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A combination of support vector
machine and k-nearest neighbors for
machine fault detection

Abstract

This article presents a combination of support vector machine (SVM)

and k-nearest neighbor (kNN) to monitor rotational machines using vi-

brational data. The system is used as triage for human analysis and thus

a very low false negative rate is more important than high accuracy. Data

is classified using a standard SVM, but for data within the SVM mar-

gin, where misclassifications are more likelly, a kNN is used to reduce the

false negative rate. Using data from a month of operations of a predictive

maintenance company, the system achieved zero false negative rate and

accuracy ranging from 75% to 84% for different machine types such as

induction motors, gears, and rolling element bearings.

keywords: machine condition monitoring ; fault detection; machine

learning; support vector machine; k-nearest neighbors

1 Introduction

The high costs in maintaining complex and sophisticated equipments represent

a large percentage in industrial organizations’ profitability. Depending on the

specific industry, maintenance can represent from 15% to 60% of the costs of

goods produced (Mobley, 2002). Therefore, it is important to enhance mainte-

nance management systems, to reduce costs and avoid breakdowns. Predictive

maintenance is the process of discovering when an equipment needs mainte-

nance in order to avoid a catastrophic failure. Condition monitoring, one of the

techniques used in predictive maintenance, is the process of monitoring some

parameter or condition of the equipment whose change may indicate a failure
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in development. For rotating machines, the analysis of the vibrational data is a

particularly useful condition monitoring technique.

This work describes a practical application of a combination of two tech-

niques from statistical machine learning, support vector machine (SVM) and

k-nearest neighbor (kNN), to fault detection in vibration data. The data was

gathered from real world samples, from the predictive maintenance enterprise

SEMEQ1. SEMEQ performs monthly diagnostics on around 40,000 equipments

from plants in Latin America and in the U.S. The main diagnostic tool used by

SEMEQ is vibration analysis, but lubricant analysis and thermal imaging are

also used. This work only concerns with vibration data.

The aim of this research is to reduce the total amount of vibration data

sent to the human analysts. Since for each month, only a very small percentage

of machines are in defective condition, all the vibration data of machines in good

condition can be considered as “noise” in the analysis process - they should not

be sent to the analysts for interpretation and represent time and effort not

spent in the careful analysis and diagnostic of machines in defective condition.

An automated system that only presents to the analyst the data that contain

evidence of some problem could increase the overall productivity of the analysis.

For such a system, a false negative (data that is falsely labbeled by the

system as negative or normal) is much more costly than a false positive (data

that is falsely labeled by the system as positive or idicative of a problem). When

a false negative occurs, a machine’s data will not be inspected by the human

analyst, and the owner of the machine will not be warned of the need to fix

that machine. If the machine breaks down and it can be shown that there were

signs of its impending failure, SEMEQ will incurre in severe penalties. False

positives are cases where data from “good machines” are sent to analysis, which

is not a problem since the analyst will have the chance to inspect the data and

1http://www.semeq.net/
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discard the indication of failure. So, in this work, a very low false negative rate

is considerably more important than a high accuracy rate.

1.1 Related work

In the related works, machine learning techniques such as support vector ma-

chines and artificial neural networks (ANN) were also applied to detect faults in

different equipments, such as induction motors (Casimira et al., 2006), rolling

element bearings (Samanta et al., 2003; Samanta and Nataraj, 2009), gear cou-

plings (Samanta, 2004), turbine blades (Kuo, 1995), compressors (Yang et al.,

2005), among others.

Samanta et al. (2003) compared three ANNs, a multilayer perceptron,

a radial basis function network, and a probabilistic neural network, combined

with a genetic algorithm for feature selection to detect faults in bearings. The

networks were capable of detecting bearing faults with 99,83%, 87,5%, and

96,31% accuracy respectively. But no differentiation was made between false

positives and false negatives. The algorithms were tested for a small number of

cases (72 samples for training and 72 samples for testing).

Samanta (2004) worked with gear couplings and presented a comparison

of ANN and SVM. In the paper, 266 samples were used for training both classi-

fiers (ANN and SVM), and 126 samples for testing the accuracy of classification.

The accuracy was close to 100%, but again no differentiation was made between

false positives and false negatives. Also, the main focus of the work were the

results obtained by the application of genetic algorithms for feature selection.

Samanta and Nataraj (2009) also dealt with bearing condition using two

classifiers, ANN and SVM, but particle swarm optimization algorithm was used

for feature selection. The training and testing data set used were larger than

for the previous works. The false negative rate was 4% for the SVM and 11%
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for the ANN.

Rojas and Nandi (2006) used a SVM for bearing fault detection. The

number of samples used were much higher, 960 training and testing samples,

and the accuracy was around 98 to 99%.

1.2 Structure of this paper

This paper is organized as follows. Section 2 presents the fundamental con-

cepts; section 3 presents the details of our technique for the classification task.

Section 4 presents the results of the application of the classifier, and section 5

discusses the limitations and contributions of this work.

2 Fundamental concepts

2.1 Vibration Analysis

The concept of “vibration signature analysis” is simple: machines in good con-

dition generally tend to have a fairly stable vibration pattern, which can be

considered as a “signature” (Randall, 1975). Changes in the internal conditions

are often reflected as changes in the vibration pattern.

Piezoelectric transducers (accelerometers) are used to measure vibration.

The result of data acquisition is the acceleration time wave.

For any machine, many acquisitions are made: in general, each equipment

is measured in its three dimensions: horizontal, vertical and axial directions,

both on the coupling and non-coupling sides. For example, an induction motor

is usually measured in the five positions detailed in figure 1.

Vibration analysis is commonly done by examining individual frequen-

cies present in the signal. These frequencies correspond to certain mechanical

components (for example, the various pieces that make up a rolling-element
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Figure 1: Induction motor example of where to make vibration measures

bearing) or certain malfunctions (such as shaft unbalance or misalignment). By

examining these frequencies and their harmonics, the analyst can often identify

the location and type of problem (Mobley, 2002).

The time domain wave data is transformed to its frequency domain rep-

resentation. The acceleration time wave is transformed to its frequency domain,

generating the acceleration spectrum; for higher precision in lower frequencies,

the acceleration time wave is integrated and transformed, resulting in the veloc-

ity spectrum; for better precision in higher frequencies, the signal is demodulated

and transformed, resulting in the envelope spectrum. Failures such as shaft mis-

alignment or unbalance are better detected using the velocity spectra, while

rolling element bearings faults are clearer in the envelope spectra.

2.2 Feature Extraction

As mentioned above, each measure point generates three spectra: the velocity,

the acceleration, and the envelope spectrum. It is unfeasible to use the whole

spectrum for classification, thus one usually computes single numbers that sum-

marize characteristics of part or of the whole spectrum. These numbers are

called features.
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In this research we used the following features, computed from the time

domain and from the frequency domain data of each spectrum:

• the root mean square (rms) (from time domain data) - rms

• peak to peak value (from time domain data) - pkpk

• the spectrum average (from frequency domain data) - avg

• the spectrum standard deviation (from frequency domain) - std

• the number of high peaks (peaks that are higher than the average plus

three times the standard deviation from frequency domain) - hp

• the cumulative sum of the high peaks (from frequency domain) - cshp

In some cases, the detection of a fault require the comparisson of the

current spectra with previously collected data. In ths research we used both

the data collected in the previous month, and the reference for that spectrum.

The reference is the data collected when the machine was known to be in good

conditions, either because it was new or it had just undergone maintenance.

The following features are calculated as the difference from the current

feature value, to the previous month and to the reference value:

• the difference from the previous month rms - rmsa

• the difference from the previous month pkpk - pkpka

• the difference from the previous month number of high peaks - hpa

• the difference from the previous month cumulative sum of the high peaks

- cshpa

• the difference from the reference rms - rmsr

• the difference from the reference pkpk - pkpkr
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• the difference from the reference number of high peaks - hpr

• the difference from the reference cumulative sum of the high peaks - cshpr

Thus, instead of using a particular spectrum as the input data to the

classification process, we use the 14 features listed above.

2.3 SVM classifier

Support vector machine (SVM) is a statistical learning technique used in vari-

ous classification problems (Cristianini and Shawe-Taylor, 2000). The standard

SVM deals with binary classification problems, and its basic idea is to determine

a linear boundary between the two different classes. The boudary (or separating

hyperplane) is oriented in a way that its distance to the nearest data points in

each class is maximized. The nearest data points are known as support vectors.

Figure 2 illustrates the SVM: the boundary is represented by the solid line and

the support vectors are emphasized. The margin of the SVM is the region from

the hyperplanes that contain the suppor vectors in each side (in dashed line).

Figure 2: SVM hyperplane (figure taken form Wikipedia)
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The linear boundary can be expressed as:

w · x − b = 0, w ∈ R
N , b ∈ R (1)

where w is the vector that defines the boundary, x is the input vector of di-

mension N , and b is a scalar threshold. The distance from the boundary to the

margins is:

d =
1

‖w‖
(2)

The optimal linear boundary that separates the two classes is calculated

using the following optimization problem:

minimize : ‖w‖

subject to : yi(w · xi + b) ≥ 1

where yi is 1 or -1 depending on the class attributed to the input data xi.

A further extension of SVM allows for soft margins, that is, one may

allow points in the wrong side of the boundary, if that would increase the size

of the margins. For a misclassified data xi, ξi is its distance to the boundary.

In this case, the optimization problem is:

minimize : 1
2
‖w‖

2
+ C

∑M
i=1 ξi

subject to : yi(w · xi + b) ≥ 1 − ξi

(3)

where C is the error penalty for the misclassifications.

To solve equation 3, the problem is reduced to the equivalent Lagrangian

dual problem. The solution itself will not be presented in this paper, but Widodo

and Yang (2007) presents a very complete description of all steps and algorithms

involved in SVM. In this research we used the Sequential Minimal Optimization

algorithm from the package libsvm (Chang and Lin, 2001) to solve Eq. 3.
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So far, we described SVM as an algorithm that attempts to calculate a

linear boundary that separates two different classes. However, SVM can also be

used in non-linear classification tasks, with the use of kernel functions. Kernel

functions work by transforming the input state space to a higher dimensional

space, where the data can be linearly separated as described before.

In this work, we use the Gaussian radial basis function (RBF) kernel,

defined as:

RBF (x, y) = e−‖x−y‖2/2γ2

(4)

where γ is the parameter of dispersion of the RBF.

3 Classification with Unbalanced Costs

For this research, the cost of a false negative is far superior than the cost of a

false positive. We call this situation the unbalanced cost of errors.

The standard SVM technique assumes balanced cost. Equation 3 makes

no distinction between the two forms of misclassifications: a positive example

being classified as negative (false negative), and the other way around, both are

treated equaly (the C and ξi terms)

We extended the standard SVM in two different ways to account for the

unbalanced cost. The first way is to alter equation 3 to add different costs for

false negatives and false positives. Thus, we make the cost of false positives C,

and of false negatives α × C, where α > 1. The new equation is:

minimize : 1
2
‖w‖

2
+ C

∑
iis a false positive ξi + α × C

∑
jis a false negative ξj

subject to : yi(w · xi + b) ≥ 1 − ξi

(5)

This change would make it likely that the false negatives, if they exists, will be

closer to the separating hyperplane than the false positives, since their cost is
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α times that of the false positives.

3.1 SVM+kNN

Our second extension to a standard SVM is to more carefully consider the points

that fall close to the separating boundary, since it is where the false negatives

are likely to appear.

The k-nearest-neighbors (kNN) algorithm can be described as follows:

a new sample is classified in accordance to a function of its k-most closest

neighbors’ classification. This function can be, for example, a majority polling,

or a consensus criteria. The main parameter of the algorithm is the number of

neighbors k that should be checked to decide a classification.

For the data points inside a region close to the hyperplane, defined as the

region whose distance to the hyperplane is t × d, where d is the margin of the

SVM algorithm (equation 2), we apply a kNN consensus criteria, in which a new

data is classified as normal if and only if all of its k neighbors in the training

set are also normal. If at least one of the k-nearest neighbors is classified as

defective, the new data point also received the defective classification.

Figure 3 illustrates the algorithm. The star is a new data point. Since it

lies “close to the hyperplane”, that is, within the dotted lines, it will not follow

the standard SVM decision procedure and will not receive the classification

of “normal” (white circles). We will instead use the kNN consensus criteria.

Let assume that that k=5, that is, we will pool all 5 nearest neighbors of the

new data point (the points within the circle) and if any of them is classified as

defective (filled circles), the new data point will receive a defective classification.

This strategy combines the two main advantages of each algorithm: the

generalization efficiency of SVM, specially for data points far away from the

hyperplane, and the complex boundary that the kNN algorithm creates close to
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defect ive

normal

Figure 3: SVM + KNN

the separating hyperplane where the misclassifications, specially false negatives,

are more likelly.

4 Results

4.1 Feature and parameter selection

Even though we do not work with the whole spectrum, but with 14 features

described above, not all features may be useful for the classification task. In fact,

features that are not useful for the classification task may hinder it (Guyon and

Elisseeff, 2003). Thus selecting which of the features are relevant is an important

step in any automatic classification task. Many techniques have been developed

for feature selection (for example Guyon and Elisseeff (2003) and other papers

in that JMLR Special issue on the topic). In this research we used a rather

traditional method of forward selection by cross-validation.

The method starts by selecting a subset of the data and a quality metric

for compassion between the different classifiers. Then, using only one of the
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features at a time, we compute the quality metric for each single feature classifier

using cross-validation. The feature that maximizes the metric is selected. In

the next interaction, all the features that were not included in the previous

interactions, are added, one at a time, and the feature that again maximizes

the metric is kept. The process repeats until the addition of any of the other

features decreases the metric. The final set of featrues is then set of features of

the previous interaction.

Besides selecting the features, our SVM+KNN classifier has the following

parameters whose values need to be determined:

• C from equation 3

• γ from the RBF kernel function 4

• α the multiplying parameter for the cost of false negatives

• k from the kNN algorithm

• t the proportion of the margin in which the KNN algorithm will be used

The determination of the parameters of the classifier was done by brute force

exploration of a few grid points. For each combination of features, using cross

validation, we determined the quality metric of the classifier for all combinations

of the 5 different values for each parameter.

For the feature selection algorithm we used a set of 1000 spectra from

induction motors, equally divided into normal and defective. For the quality

metric we used a variation of accuracy: if there was any case of false negatives we

would say that the quality of the classifier was 0, if there was no false negatives,

we measured the accuracy, that is the number of correct classifications divided

by the total number of examples.

The results of the rounds of feature selection are displayed in Table 1.

Each row in the table represents the results for one round in the feature selection
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algorithm, and the number in bold face is the best result for each round. Some

classifiers have 0% accuracy because they generated false negatives. In the first

column, there is the indication of the features already selected. The iterative

procedure stopped at the sixth interaction because the accuracy dropped with

the addition of any new feature.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Feature rms pkpk hp cshp avg dev rmsa pkpka hpa cshpa msr pkpkr hpr cshpr

78.3 62.7 49 0 43 0 0 71 68.7 0 0 0 0 0

1 77.7 75.7 76.7 0 62.3 77.7 77.3 76 68 0 62.7 66.3 0

1,2 78 78.8 0 68.3 76 78.7 71.7 75 78.7 68 71 74.3

1,2,4 71.7 73.7 74.3 79.7 76.7 70 72.3 78 74.7 70.7 76.3

1,2,4,7 78.7 73 69.7 77.7 78.3 75 81.3 75.7 66 75.3

1,2,4,7,11 73.3 77.7 70.3 80.7 75.7 70.3 72.7 76.7 78

Table 1: Feature selection

The five selected features are: the rms and peak to peak current values,

the difference from the current rms to the previous month, the difference from

the current rms to the reference month, and the cumulative sum of the high

peaks.

For these features, the parameters that achieved best accuracy (keeping

the false negative rate to zero) are:

• C = 1

• α = 20

• γ = 10

• k = 23

• t = 0.75

4.2 SVM + KNN Classifier

In this section we present the results of applying the SVM+KNN classifier with

the features and parameters defined above. These results are a sample of the
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SVM+KNN classifier in real life use. We used data sampled from 11 months

of operations from SEMEQ to train the classifier, and used the classifier on all

data from the 12th month to evaluate the false negative rate and accuracy. The

data is separated by type of machine and by the type of spectrum. The training

set was composed of the same number of normal and defective spectra (for each

machine and spectrum types). The testing set was the whole month data.

Table 2 shows the results for induction motors. The first column indicates

the type of spectra, the second the number of spectra used in the training set,

sampled from the eleven months of operations and equally divided into normal

and defective, the third column shows the number of spectra used in the test set,

the fourth column the number of false positives, that is the number of spectra

incorrectly labeled as defective by the classifier, the fifth column the number of

false negatives, and the sixth column the accuracy of the classifier (number of

correct labeled examples divided by the number of examples used in the test

set).

Spectrum Training Testing False False Accuracy (%)
Set Set Positives Negatives

velocity 1000 1223 329 0 73.1
acceleration 1000 1058 211 0 80.1

envelope 1000 1051 288 0 72.6
Average 75.3

Table 2: Results for induction motors

Table 3 shows the results for rolling element bearings, Table 4 for gear

coupling, and Table 5 for pumps.

5 Discussion and Conclusion

There has been some tradition in the use of statistical learning techniques

to automatically detect indications of a developing failure from spectra data
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Spectrum Training Testing False False Accuracy (%)
Set Set Positives Negatives

velocity 791 790 188 0 76.2
acceleration 629 876 171 0 80.5

envelope 320 626 89 0 85.8
Average 80.8

Table 3: Results for rolling element bearings

Spectrum Training Testing False False Accuracy (%)
Set Set Positives Negatives

velocity 40 1003 84 0 91.6
acceleration 774 1023 144 0 85.9

envelope 232 1009 260 0 74.2
Average 83.9

Table 4: Results for gear coupling

(Samanta et al., 2003; Samanta, 2004; Rojas and Nandi, 2006; Samanta and

Nataraj, 2009; Casimira et al., 2006; Yang et al., 2005). Some of these re-

searches have achieved very high accuracy in dealing with particular machine

types. But unless one is ready to accept a fully automatic vibration analysis

system, the goal of high accuracy is somewhat misguided. If the automatic sys-

tem is to be used in tandem with human analysis, then the goal should be very

low false negative rates. This was the direction of this research.

All the previous work in machine learning techniques applied to machine

fault diagnostic dealt with a single type of machine (motors, bearings, gear).

Most of these works also used small data sets to train and test the classifiers, and

the data was obtained in laboratory settings. Our research deals simultaneously

with many different machine types, and we use a much larger data set. Finally,

our research uses field data, both as training and as testing.

We achieved the main goal of zero false negative rate, but the accuracy

of the system ranges from 75% to 83%, which still falls short of the accuracy

achieved by other research. There are different directions to explore in order to

improve the accuracy of our solution, provided it still maintain the false negative
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Spectrum Training Testing False False Accuracy (%)
Set Set Positives Negatives

velocity 749 1028 184 0 82.1
acceleration 910 1037 318 0 69.3

envelope 710 1025 207 0 79.8
Average 77.1

Table 5: Results for pumps

rate very low (or better, zero).

One direction of future exploration is to improve the feature selection

and parameter setting phase. We opted to use single set of features (and its

corresponding classifier parameters) for all the machine types. That was a

project decision based on time constraints - feature selection and parameter

setting is a time consuming step, and thus we selected the features for the most

common machine type in our data set, and used those features and parameters

for the other machine types. The fact that these features and parameters work

well for the other machine types is in itself an interesting result, but it is likely

that one may improve the accuracy by determining a particular feature and

parameter set for each machine type.

The second line of future investigation is more costly but will probably

result in a significant increase in accuracy. As we mentioned, our data represent

real results from operations of SEMEQ, and this data associates to each machine

the presence or not of a fault. But for training of the system, we associated the

presence or not of a fault to each spectrum from the machine! Thus, there may

be spectra that were learned as defective when in fact they were not, and some

other spectrum for that machine were the ones in which the fault was clearer.

Our system has a very cautious notion of “normality” - if something similar was

classified as defective, the new data must also be classified as so. Therefore,

this automatic association of a fault in the machine to a fault in any spectra of

that machine is probably responsible for the high rate of false positives. But,
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in order to more precisely associate the fault in the machine to one or few of its

spectra would require the help of an specialist. We have not yet determined if

the cost of such enterprise is worth for the project.

By the time of the writing of this paper, the system described is in daily

operation at SEMEQ for one year.
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