selects train-
ing markers. In this case the method becomes similar to
an IFT-watershed approach, except for the fact that it
works in the feature space with no spatial connectivity
constraint, which is important for tissues with discon-
nected voxels.

Applications with large datasets definitely favor OPF
with respect to SVM. We must say that, as a discrete ap-
proach, the performance of OPF may be reduced for small
training sets, if the number of samples are not enough
to represent the classes. In SVM, this may also be a
problem, but as it estimates a decision hyper-plane, it
has a chance to divide the feature space with separation

REFERENCES 12

between classes. Too much overlapping between classes
may also represent an advantage for SVM with respect to
OPF, because its transformation to a higher-dimensional
space may separate the classes, solving the problem.

The OPF classifier is an important contribution for pat-
tern recognition and related fields, which also opens new
research problems. One can investigate the optimum-
path forest classification using incomplete graphs (e.g.,
graphs where the arcs are between k-nearest neighbors),
different connectivity functions, and other algorithms to
estimate prototypes and to learn from the errors in the
evaluation set. The use of Genetic Programming [59]
(GP) for arc-weight estimation in OPF is also an al-
ternative to deal with class overlapping, by combining
the distances from multiple descriptors in a non-linear
way [60,61].

References

[1] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Clas-
sification. Wiley-Interscience, 2 edition, 2000.

[2] A. Blum and T. Mitchell. Combining labeled and un-
labeled data with co-training. In Proceedings of the
9th Annual Conference on Computational Learning
Theory, pages 92–100, New York, NY, USA, 1998.
ACM Press.

[3] T. Joachims. Transductive inference for text classifi-
cation using support vector machines. In Proceed-
ings of the 16th International Conference on Ma-
chine Learning, pages 200–209, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[4] X. Zhu. Semi-supervised learning literature survey.
Technical Report 1530, Computer Sciences, Univer-
sity of Wisconsin-Madison, 2006.

[5] S. Haykin. Neural networks: a comprehensive foun-
dation. Prentice Hall, 1994.

[6] L. I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience, 2004.

[7] L. Reyzin and R. E. Schapire. How boosting the
margin can also boost classifier complexity. In Pro-
ceedings of the 23th International Conference on Ma-
chine learning, pages 753–760, New York, NY, USA,
2006. ACM Press.

[8] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A train-
ing algorithm for optimal margin classifiers. In
Proceedings of the 5th Workshop on Computational
Learning Theory, pages 144–152, New York, NY,
USA, 1992. ACM Press.

[9] K. Duan and S. S. Keerthi. Which is the best mul-
ticlass svm method? an empirical study. Multiple
Classifier Systems, pages 278–285, 2005.

[10] B. Tang and D. Mazzoni. Multiclass reduced-set sup-
port vector machines. In Proceedings of the 23th In-
ternational Conference on Machine learning, pages
921–928, New York, NY, USA, 2006. ACM Press.

[11] N. Panda, E. Y. Chang, and G. Wu. Concept bound-
ary detection for speeding up svms. In Proceedings of
the 23th International Conference on Machine learn-
ing, pages 681–688, New York, NY, USA, 2006. ACM
Press.

[12] R. Collobert and S. Bengio. Links between per-
ceptrons, mlps and svms. In Proceedings of the
21th International Conference on Machine learning,
page 23, New York, NY, USA, 2004. ACM Press.

[13] T. Cover and P. Hart. Nearest neighbor pattern clas-
sification. IEEE Transactions on Information The-
ory, 13(1):21–27, 1967.

[14] A.X. Falcão, J. Stolfi, and R.A. Lotufo. The image
foresting transform: Theory, algorithms, and appli-
cations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(1):19–29, Jan 2004.

[15] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. MIT, 1990.

[16] R.A. Lotufo and A.X. Falcão. The ordered queue and
the optimality of the watershed approaches. In Math-
ematical Morphology and its Applications to Image
and Signal Processing (ISMM’00), volume 18, pages
341–350. Kluwer, Jun 2000.

[17] R. Audigier and R.A. Lotufo. Watershed by image
foresting transform, tie-zone, and theoretical rela-
tionship with other watershed definitions. In Math-
ematical Morphology and its Applications to Signal
and Image Processing (ISMM), pages 277–288, Rio
de Janeiro, RJ, Oct 2007. MCT/INPE.

[18] P. K. Saha and J. K. Udupa. Relative fuzzy connect-
edness among multiple objects: Theory, algorithms,
and applications in image segmentation. Computer
Vision and Image Understanding, 82(1):42–56, 2001.

[19] R. Audigier and R.A. Lotufo. Seed-relative seg-
mentation robustness of watershed and fuzzy con-
nectedness approaches. In XX Brazilian Symposium
on Computer Graphics and Image Processing (SIB-
GRAPI), pages 61–68, Belo Horizonte, MG, Oct
2007. IEEE CPS.

REFERENCES 13

[20] G.T. Herman and B.M. Carvalho. Multiseeded
segmentation using fuzzy connectedness. IEEE
Trans on Pattern Analysis and Machine Intelligence,
23:460–474, May 2001.

[21] A. Rocha P.A.V. Miranda, A.X. Falcão and F.P.G.
Bergo. Object delineation by κ-connected compo-
nents. EURASIP Journal on Advances in Signal
Processing, 2008. to appear.

[22] K. Fukunaga and P. M. Narendra. A branch and
bound algorithms for computing k-nearest neighbors.
IEEE Transactions on Computers, 24(7):750–753,
1975.

[23] L. M. Rocha, A. X. Falcão, and L. G. P. Meloni. A
robust extension of the mean shift algorithm using
optimum path forest. In 8th Intl. Workshop on Com-
binatorial Image Analysis, pages 29–38, Buffalo-NY,
USA, 2008. RPS (ISBN 978-981-08-0228-8).

[24] F.A.M. Cappabianco, A.X. Falcão, and L.M. Rocha.
Clustering by optimum path forest and its applica-
tion to automatic GM/WM classification in MR-T1
images of the brain. In The Fifth IEEE International
Symposium on Biomedical Imaging: From Nano to
Macro (ISBI), pages 428–431, 2008.

[25] L. J. Hubert. Some applications of graph theory to
clustering. Psychometrika, 39(3):283–309, 1974.

[26] C.T. Zahn. Graph-theoretical methods for detecting
and describing gestalt clusters. IEEE Transactions
on Computers, C-20(1):68–86, Jan. 1971.

[27] A. K. Jain and R. C. Dubes. Algorithms for Cluster-
ing Data. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1988.

[28] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, Aug 2000.

[29] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Ray-
mond Mooney. Semi-supervised graph clustering: a
kernel approach. In ICML ’05: Proceedings of the
22nd international conference on Machine learning,
pages 457–464, New York, NY, USA, 2005. ACM.

[30] B. Schlkopf Zhou, D. and T. Hofmann. Semi-
supervised learning on directed graphs. Advances in
Neural Information Processing Systems, pages 1633–
1640, 2005.

[31] J. Callut, K. Fançoisse, and M. Saerens. Semi-
supervised classication in graphs using bounded ran-
dom walks. In Proceedings of the 17th Annual
Machine Learning Conference of Belgium and the
Netherlands (Benelearn), pages 67–68, 2008.

[32] Nimit Kumar and K. Kummamuru. Semisupervised
clustering with metric learning using relative com-
parisons. IEEE Transactions on Knowledge and
Data Engineering, 20(4):496–503, 2008.

[33] J.P. Papa, A.X. Falcão, C.T.N. Suzuki, and N.D.A.
Mascarenhas. A discrete approach for supervised
pattern recognition. In 12th International Work-
shop on Combinatorial Image Analysis, volume 4958,
pages 136–147. LNCS Springer Berlin/Heidelberg,
2008.

[34] J. P. Papa, A. X. Falcão, P. A. V. Miranda, C. T. N.
Suzuki, and N. D. A. Mascarenhas. Design of robust
pattern classifiers based on optimum-path forests.
In Mathematical Morphology and its Applications to
Image and Signal Processing (ISMM’07), pages 337–
348. MCT/INPE, 2007.

[35] J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S.
Torres, and A.X. Falcão. earning how to extract
rotation-invariant and scale-invariant features from
texture images. EURASIP Journal on Advances in
Signal Processing, 2008:1–16, 2008.

[36] J.P. Papa, A.A. Spadotto, A.X. Falc ao, and J.C.
Pereira. Optimum path forest classifier applied to
laryngeal pathology detection. In Proc. of the 15th
Intl. Conf. on Systems, Signals, and Image Process-
ing, volume 1, pages 249–252, Bratislava, Slovakia,
Jun 2008. IEEE.

[37] A.A. Spadotto, J.C. Pereira, R.C. Guido, J.P. Papa,
A.X. Falc ao, A.R. Gatto, P.C. Cola, and A.O.
Schelp. Oropharyngeal dysphagia identification us-
ing wavelets and optimum path forest. In Proc. of the
3rd IEEE Intl. Symp. on Communications, Control
and Signal Processing, pages 735–740, St. Julians,
Malta, Greece, Mar 2008.

[38] A.X. Falcão, C.T.N. Suzuki, J.F. Gomes, J.P. Papa,
L.C.S. Dias, and S.H. Shimizu. A system for di-
agnosing intestinal parasites by computerized image
analysis, Jun 2008. PCT WO/2008/064442.

[39] Y. P. Wang and T. Pavlidis. Optimal corre-
spondence of string subsequences. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
12(11):1080–1087, 1990.

[40] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases.
In Proceedings of the 6th International Conference on
Computer Vision, page 59, Washington, DC, USA,
1998. IEEE Computer Society.

REFERENCES 14

[41] N. Arica and F. T. Y. Vural. BAS: A Perceptual
Shape Descriptor Based on the Beam Angle Statis-
tics. Pattern Recognition Letters, 24(9-10):1627–
1639, June 2003.

[42] R. O. Stehling, M. A. Nascimento, and A. X. Falcão.
A compact and efficient image retrieval approach
based on border/interior pixel classification. In Pro-
ceedings of the 11th International Conference on In-
formation and Knowledge Management, pages 102–
109, New York, NY, USA, 2002. ACM Press.

[43] C. Allène, J. Y. Audibert, M. Couprie, J. Cousty, and
R. Keriven. Some links between min-cuts, optimal
spanning forests and watersheds. In Mathematical
Morphology and its Applications to Image and Signal
Processing, pages 253–264. MCT/INPE, 2007.

[44] C. C. Chang and C. J. Lin. LIBSVM: A Library for
Support Vector Machines, 2001. Software available
at url http://www.csie.ntu.edu.tw/˜ cjlin/libsvm.

[45] S. Nissen. Implementation of a Fast Artifi-
cial Neural Network Library (FANN), 2003.
Department of Computer Science University
of Copenhagen (DIKU). Software available at
http://leenissen.dk/fann/.

[46] S. C. Huang and Y. F. Huang. Bounds on the number
of hidden neurons in multilayer perceptrons. IEEE
Transactions on Neural Networks, 2(1):47–55, 1991.

[47] R. Kohavi. A study of cross-validation and boot-
strap for accuracy estimation and model selection.
In IJCAI, pages 1137–1145, 1995.

[48] MPEG-7. Mpeg-7: The generic multimedia con-
tent description standard, part 1. IEEE MultiMedia,
09(2):78–87, 2002.

[49] Corel Corporation. Corel stock photo images, -.
http://www.corel.com.

[50] P. Brodatz. Textures: A Photographic Album for
Artists and Designers. Dover, New York, 1966.

[51] D.J. Newman A. Asuncion. UCI machine learning
repository, 2007.

[52] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled,
N. Kabani, C. Holmes, and A. Evans. Design and
construction of a realistic digital brain phantom.
IEEE Transactions on Medical Imaging, 17(3):463–
468, 1998.

[53] L. Kuncheva. Artificial data. School of In-
formatics, University of Wales, Bangor, 1996.
http://www.informatics.bangor.ac.uk/˜kuncheva.

[54] E. Persoon and K. Fu. Shape Discrimination Using
Fourier Descriptors. IEEE Transanctions on Sys-
tems, Man, and Cybernetics, 7(3):170– 178, 1977.

[55] M.K. Hu. Visual Pattern Recognition by Moment In-
variants. IRE Transactions on Information Theory,
8(2):179–187, 1962.

[56] R. Torres, A. X. Falcão, and L.F. Costa. A graph-
based approach for multiscale shape analysis. Pat-
tern Recognition, 37(6):1163–1174, 2004.

[57] M. Swain and D. Ballard. Color Indexing. Interna-
tional Journal of Computer Vision, 7(1):11–32, 1991.

[58] J. Cohen. A coefficient of agreement for nominal
scales. In Educational and Psychological Measure-
ment, volume 20, pages 37–46, 1960.

[59] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection
(Complex Adaptive Systems). The MIT Press, 1992.

[60] R.S. Torres, A.X. Falcão, M.A. Gonçalves, B. Zhang,
W. Fan, E. A. Fox, and P. Calado. A new frame-
work to combine descriptors for content-based image
retrieval. In ACM 14th Conference on Information
and Knowledge Management, pages 335–336, Bre-
men, Germany, Nov 2005.

[61] R.S. Torres, A.X. Falcão, M.A. Gonalves, J.P. Papa,
B. Zhang, W. Fan, and E.A. Fox. A genetic program-
ming framework for content-based image retrieval.
Pattern Recognition, 2008. (accepted).

