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Abstract

One reason workflow systems have been criticized as being inflexible is that they lack support for delegation. This paper

shows how delegation can be introduced in a workflow system by extending the role-based access control (RBAC) model.

The current RBAC model is a security mechanism to implement access control in organizations by allowing users to be

assigned to roles and privileges to be associated with the roles. Thus, users can perform tasks based on the privileges

possessed by their own role or roles they inherit by virtue of their organizational position. However, there is no easy way to

handle delegations within this model. This paper tries to treat the issues surrounding delegation in workflow systems in a

comprehensive way. We show how delegations can be incorporated into the RBAC model in a simple and straightforward

manner. The new extended model is called RBAC with delegation in a workflow context (DW-RBAC). It allows for

delegations to be specified from a user to another user, and later revoked when the delegation is no longer required. The

implications of such specifications and their subsequent revocations are examined. Several formal definitions for assertion,

acceptance, execution and revocation are provided, and proofs are given for the important properties of our delegation

framework.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Despite various advances in workflow technol-
ogy, current workflow systems still do not handle
delegation well. In its simplest form, a user who has
been assigned a task and is unavailable to perform it
e front matter r 2005 Elsevier B.V. All rights reserved
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for any reason (such as leave of absence, sickness,
etc.) should be able to delegate it to another user. If
such support is not provided, the task will not get
done.

The role-based access control model (RBAC) (for
example [1]) is receiving attention as a systematic
way of implementing the security policy of an
organization. It groups individual users into roles
that relate to their position within an organization
and assigns permission to various roles according to
their stature in the organization. Roles are generic
.
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terms like manager, vice-president, etc. and any-
body in a role can perform certain tasks assigned to
him or her.

The term delegation is usually employed in the
security literature to describe transfer or inheritance
of rights from some user to a machine, that then
acts as a surrogate for that user (as in an ATM
transaction, for instance). Only recently researchers
are starting to recognize the importance of introdu-
cing delegation into the RBAC framework. The two
significant research efforts that we are aware of in
this direction are those of Barka and Sandhu [2,3]
and of Yao, Moody and Bacon [4]. The work of
Barka and Sandhu allows a role to delegate to
another role, and also considers multi-step delega-
tions and revocations. Yao et al. [4] introduces the
notion of an appointment whereby a user can
appoint another user to perform a task.

RBAC features are increasingly being supported
in commercial database systems such as Informix,
Sybase and Oracle [5], and the term grant is used to
refer to the assignment of privileges to users and
role. Moreover, grant is itself a right that can be
conferred. In this way, delegation can be imple-
mented in a database system. However, such
support is still limited and does not permit very
fine-grained control in a dynamic environment.

In RBAC, in addition to roles, users and
privileges, there is also a notion of sessions. Thus,
a user may log into different sessions with different
roles that she is entitled to play. For example, in one
session Mary may be logged in as a cashier and in
another as an accounts manager. In workflow
applications, the concept of a session is less clear.
Instead workflow systems have a notion of cases,
corresponding to the processing of a specific
instance, such as Beth’s expense reimbursement
claim for travel to Chicago, or Carl’s auto accident
claim. In this context, privileges must be case-
specific, i.e., a user may have permission to perform
a task for a certain case but not be allowed to
perform the same task for another case. For
example, Beth must not be the requester and
approver for the same reimbursement, but, of course,
Beth may be the approver for Carol’s request, and
may herself be the requester of a different reimbur-
sement process. Thus, Beth may be at the same time

requesting her reimbursement and approving Car-
ol’s, but that is acceptable if these roles are being
played in different reimbursement cases even within

the same session. Previous work by the authors [6]
extends RBAC to accommodate case-based privi-
leges in the context of workflow systems. The
present paper is an attempt to include delegation
into such a framework. This work extends the ideas
presented in [7], which discuss some of the ideas of a
fine-grained delegation/revocation framework in
RBAC. In this work those ideas have been extended
into a workflow domain.

This paper is organized as follows. Section 2
describes briefly the motivation behind the W-
RBAC model, an extension to the RBAC model
to deal with workflow systems. Section 3 describes
the key intuitions behind our model of delegation.
Then Section 4 discusses the formal aspect of the
assertion of a delegation. Section 5 discusses the
intuitive and formal aspects of revocation of
delegations. Section 6 proposes extensions to our
framework to allow richer kinds of delegations, and
Section 7 describes a proof of concept implementa-
tion. Then, Section 8 discusses related work, while
Section 9 gives the conclusions of this work.

2. W-RBAC and workflow/permission system

2.1. Workflow management systems and RBAC

Workflow management systems allow for the
definition and enactment of business processes. A
workflow system stores definitions (or schemas) of
processes in terms of their tasks definitions, users
that should perform tasks, usually given in terms of
roles, and a partial ordering of tasks that establishes
constraints on task execution sequences. Additional
constraints may also be imposed on the ordering.
After a workflow process W is defined, instances of
this process (also known as cases in the workflow
literature) may be created and are managed (or
enacted in the workflow literature) by the workflow
system. At any time, zero or more instances of a
workflow process might be being enacted.

The focus of the present paper is on the set of
users that can perform workflow tasks. Besides
timely instantiation of tasks (control flow aspect),
one of the main duties of a workflow system is to
determine who among the users are the most
appropriate to execute each task, as well as
determining an order of preference if more than
one user fits the requirements for execution (re-
source allocation aspect). In most commercial
workflow systems, once the set of potential execu-
tors is determined, either the system announces to
all of them that there is work to be done, and one
of the users will accept the work, or some more
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complex selection process that picks out the
executor from the set of potential executors is used,
including a random selection. In this paper we are
not interested in the selection process itself, but
on the set of potential executors. Elsewhere (see
[8,6,9]), we and other authors discuss selection
criteria and policies. In this paper, delegation is
the process by which a new user is brought into the
set of potential executors of a task for a case (by
another potential executor).

An RBAC model is described by (1) entities:
users, roles, and privileges; (2) relationships between
these entities; and, (3) constraints over these
relationships. In this paper we use the following
RBAC standard relations among the entities (see
the inside box in Fig. 1):
�

F

can-play(U,R) states that user U can play the role
R. For example if Alice is (among other things) a
Java programmer, one would state that can-

play(Alice, java-programmer).

�
 hold(R,P) states that role R holds the right (or

privilege) P. If for example, Java programmers (a
role) can use (or have the right to use) the Java
optimizing compiler, one would state that hold

(java-programmer,use-java-opt-compiler).

�
 implyðP;P0Þ states that the right P includes the

right P0. For example if the right of using all
programming development tools include the right
of using the Java optimizing compiler, one would
state that imply(use-development-tools,use-java-
opt-compiler).
Basic familiarity with RBAC is assumed. For more
details, please see [1].
user role privilege
can−play hold

imply

case

doer

RBAC
WRBAC

dynamic 
constraints

ig. 1. A conceptual model of RBAC and W-RBAC concepts.
2.2. W-RBAC

W-RBAC [6] is a framework which employs a
workflow component and an enhanced RBAC-
based permission service. While the workflow
component is responsible for process enactment
(as defined earlier in this section), the permission
service handles the selection of authorized and most
appropriate users to execute each task, based on an
organizational and authorization model that it
manages. W-RBAC defines a protocol that regu-
lates the interaction between these two modules, so
that the enactment and permission concerns are
clearly separated, i.e., permissions are encapsulated
in the permission service that is solely responsible
for all authorization related information.

The components of W-RBAC relevant to this
paper are:
�
 the entity case which represents an instance of a
workflow process,

�
 the relation doerðU ;T ;CÞ states that user U

executed the task T for a particular case C
�
 dynamic constraints that limit who can execute a
particular task for a particular case. For example,
a dynamic constraint would forbid the same
person from performing the activities sign check

and audit expenses for the same case, but not for
different cases. Dynamic constraints are repre-
sented in W-RBAC as

? Cn,

where Cn represents an invalid situation. For
example, to assert that no one can be the check
signer and the auditor for the same process
instance or case, one would write

? doerðx; check_signer; cÞ,

doerðy; auditor; cÞ; x ¼ y.

A conceptual model for the RBAC and W-RBAC
concepts relevant to this paper is presented in Fig. 1.
W-RBAC extends RBAC with the notion of a case
and a 3-way relationship called doer between a user,
privilege and case. It also introduces dynamic
constraints as a way to handle case-specific require-
ments, such as those involving binding and separa-
tion of duties.

The workflow system interacts with the permis-
sion system through a relatively simple interface
such that, before a task is assigned to a user, the
workflow module makes a call to the permission
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module to determine the users that can perform that
task. The permission system will query the RBAC
relations to verify which users have the right to
perform the task, and for each user, it will verify if
adding the corresponding doer relation will violate
some of the dynamic constraints. All users who do
not violate the dynamic constraints will be returned
to the workflow system as potential executors of the
task. The workflow might then select among the
potential candidates using other concerns such as
the ones discussed in [9]. Moreover, after each task
is completed the workflow system will notify the
permission service of the user who actually per-
formed the task so that the permission service can
properly implement various dynamic constraints.

The selection process is an important aspect of
the workflow system. Many concerns may arise,
such as optimization of some metrics like number of
late jobs [10], quality of the work [9], among others,
which are beyond the permission system and W-
RBAC. W-RBAC will return the set of potential
executors as an ordered list of sets of equally
preferred users. The workflow may choose among
the most preferred ones (regarding the ordering
defined), or may choose another user who belongs
to the list.

3. Delegation: definitions

The essence of our delegation model is that a user
(say, Alice) delegates to another user (say, Beth) the
right to perform a task (say, negotiate salary) for a
particular workflow case (say, Yasmin’s job appli-
cation). We call this a specific delegation. We will
also discuss later a more generic form of delegation,
in which one delegates just the right to execute a
task, but does not specify the case.

In the example above, Alice is the grantor and
Beth is the delegate. There are two stages in a
delegation: the first where Alice makes the delega-
tion, which we call assertion, and the second where
the workflow determines that a next task has to be
performed and asks the permission system for
possible executors of that task. We call this second
stage the execution of the delegation. Note that a
delegation may be asserted but never be executed.

In order for Alice to be able to delegate a right to
Beth, she must have the right to start with. She may
have received it through some other kind of
delegation (to be discussed shortly), or she may
possess the right already. We say that Alice has
direct rights to a privilege if the RBAC structure
allows her to have that right, or more formally,
there is a role that Alice can play, and the role holds
the particular privilege. For example, Alice may
have a direct right to unlock-door because that right
belongs to the role of security-guard, and security
guard is one of Alice’s roles.

If Beth feels that Carla is better suited to perform
the salary negotiation than her, she may further
subdelegate the task to Carla. Such further sub-
delegation is called delegation chaining. On the
other hand, Alice (the original grantor) may not
want Beth to further delegate the task. Thus, there is
a need to control chaining. We will discuss different
ways of controlling chaining, but in general, we will
consider that delegation is an action that needs the
appropriate right to be executed. Therefore, to
delegate the salary negotiation task to Beth, Alice
not only must have the right to execute the task, but
also the right to delegate that task. Moreover, Alice
may either only delegate the right to execute the
task to Beth, or she may delegate both the right to
execute and right to delegate the task. In the latter
case only, Beth will have the right to further
delegate the task to someone else. We will discuss
in Section 4.1 that Alice may also delegate the right
to delegate with restrictions, and so Beth will not be
totally free to delegate the task to whoever she
wants. In this paper we call rights to execute a task a
task right, and delegation rights are the rights that
allow one to delegate. We will use the symbol T for
a task right, the symbol D for a delegation right and
P for any right when it is not necessary to
distinguish between task and delegation rights.

The fact that a delegation is accepted does not
necessarily mean that the delegate will be the one to
execute the task. First, delegation is additive, i.e.,
although Alice delegated the task to Beth, Alice is
still a possible executor of the task herself. Secondly,
there may be dynamic constraints that prevent a
delegate from executing a task. For example, if a
delegate has already signed a check for a case, then
she would be forbidden from auditing the same
case; in this situation we say that the delegate is
blocked. The fact that the delegate may be blocked
does not prevent a delegation from being accepted;
in fact, it may only be known that a delegate is
blocked much after the delegation was issued and
accepted.

The concepts of DW-RBAC as they relate to
W-RBAC are presented in Fig. 2. In particular,
DW-RBAC further extends W-RBAC by introdu-
cing two types of delegations: specific and generic,
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Fig. 2. Main concepts of DW-RBAC.
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and a stronger-than relation for partially ordering
privileges. These new relations are discussed at
length in the next section.

All delegations and revocation of delegations are
issued by means of operations. We summarize now
these operations, and will discuss them in further
detail in the rest of the paper.

delegate(G,D,R,C): This is the operation issued
by the user G (grantor) to delegate the right R for
case C to user D (delegate). The right R may be the
right to execute a task, or it may be the combination
of such a right and the right to further delegate it.
We will denote this as delegate(G;D;TþD;C),
where T is the right to execute the task and D a
delegation right for it. (Delegation will be discussed
in Section 4.)

delegate(G,D,R): This is the operation to issue a
generic delegation from grantor G to the delegate D
of right R for all cases (generic delegation is
discussed in Section 4.8).

revoke(G,D,R,C): This revokes the delegation of
right R from G to D for case C. (Revocation is
discussed in Section 5.)

revoke(G,D,R): This revokes the generic
delegation of right R from G to D. (Discussed in
Section 5.3.)

transfer(G,D,T,C): This transfers the task T of
case C, already assigned to user G, to user D.
(Discussed in Section 6.1.)

4. Delegation: assertion

Some of the complexity of delegation arises
because trust, in general, is not transitive: if Alice
trusts Beth, and Beth trusts Carla, that does not
mean that Alice trusts Carla. This non-transitivity is
carried along to delegation: Alice may trust Beth
enough to delegate a task to her (and Beth may
likewise trust Carla), but Alice may not want Beth
to delegate it further to Carla. Thus, there must be a
way to control the chaining of delegations. In our
proposal, this is achieved by a complex set of rights
to delegate, and through generic constraints.

4.1. Right to delegate

In our model, delegation is a right, and thus, a
kind of privilege. We will define several such
delegation privileges. If T is a task, the following
are delegation privileges: ud(T,n), ud*(T), cd(T,Q,n),
cd*(T,Q), ud(0) and ud(T,0) where Q is a one place
predicate and n40. In all these cases T is the object

of the delegation right.
Intuitively, the privilege ud(T,1) (which stands for

unconditional delegation of T) allows one that has
the privilege of executing T, to delegate T for a
particular case to anybody else, provided the
delegation does not violate the generic constraints.
If one holds the privilege ud(T,2), and can execute
T, one can also delegate T, and delegate ud(T,1) as
well. So the delegate not only can execute T but can
further delegate it to someone else. In general, if a
user holds ud(T,n) and also holds the privilege of

executing T, she can start a chain of delegations of T
(for a case C) at most n steps long.

In this paper, we will assume that one cannot
normally delegate just delegation rights, but one
must also delegate the task, and possibly a delegation



ARTICLE IN PRESS
J. Wainer et al. / Information Systems 32 (2007) 365–384370
right to the task. Thus if Alice holds ud(negotiate-
salary,3) she cannot just delegate ud(negotiate-
salary,2) to Beth, she must also delegate the task
negotiate-salary. We will denote that Alice delegated
task negotiate-salary and the right ud(negotiate-
salary,2) for case c123 to Beth as

delegateðalice,beth,negotiate-salary

þ udðnegotiate-salary,2),c123Þ

The special privilege ud*(T) (total delegation) is in
fact ud(T,1); thus, if one holds ud*(T), one cannot
only delegate T but also ud*(T). So, the delegate will
have the same rights regarding T and the delegation
of T as the grantor herself.

The privilege cd (for conditional delegation),
allows one to set up further controls on the chains
of delegation. If a user holds cd(T,Q), and can
execute T herself, then she can also delegate T to a
user U provided U satisfies the property Q, i.e.,
Q(U) is true. Q is the condition of the delegation. If
the user holds cd(T,Q,n) she can start a multi-step
chain of at most n steps (for a case), in which each
delegate in the chain must satisfy the property Q. As
before, cd*(T,Q) is in fact cd(T,Q,1).

The purpose of the delegation rights ud(T,0) and
ud(0) will be discussed below, but, intuitively, they
are rights that do not allow for any further
delegation.

4.2. Stronger relation

We will define two relations between task rights
and between delegation rights, both of them called
stronger relation and with similar intuitions. In fact,
the semantics of the stronger relation is ‘‘stronger
than or equal to,’’ and we will use the X symbol
for it.

Definition 1. The stronger relation X among the
task privileges is defined as TXT0 iff
�
 T ¼ T0 or

�
 implyðT;T0Þ,

where imply is the RBAC relation between two

rights.

Definition 2. The stronger relation X among the
delegation privileges is defined as follows:
�
 ud�ðTÞXudðT; nÞXudðT; kÞ for n4k,

�
 ud�ðTÞXcd�ðT;QÞ, for any Q,

�
 udðT;nÞXcdðT;Q;nÞ, for any n40 and Q,
�
 cd�ðT;QÞXcdðT;Q;nÞXcdðT;Q;kÞ for n4k,

�
 If TXT0 then cdðT;Q;nÞXcdðT0;Q;nÞ and

cd�ðT;QÞXcd�ðT0;QÞ,

�
 If TXT0 then udðT; nÞXudðT0;nÞ,

�
 If TXT0 then ud�ðTÞXud�ðT0Þ,

�
 If Q and Q0 are one place predicates, then

cdðT;Q;nÞXcdðT;Q ^Q0; nÞ, for any n and T,

�
 If Q and Q0 are one place predicates, then

cd�ðT;QÞXcd�ðT;Q ^Q0Þ, for any T,

�
 cdðT;Q;nÞXudðT; 0Þ for all Q and n40,

�
 udðT; 0ÞXudð0Þ for all T.

If PXP0 then we will say that P0 is weaker than P.
We can also define P4P0 as PXP0 and not P ¼ P0,
and we call 4 as a strictly stronger relation.

Intuitively, a delegation right is stronger than
another one if it reaches more people, or it allows
‘‘more to be done’’. For example, ud(T,3) is
stronger than ud(S,3) because of imply(T,S), and
thus, having the privilege T allows one to ‘‘do
more’’ than just having the privilege S. ud(T,3) is
stronger than ud(T,2) because it allows chains of
size 3 instead of 2; ud(T,3) is stronger than
cd(T,Q,3) because the three delegates allowed by
cd(T,Q,3) must satisfy condition Q, whereas the
three delegates allowed by ud(T,3) are uncon-
strained.

The purpose of ud(T,0) and ud(0) is to define a
minimum for the stronger relation; ud(T,0) is
weaker than any other delegation right for the
privilege T, and ud(0) is weaker than any delegation
whatsoever. They will be useful when we define
generic constraints below.
4.3. Generic constraints

RBAC allows specification of the privileges of a
user through the role concept. We can define the
can-do relation between users and privileges indir-
ectly through the composition of can-play and hold.
But delegation adds a new relation between users
and privileges, in fact a relation between users,
privileges and cases. If task T of case C has been
delegated to U, then U gains the privilege to
perform T (for case C) independent of the roles
she can or cannot play. Thus, constraints that limit
delegation must limit directly this new relation
between user and privilege.

By their nature, generic constraints do not make
reference to cases. Thus, they will limit particular
instances of a relation between user and privilege,
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independent of the case. We will use the relation
has-right to capture this new relationship between
users and privileges, unmediated by role, that
underlies delegation.

We express generic constraints as

? has-rightðU ;RÞ; g,

where g is any conjunction of primitive predicates of
RBAC (can-play between users and roles and hold

between roles and rights, imply between rights, is-a
between roles) or any other derived predicate that
refer to users, roles, and rights. For example, we
assume that relation subordinate(A,B) is a predicate
that states that user A is subordinate to user B in the
organizational hierarchy.

To express that no subordinate can receive a right
that is stronger than one his superior has, one would
define the generic constraint:

? has-rightðuser; pÞ; subordinateðuser; bossÞ,

can-playðboss; roleÞ;holdðrole; qÞ; implyðp; qÞ

ð1Þ

Generic constraints cannot be used to place
constraints on sets of rights. Thus, in the current
proposal, one cannot create constraints that would
prevent a subordinate from holding more rights in
the aggregate than his superior. That would require
to make reference to the set of rights both the
superior and the subordinate have.

Finally, the two delegation rights ud(0) and
ud(T,0) should be used to specify that a user should
not gain any delegation right at all, or to a
particular task T. The constraint

? has-rightðu; udðunlock-door; 0ÞÞ,

can-playðu; security-guardÞ ð2Þ

states that a person who can play the role of a
security guard cannot receive rights to delegate the
task of unlocking doors.

4.4. Definitions of delegation acceptance

A delegation assertion is accepted by the system
under certain conditions. In this subsection, we
define these conditions formally.

Let us callA the set of accepted delegations so far.
We first define the auxiliary relation has(U,P,C).

Definition 3. has(U,P,C) is true if:
�
 there is a role R and can-play(U,R) and
holdðR;PþÞ, and PþXP,
�
 or there is a delegation of the form delegateðx;
U;Pþ;CÞ in A and PþXP.

That is, has(U,P,C) is true if either by direct right or
þ
by delegation user U has the right P stronger or

equal to P for case C.
Now we define when a delegation can be accepted.

Definition 4. The delegation delegateðU1;U2;Tþ
D;CÞ where T is a task and D is a delegation right
whose object is T (or a weaker task) is accepted if
delegate(U1,U2,T,C) and delegate(U1,U2,D,C)
are accepted (in that order).

Definition 5. The delegation delegateðU1;U2;
T;CÞ, where T is a task right, is accepted if:
�
 case 1 (grantor has ud)
� hasðU1;T;CÞ,
� hasðU1; udðTþ;nÞ;CÞ or hasðU1;ud�ðTþÞ;CÞ
for some TþXT,
� for all rights T� such that TXT�, adding
has-rightðU2;T�Þ does not violate any generic
constraint.
�
 case 2 (grantor has cd)
� hasðU1;T;CÞ,
� hasðU1; cdðTþ;Q; nÞ;CÞ or hasðU1; cd�ðTþ;
QÞ;CÞ for some TþXT,
� for all rights T� such that TXT� adding
has-rightðU2;T�Þ does not violate any generic
constraint,
�
 Q(U2) is true.

To define acceptance of the delegation of a
delegation right, we must first introduce the decre-

ment function as
�
 decrementðud�ðTÞÞ ¼ ud�ðTÞ,

�
 decrementðudðT; nÞÞ ¼ udðT;n� 1Þ for n40,

�
 decrementðcd�ðT;QÞÞ ¼ cd�ðT;QÞ,

�
 decrementðcdðT;Q;nÞÞ ¼ cdðT;Q;n�1Þ for n40.

The decrement function is needed for the proper
operation of the delegation mechanism. If Alice
received the right ud(T,3), which allows her to start
a chain of at most three steps, the strongest
delegation right she can give to Beth is ud(T,2)
which is the decrement of ud(T,3).

Definition 6. The delegation delegate(U1,U2,D,C),
where D is a delegation right whose object is T, is
accepted if:
�
 delegate(U1,U2,T,C) is accepted,

�
 hasðU1;Dþ;CÞ and decrementðDþÞXD,
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�
 for all rights D� such that PXD�, adding
has-rightðU2;D�Þ does not violate any generic
constraint, and

�
 if Dþ is of the form cdðTþ;Q; nÞ or cd�ðTþ;QÞ,

then U2 must also satisfy Q.

Next, we turn to see how some of these ideas are
operationalized.
4.5. Algorithm for acceptance of a delegation

In order to implement the definitions above as an
algorithm, there are two general steps: (1) verify if
the grantor has the right to delegate, and (2) verify if
the delegate can receive the right. We saw above
that the rights are expressed in two relations:
has-right contains rights obtained directly, while
has refers to rights obtained either directly or
through delegation. Thus, the two verification
operations involve searching the space of a possibly
large number of rights: in relation has, one must
look for all possible stronger rights, and in relation
has-right one must verify if a weaker right contra-
dicts a generic constraint (not to be confused with
dynamic constraint). The problem is that, for some
delegation rights, there may be an infinite number of
stronger rights, while others may have an infinite
number of weaker rights; and thus, one cannot
naively test all the alternatives.

Hence, in order to verify if has(U,Q,C), that is, if
user U has the right Q for case C, one should
1.
 verify if the user U has direct rights to some Qþ

stronger than P. This information does not
depend on the case or on delegations, so it can
be computed previously and kept as auxiliary
information to the RBAC data as follows: for
each user U, compute the maximal privileges the
user can hold. A privilege Q is maximal for user
U if there is a role r such that can-playðU; rÞ and
holdðr;QÞ, but there is no role r0, and a privilege
Q04Q such that can-playðU; r0Þ and holdðr0;Q0Þ.
Then collect all maximal privileges for user U
and verify if one of them is stronger than Q. This
step takes time proportional to the number of
maximal privileges of the user (which we assume
is not too large).
2.
 if the user has no direct rights to Q, then collect
all accepted delegations whose delegate is U1
(for case C). For each delegation of the form
delegateðX ;U;P0;CÞ, one has to verify if P0 is
stronger than P. This whole step takes time
proportional to the number of accepted delega-
tions of the form delegateðX ;U1;P0;CÞ.

The pseudo-code for this algorithm is as follows:
Algorithm verify(has(U,Q,C))

if (there exists QþXQ and r such that

can-playðU; rÞ
V
holdðr;QþÞ) then

return true
else begin

for each delegateðX ;U;R;CÞ 2A do

if ðRXQÞ then return true
end for each

return false
end
As for the verification of whether the delegate can
receive the right, we need to make sure there is no
constraint that prohibits the delegate from receiving
right R or a weaker right. To do this efficiently,
constraints involving right R and delegate U are
rewritten to include weaker rights than R as well.
Thus, for example, constraint 2 should be rewritten
to cover weaker rights as well as

? has-rightðu;X Þ;XXudðunlock-door; 0ÞÞ,

can-playðu; security-guardÞ ð3Þ

Using this format, each generic constraint rule has
to be evaluated at most once for each delegation.

4.6. Multiple delegations

The definition allows for multiple delegation of a
right to the same user. User A may delegate to X the
right to execute task T (for case C), and also the
right to further delegate it to anyone who satisfies
Q, that is, if the delegation delegateðA;X;Tþ
cdðT;QÞ;CÞ is accepted. On the other hand user B
may delegate to X the right to execute task T for
case C and the right to further delegate it at most
three times ðdelegateðB;X;Tþ udðT; 3Þ;CÞÞ. Thus,
user X has received two delegations of the right to
execute T, and different delegation rights to further
delegate it to others.

In view of the way delegation is defined in this
paper, such multiple delegations to X are not a
problem. User X can further delegate T to others
based on either of the two delegation rights
he received. If X further delegates T and some
delegation right P to Y, that delegation will be
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accepted if at least one of decrement(ud(T,3)) or
decrement(cd(T,Q)) is stronger than P. Thus, X can
delegate ud(T,1) to Y even if Y does not satisfy Q,
because in this case the delegation right of X being
used for this delegation is ud(T,3), which he received
from B. Hence, in case of multiple delegations, the
user may end up with what is equivalent to the
union of all rights he received.

Multiple delegation may also cause a cycle. Say,
A delegates to B, who further delegates to C, who in
turn delegates to A. The algorithm for acceptance of
a delegation does not check if the delegate already
had the right before accepting it, nor does it check if
the delegation would cause a cycle. In fact, we feel
there is no particular problem in the existence of this
cycle of delegations: delegations are individual
decisions of the grantor that do not require him to
know any history of previous delegations of the
same task. Thus, perhaps A felt that B was the right
person to execute the task T, or to further delegate it
to someone else. However, B felt the same about C,
who in turn felt the same about A, and thus the
cycle was produced.

We will see later that the existence of a cycle will
cause some problems when defining the revocation
of a delegation. But we decided to place the extra
processing burden required to deal with loops in the
revocation algorithm. Revocations are less common
than delegations, and thus, the extra processing time
should be placed there from an efficiency perspec-
tive.

4.7. Properties of delegation

There is no single definition of what are correct

delegations, and thus we cannot prove that the
delegation mechanism described above generates
only correct delegations. In fact, our delegation
scheme is very unconstrained—once a user has
delegation rights to a privilege X, no restriction is
placed on whom she can delegate privilege X to.
And if the user has the right to further subdelegate
the delegation right, again the scheme places no
restriction on who can be the new delegate. But, of
course, organizations would want some control on
who receives the right. This control is imposed
through the generic constraints—the organization
may create as many rules or constraints to limit
delegation. As we discussed above, one can define a
rather generic constraint that no subordinate can
receive a right that is stronger than one that his
superior holds. Or an even stronger, and likely too
draconian, rule that no subordinate may receive a
privilege that is not held by his superior (this is too
strong because in most organizations the subordi-
nate does already hold rights that his superior
does not—the Director does not have the database
privileges that the database manager does, although
the Director is his superior).

The following theorem shows that indeed all
generic constraints will be enforced in our delega-
tion scheme:

Theorem 1. No set of delegations will give a right P

to a user U if that violates some generic constraints,
(that is, has-rightðU ;PÞ violates some generic con-

straint).

Proof. (by contradiction) Let us first assume that
the right P is a task right, and let us examine one of
the delegations that eventually attributed the right P
to user U for case C. This delegation could be of one
of the following forms:
1.
 delegate(X,U,P,C)

2.
 delegate(X,U,S,C), where SXP

3.
 delegateðX;U;PþD;CÞ, where D is some dele-

gation right on P

4.
 delegateðX;U;SþD;CÞ, where D is some dele-

gation right on S, and SXP

In the first case, the delegation would not be
accepted, because by Definition 5, the assertion has-

right(U,P) would have to be checked against the
generic constraints. Since it directly violates some
constraint, the delegation could not be accepted. In
the second case, there is at least a right (in this case
P), such that SXP and for which has-right(U,S)
violates some generic constraint. The next two cases
involve delegation of a task along with delegation
rights for it. By Definition 4, first the suitability of
the task delegation (P or S) would be tried, and
so cases 3 and 4 would be similar to 1 and 2,
respectively. Since the task delegation itself would
not be accepted in these cases, they will be rejected.

If P is a delegation right (say, for some task T),
the two forms of delegation that would delegate it to
U are
�
 delegateðX;U;Pþ T;CÞ,

�
 delegateðX;U; Sþ T;CÞ, where SXP.

By Definition 4, the first case would not be accepted
because has-right(U,P) violates the constraint,
and the second case would not be accepted because
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there is at least one right (in this case P) which is
weaker than S and which violates the generic
constraints. &

4.8. Execution of delegations, dynamic constraints,

and generic delegations

Once a delegation is accepted, it confers a
potential right on the delegate. Thus, if user U
received a delegation of T (for case C), it means that
U is among the potential executors of activity T for
that case. Whether U actually executes T will
usually not be left to U’s decision. First, dynamic
constraints may preclude U from executing T.
Second, it may be that other potential users have
higher priority in executing T, and thus, they may
be chosen to execute T for case C. In database
systems, if a user U receives a delegation of right T,
she can execute T when she wants. In a workflow
system it is not so.

An accepted delegation is exercised when the
workflow asks for the potential executors of an
activity for a case. Then, in principle, every user
who has the right to execute the task (directly or
through delegation) is a potential executor. Only
then is the delegation exercised.

A user U is blocked from executing task T for
case C if
�
 U has the right to execute T of C, but

�
 the inclusion of doer(U,T,C) causes a violation of

a constraint.

This means that U is blocked on account of some
dynamic constraint. For example, even though Alice
received a delegation to execute the task approve-
purchase for case c34, nevertheless, since she is the
one who ordered the purchase, she is blocked from
executing the approval by a separation of duties

requirement.
If user U is not blocked, then the fact that she

received the right to execute task T through
delegation may have consequences regarding her
priority to execute T. We will not discuss this issue
further in this paper, but clearly the workflow
component that assigns priorities to the potential
executors of a task must take into consideration
both the grantor and the delegate of a delegation—
it seems reasonable that the grantor’s priority
should be reduced while the delegate should be
increased.
So far, we were concerned with case specific
delegations, both the acceptance and the execution
of such delegations. Recall, a case specific delega-
tion is specific to a workflow case. On the other
hand, a generic delegation applies to all cases where
a task, say T, may occur. A generic delegation is a
statement in the form delegate(U1,U2,T).

The definition of acceptance of a generic delega-
tion delegate(U1,U2,P) is very similar to the
definition of specific delegations: the grantor
must have the right to delegate, and the expanded
rights of the delegate must not contradict the
generic constraints. Thus, we define the relation
has-g(U,P), in a similar way to has(U,P,C),
and then adapt Definitions 4–6 to define when
delegateðU1;U2;TþDÞ, delegate(U1,U2,T), and
delegate(U1,U2,D) are accepted.

From an execution point of view, an accepted

generic delegation delegate(U1,U2,P), where P is
any privilege (related to task or delegation rights) is
used to create a specific delegate(U1,U2,P,C) when
the case C is created. In other words, the system
maintains a set of accepted generic delegations Ag;
when a new case C is created, for each generic
delegation delegateðU1;U2;PÞ 2Ag, a case specific
delegation delegate(U1,U2,P,C) is added toA. The
specific delegation delegate(U1,U2,P,C) is called a
spawn of the generic delegation.

5. Revocation

Revocation is the process by which a delegation
that was accepted is removed or retracted. However,
since delegations may be chained, a revocation can
produce side effects and other consequences. This
section will examine the details concerning revoca-
tion. We will first concentrate on revocation of
specific delegations, and later Section 5.3 will extend
the results to generic delegations.

It should also be pointed out that specific
delegations have a very definite life span—once
the case is terminated all specific delegations for that
case are no longer relevant and can be removed
from the set of accepted delegations. Thus revoca-
tions occur in cases where a certain delegation was
accepted, and then the grantor changed her mind
before the task was started. The central issue is that
revoking a delegation not only removes the rights
received by the delegate, but also undoes all further
delegations that were brought about by the revoked
delegation. Moreover, a delegate may receive a
delegation from multiple grantors, and in such a
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situation, if one delegation is removed, another one
may still be active. We will try to address these
issues shortly, but first we introduce the concept of a
chain of delegation.

Definition 7. A delegation d1 ¼ delegateðg1; r1;T1þ

X1;CÞ supports another delegation d2 ¼ delegate

ðg2; r2;T2 þX2;CÞ iff

F ud(T,4)

ud(T,2)
�
 r1 ¼ g2 that is the grantor of d2 is the delegate
of d1,
JH
�
ud(T,1)ud(T,2) ud(T,1) ud(T,2) ud(T,1) ud(T,2)
T1 and T2 are task rights and T1XT2, that is, the
tasks right being delegated in d2 is at most as
strong as the task right received in delegation d1,

�

IE G

Fig. 3. Example of dependence of delegations.
decrementðX1ÞXX2, that is the delegation rights
delegated in d2 are at most as strong as
decrementðX1Þ.

Intuitively, d1 supports d2 if d1 is one of the ways
the grantor of d2 received the rights to make that
delegation.

Definition 8. A chain of delegation for a task T and
case C is a sequence of delegations hd0; d1;
d2; . . . dni, where each di is of the form
delegateðgi; ri;Ti þXi;CÞ, where gi is the grantor
of di and ri the delegate (or recipient) of di, such
that:
�
 di supports diþ1,

�
 no gi of any delegation di has the direct right

to Xi,

�
 there is no pair di and dj in the chain, and such

that di ¼ dj.

The delegation d0 is called the starter of the chain.
Given the chain hd0; d1; d2; . . . dn�1; dni, we will say
that hd0; d1; d2; . . . di�1i is a support chain for di.

Fig. 3 gives an example of a delegation chain,
where udðT; 4Þ is an abbreviation for delegate

ðGrantor;Delegate;Tþ udðT; 4Þ;CÞ for task T, and
some case C, for the grantor and delegate indicated.
The support chains for the delegation delegateðJ;
G;Tþ udðT; 1Þ;CÞ are
�
 hdelegateðA;B;Tþ udðT; 5Þ;CÞ,
delegateðB; J;Tþ udðT; 4Þ;CÞ;
delegateðJ;G;Tþ udðT; 1Þ;CÞi,

�
 hdelegateðA;B;Tþ udðT; 5Þ;CÞ,

delegateðB;F;Tþ udðT; 4Þ;CÞ,
delegateðF; J;Tþ udðT; 2Þ;CÞ,
delegateðJ;G;Tþ udðT; 1Þ;CÞi.
The support chain for delegateðJ;E;Tþ udðT; 2Þ;CÞ
is only
�
 hdelegateðA; B; Tþ udðT; 5Þ; CÞ,
delegateðB; J;Tþ udðT; 4Þ;CÞ;
delegateðJ;E;Tþ udðT; 2Þ;CÞi.

Definition 9. A delegation dj is dependent on a
delegation di if all support chains for dj contain di.

Definition 10. The effect of rðdÞ, the revocation of
the delegation d, given the set of accepted delega-
tions A is a new set of accepted delegations A0

defined as

A0 ¼A� fdg � fx jx is dependent on dg.

For example, the effect of revoking the delegation
of udðT ; 4Þ from B to J in Fig. 3 is illustrated in
Fig. 4. The delegations from J to I, from I to J, and
from J to E, all depend on the delegation from B to
J, and were, therefore, removed from A. I is left as
an unsupported delegation now.

5.1. Algorithm for revocation

A naive algorithm to compute the effect of
revoking a delegation d ¼ delegateðA;B;TþX;CÞ
can be implemented from the definition:
�
 Given the set of accepted delegations for task T

and case C construct all chains of delegations.

�
 For each delegation x verify if all support chains

for x contain d.
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�
 Remove from the set of accepted delegations the
ones dependent on d.

The problem with this naive algorithm is that
each chain through B must be examined and there
may be an exponential number of chains (in relation
to the number of delegations). Moreover, the graph
contains cycles. We will present below a quadratic
algorithm for computing the set of dependent
delegations of a delegation d. The algorithm is
based on an acyclic graph, called the delegation
graph, that implicitly represents all chains in which
each delegation is a denoted by a vertex and a chain
is a path in the graph.

5.1.1. The delegation graph

A delegation graph is a graph in which each node
is an accepted delegation assertion, and each
A

B

F

J

I GE

ud(T,1)

H

ud(T,5)

ud(T,4)

ud(T,2)

ud(T,2) ud(T,1)

Fig. 4. Delegations after the revocation of udðT ; 4Þ from B to J.

dg(B,J,ud(T,4))dg(B,F,ud(T,4))

dg(J,G,ud(T,1))

dg(J,I,ud(T,2))dg(F,J,ud(T,2))

dg(I,J,ud(T,1))

dg(A,B,ud(T,5))

Fig. 5. Delegations graph of t
directed arc is a support relation between two
delegations. A delegation graph for a task T and a
case C ðDGðT ;CÞÞ is a graph whose nodes are
all delegations of the form delegateðU1;U2;
T 0 þD;CÞ, where U1 and U2 are users, T 0 are task
rights such that each T 0 is either T 0XT or TXT 0

and D is a delegation right. Each such node is
represented as dgðU1;U2;DÞ.

There is an edge from dgðU1;U2;D1Þ to
dgðU3;U4;D2Þ if
�

he
delegateðU1;U2;T1 þD1;CÞ supports delegate

ðU3;U4;T2 þD2;CÞ,

�
 it is not the case that user U3 has direct right

to D2.

All nodes that have no incoming arcs are called
sources. Fig. 5 is the delegation graph corresponding
to the set of delegations depicted in Fig. 3. The labels
in the nodes correspond to the labels in the arcs and
the position of the nodes is close to the position of
the corresponding arc in Fig. 3. The two sources are
denoted by the ellipses with wider borders.

The delegation graph has the property that all
paths in the delegation graph starting from a source
correspond to a chain of delegations.

5.1.2. The algorithm

The algorithm to compute the set A0 given the
revocation of a delegation d for task T and case C is
as follows:
Algorithm revokeðdÞ
D
GðT ;CÞ  the delegation graph for task T and
case C.

X
  the reachable nodes in DGðT ;CÞ from all
sources.
dg(J,E,ud(T,2))

dg(E,J,ud(T,1))

dg(H,E,ud(T,2))

delegations in Fig. 3.
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D
G�ðT ;CÞ  remove d and its incoming and
outgoing edges from DGðT ;CÞ.

X
�  the reachable nodes in DG�ðT ;CÞ from all
sources.
A
0  A� fdg � ðX � X�Þ.

The total cost for the computation of the
revocation of delegation d for task T on case C is
in the worst case Oðn2Þ where n is the set of
delegations for tasks that are stronger or weaker
than T for case C. The creation of the delegation
graph takes Oðn2Þ using a naive algorithm—for each
delegation scan all other delegations to verify if
there is an edge between them. Computing the set of
reachable nodes from the sources takes OðnÞ.

5.1.3. Correctness of the algorithm

Next, we argue the correctness of the above
algorithm as follows. All removed nodes correspond

to a dependent delegation: given that every path from
a source in the graph corresponds to a chain, if Y
got disconnected by the removal of X, then there is
no path from a source to Y that does not go
through X; thus, Y depends on X, and Y should be
deleted.

All dependent nodes are removed: suppose there is
a dependent delegation Y that was not deleted.
Then there is path from a source node that does not
go through X—this is a chain of support to Y that
does not go through X—thus Y is not dependent on
X, a contradiction.

5.2. Property of revocation

The important property of revocation is that it
will leave no one with unsupported rights. For
example, if the right to hire a new programmer has
been delegated throughout the organizations such
that eventually Alice received such right, and all
users that started a chain eventually revoked the
delegation, then Alice will lose the right she
received.

In order to prove that, we need the following
lemma:

Lemma 1. If a sequence of delegations D is followed

by a sequence of revocations R, then all remaining

accepted delegations will either be the source of a

chain (called a starter) or will have at least one

support chain.

Proof. By induction on the number of revocations
in R.
Base case (if there are no revocations): For a
delegation d to be accepted, either the grantor has
directs rights to the appropriate delegation, and
thus, d is a starter of a chain, or there is another
delegation d 0 that supports it. In turn, d 0, is also
either a starter that defines the chain of support for
d, or it has a supporting delegation d 00, until a starter

is reached.
Inductive case: Now we show that if the claim of

the lemma is true for a sequence of delegations D

and a sequence of revocations R, then it remains
true for the new sequence of revocations Rþ rðdÞ

obtained after a new revocation rðdÞ. By assump-
tion, before the revocation, d had at least one chain
of support. After the revocation, node d is removed
from the delegation graph, and all nodes that are
unreachable as a result are also removed. Now,
clearly, the only nodes that are unreachable are the
ones for which all the support chains passed
through d. If there was a support chain for a node,
say dx, that did not pass through d, then dx would
still be reachable. Hence: (1) all delegations that are
dependent on d are removed; while (2) all delega-
tions that have an alternate support chain are not
removed. &

Note that this lemma is general for any combina-
tion of delegations and revocation assertions, and in
any sequence. We can now state and prove the main
theorem based on the lemma.

Theorem 2. If there is an ordered set of delegations

D ¼ hd1; d2 . . . dxi of the right to execute task T

followed by an ordered set of revocations R ¼

hrðdi1Þ; rðdi2Þ . . . rðdikÞi such that, for all dk, starter

of a chain in D, there is a corresponding rðdkÞ in R,
then no user U that received the right T through some

delegation dx 2 D will have the right after all the

revocations.

Proof. From Lemma 1, if the set of remaining
accepted delegations is still non-empty, then the
remaining delegations must have a support chain.
But since all starter nodes have been deleted, and
all support chains start at the starter nodes, there
cannot be any support chain left. Hence, there
are no unsupported delegations still remaining
after R. &

5.3. Handling generic revocations

So far we were dealing with case-specific delega-
tions. The revocation of a generic delegation dg has
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a double effect: it removes from the set of accepted
generic delegations the ones that depend on dg, and
it recursively revokes all spawns from these depen-
dent generic delegations.

Formally, one defines dependence of generic
delegations (g-dependent) in a very similar way to
case specific dependence, but making reference to
the set Ag of accepted generic delegations. Let us
define the set of generic delegations of dg, given Ag

as g-depðdgÞ ¼ fx 2Ag jx is g-dependent on dg.

Definition 11. The effect of revoking the generic
delegation dg given the current set of accepted
generic delegations Ag, and the current set of
accepted specific delegations A are the new sets A0g
and A0 defined as
�
 A0g ¼Ag � fdgg � g-depðdgÞ,

�
 A0 is the result of revoking all spawns of each

x 2 g-depðdgÞ.

It is important to recognize that the cost of
revoking a generic delegation can be substantial.
The revocation of a generic delegation g must
revoke all spawns of the generic delegation and all
g-dependent generic delegations of g.

The algorithm discussed above to determine the
dependent delegations of a specific delegation can
be adapted to determine all g-dependent delegations
of a generic delegations. One can construct a generic
delegation graph GDGðTÞ in a similar way to
constructing the DGðT ;CÞ (but considering only
generic delegations for task T 0 such that either
T 0XT or TXT 0. The algorithm will determine in
GDGðTÞ all g-dependent delegations of a generic
delegation of T. As above, this algorithm is
quadratic in the number of generic delegations of
rights T or stronger.

However, for each g-dependent delegation x

removed from Ag, all spawns of x must be revoked.
Spawns are specific delegations that are automati-
cally generated when a new case is created: for
each generic delegation delegate(A,B,R), a specific
delegation delegate(A,B,R,C) is added to A when
case C is created. Each spawn is a specific delegation
which may generate other specific delegations. On
the other hand, when the case finishes, all spawns
can be removed. Thus, revoking all spawns of
delegation x may involve revoking k spawns (and
delegations the spawns generated), where k is the
number of active cases in the workflow.
6. Extensions

In this section, we discuss our ideas of transfer,
strong delegation and revocation, revocation with
downgrades and time-restricted delegations. These
extensions have been incorporated into our frame-
work—but we decided to present them separately
not make the text too complex.

6.1. Transfer

A transfer is an operation by which a user, who
has been selected to execute a task T for case C,
assigns another user to perform it, and forfeits
her own right to do the task once the transfer is
accepted by the system. Transfer is similar to
delegation in the sense that not only is the right to
execute the task being delegated, but the duty to do
it is being transferred as well. In order to transfer a
task, the user must have the right to transfer, and
the receiver must not violate any of the dynamic
constraints. Note that we do not treat transfer as a
‘‘right’’, rather we assume that a delegation right
automatically gives transfer rights also provided
certain conditions are met. In particular, if the user
has any delegation right stronger than ud(T,0) for
case C (that is, any right of the form cd(T,Q,n) or
ud(T,n)), then she can transfer T to another user.

The transfer operation is denoted by trans-

fer(S,D,T,C), where S is the source of the transfer
(the user transferring the task), D is the destination

of the transfer (the user receiving the task), T is the
task and C is the case. By its nature, transfer is only
a case specific operation, and there is no notion of a
generic transfer.

Definition 12. A transfer transfer(S,D,T,C) can be
accepted if
�
 S has been selected to perform task T for case C,

�
 has(S,R,C) for some right R4udðT; 0Þ,

�
 for all rights T� such that TXT� adding

has-rightðD;T�Þ does not violate any generic
constraint,

�
 adding doer(D,T,C) does not violate any dy-

namic constraints,

�
 if R is of the form cd(T,Q,n) or cd�ðT;QÞ, then D

must also satisfy the predicate Q.

The effect of accepting a transfer is that D now
becomes the selected executor of task T for case C.
The workflow system and user D must be notified of
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this change. We will discuss how to do this in
Section 7.
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Fig. 6. Delegations before and after a revocation with down-

grade.
6.2. Strong delegation and strong revocation

In our present framework, in order to delegate
a right R, the user must both have the right to R and

also the right to delegate R. But there are many
situations in which it is desirable that a user may
delegate a right even if he does not possess the
right to it. This can often happen in management
situations—the user responsible for a process
must delegate a particular task that is late, or
cannot be performed by the assigned person to
some other user, even though the person in charge
does not have the right to perform it himself.
The chief of medicine of a hospital should be able
to delegate the right to perform an emergency
eye operation to someone else, say an ophthalmol-
ogist, even though the chief, being an oncologist,
is not qualified for eye surgery, and thus, should
not have the right to operate on an eye himself.

We introduce the new rights sud(R,n), sud*(R),
scd(R,Q,n), scd*(R,Q) as the ‘‘strong’’ versions of
the delegation rights already discussed. The mean-
ing of a scd(R,Q,n) is that the grantor can delegate
the task R and the right cdðR;Q; n� 1Þ to any
delegate that satisfies the property Q, even if the
grantor himself does not have the right to R. Notice
that the strongness of the right is not itself
delegated—if A strong-delegates R to B, it is
assumed that B already has the right to R and does
not need to strong delegate further.

Revocation in our framework is not a standard
right in the same sense as delegation, and is not
represented explicitly in the RBAC data structures.
However, revocation is an ‘‘automatic’’ right for
anyone that made a delegation, i.e. an individual
that made a delegation can also revoke it. However,
for administrative purposes, it is important that
delegations made by one individual be revocable by
another. We call this a strong revocation right.
Further details of strong revocation are left for
future work.

6.3. Revocation with downgrade

There is another possibly more complex definition
of revocation. Let us see the example in top part of
Fig. 6. When the delegation from A to B is revoked,
so are the delegations form B to D, D to E, D to G,
and E to H, because they are all dependent on
delegateðA;B;Tþ udðT; 5Þ;CÞ. Clearly, B could not
delegate T+ud(T,4) to D because with A’s revoca-
tion, she has no such right. But with the ‘‘remain-
ing’’ delegation from F, at least B could delegate T
+ud(T,1) to D, and D could have delegated T, to E
and G. The result is illustrated on the bottom part
of Fig. 6. Revocation with downgrade will thus
weaken some delegations rather than removing
them when an alternative support chain (albeit a
weaker one) is present. Of course, all delegations
that cannot be downgraded in this way will
necessarily be removed from the set of accepted
delegations. New algorithms are required for hand-
ling situations of revocation with downgrade.

6.4. Time-restricted delegations

A further possible extension to the model
proposed here is that of time-bound delegations
such that: A delegates to B the right R for the next H

hours. Thus, instead of expressing a delegation as:
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delegate(U1,U2,R,C), we would modify it to
delegate(U1,U2,R,C, start_time, end_time) or
delegateðU1;U2;R;C;nowðÞ; nowðÞ þHÞ, where
now() is a standard function that returns the
current time. One simple implementation is to
transform the time-bound delegation into a stan-
dard delegation and have a trigger to revoke it at the
expiry time with a standard revocation. Such an
implementation guarantees that the delegation will
only last for the desired H hours, but does not allow
one to reason about it. For example, in this simple
implementation a user cannot ask the system for
how long he will hold a delegated right, since such
temporal information is not represented in the
system.

An authorization model for temporal and derived
data has been proposed by Atluri and Gal [11]. This
model enables temporal assertions to be made for
read, update and insert accesses to data items in a
database. Algorithms are given to ensure that only
accesses that do not violate these assertions can
occur. Our intent is to extend some of these notions
to the level of operations as opposed to data items.
Thus, we would like to be able to express delega-
tions such as: ‘‘delegate Beth’s rights to Carla while
Beth is on vacation, but for no more than 1 week.’’
Such temporal assertions would naturally need the
notion of constraints, which is not present in the
proposal in [11].
7. Implementation

A proof-of-concept prototype of the DW-RBAC
system was implemented. We now describe the
implementation architecture and the various inter-
faces between the user, the DW-RBAC module and
an existing workflow system.

Fig. 7 is a simplified version of the DW-RBAC
implementation architecture. We assume a standard
workflow system module with additional interfaces
to make calls on and receive calls from the
DW-RBAC component. The three circles represent
the DW-RBAC databases. The workflow compo-
nent would have its own database for storing
the process definitions, case data, etc., but they
are not shown here. The workflow component used
in the implementation was a simple prototype
developed by the authors. An important require-
ment of the architecture is that all tasks represented
in the workflow processes must have a correspond-
ing right associated with them in the RBAC struc-
ture. The DW-RBAC component accesses three
databases:
�
 The RBAC database which stores users, roles,
and rights, and the relations among them.

�
 The constraint database which stores the dynamic

and generic constraint as a logic program clause,
together with all relevant auxiliary predicate
definitions.

�
 The state database which stores the accepted

delegations, and the identities of the executors of
each task for each case.

Next we define the various interfaces required to
implement this architecture. On the user side, DW-
RBAC receives the following calls (where G is the
grantor, D the delegate, T a task, C a case, and the
return value is boolean):
�
 delegate(G,D,T,C): delegation assertion for a
case

�
 delegate(G,D,T): a generic delegation assertion

�
 revoke(G,D,C): a specific revocation—revoke the

delegations from G to D of case C

�
 revoke(G,D): a generic revocation

�
 transfer(G,D,T,C): transfer task T of case C from

user G to user D

On the workflow system interface, the DW-
RBAC component receives the following calls from
the workflow system:
�
 p-executor(T,C,O): this function returns the
potential executors for task T of case C, ordering
the executors according to ordering O. The DW-
RBAC will then verify all users that have the
right to T for C, and do not violate any dynamic
constraints, and order them according to the
order O given. The ordered list is returned to the
workflow. For more on orderings, see [6].
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�
 start-case(C): notify DW-RBAC that case C has
started. DW-RBAC will spawn a specific delega-
tion for each appropriate accepted generic
delegation.

�
 end-case(C): notify the DW-RBAC component

that case C has ended. All accepted delegations
for this case are deleted.

�
 executor(U,T,C): notify DW-RBAC that U is

the selected executor for task T of case C. This
data is stored in the state database and possibly
used later to verify dynamic constraints.

The DW-RBAC makes the following call on the
workflow system:
�
 new-executor(U,T,C): notify the workflow sys-
tem that there was a transfer from the selected
executor to user U. This is the result of an
accepted transfer operation.

A prototype of the system was implemented in
Prolog. The RBAC data is stored in a database and
accessed through an ODBC interface. The con-
straint store is a set of Prolog programs that are
loaded with the DW-RBAC component, and the
state data is represented in memory as Prolog facts
and also kept in a permanent data storage (using
Berkeley DB). Prolog is well suited for the
implementation of the algorithms and definitions
presented. As an illustration, Appendix A gives
sample code for verifying if a delegation can be
accepted.

8. Discussion and related work

The management of delegations, at least at a first
approximation, does not seem to be difficult. We
envision that each user will enter his/her own
delegation statements into the system. Delegations
that are not accepted cannot be entered, and that
includes cases in which the user has no right to make
the delegations in the first place (because she does
not hold the appropriate permissions).

In this paper, we have extended our previous
work related to fine-grained user-to-user delegation
in RBAC [7]. In particular, we have introduced the
notion of workflow case and also dynamic con-
straints that allow dynamic separation and binding
of duties on a case by case basis.

Related research on delegation has been some-
what limited. Barka and Sandhu [2] present a
framework with the objective of identifying inter-
esting cases that could be used for building role-
based delegation models. In terms of their frame-
work, our model is: temporary (in the sense that a
delegation can be revoked, but not in the sense that
it has s predefined validity), monotonic, partial, self-
acted, both single- and multi-step (with a fine
control over the multi-step delegation using differ-
ent delegation rights), multiple-delegation (which
we call delegation to a group with the inclusion of
the workflow component to control the execution of
the delegated activities), unilateral agreement, a
version of cascading revocation (based on our
definition of dependency), and grant-dependent.
Further extensions of this approach are presented
in [3]. Our model has a complex structure regarding
the multi-step delegation issue which is not dis-
cussed in previous work, and includes components
related to dynamic constraints which are especially
relevant to a workflow context.

In [3], the RBDM0 model (role-based delegation
model zero) is proposed as an extension of RBAC
(more specifically RBAC0 model of the RBAC96
family) to include delegation. Being derived from
RBAC0, it is restricted to flat roles and does not
allow hierarchies. Moreover, RBDM0 is based on
one-step, total delegation (of all rights attached to a
role); revocation is either by an expiration mechan-
ism or by any member of the same role as the
grantor. Some extensions are discussed: grant-
dependent revocation, delegatable and non-delega-
table permissions, and two-step delegation, as well
as delegation in hierarchical roles. This work is still
further extended in [12] to a permission based
delegation model (PBDM).

The role-based delegation model of Zhang, et al.
[13] is very interesting and useful. Their proposal
allows delegations of the form DLGT(User1,Ro-
le1,User2,Role2), where User1 who holds Role1
delegates her role to User2 who holds Role2.
Moreover, they also allow generic constraints in a
manner similar to ours. They also allow grant-
dependent and grant-independent revocations. Our
proposal in this paper is an effort to complement the
previous work. In particular, our objective is to
allow a more ‘‘flexible’’ sort of delegation. The
delegation of a role results in an ‘‘all or nothing’’
situation, i.e., either the grantor must delegate
all the privileges of his or her role or none. In
practice, a grantor may wish to delegate only certain
privileges. A president may wish to delegate her
privilege to sign checks, approve expenses and
authorize capital expenditures, but not the privilege
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to hire new employees. This would be difficult if the
entire role is being delegated. Since delegation is
normally a somewhat unusual and special situation,
a somewhat fine-grained kind of control over the
privileges of the grantor, we feel, would be useful.
Furthermore, our scheme offers more flexibility in
that a president may delegate some of the tasks such
as signing of checks and approval of expenses to a
vice-president with a right to further delegate to one

level lower, but the right to approve capital
expenditures may not be further delegated.

In another noteworthy work on delegation [14],
the authors present a graph based approach where a
delegation from A to B is shown as a link between
nodes A and B on a graph. The line joining A and B
can be of three types depending upon whether the
delegation of the right is positive, negative, or
delegatable (i.e., the right can be further delegated).
The authors give various rules for correctness and
consistency of delegation, along with algorithms.
One difference in our approach is that it can fine

tune the number of levels to which a right can be
delegated (as opposed to making it binary). More-
over, we allow constraints and conditions as ways to
exert still finer control over the delegation. In [15],
delegation is achieved by the notion of an appoint-

ment. A user acting in the appointer role grants
another user called the appointee a credential
which may be used to activate one or more roles.
Role activation takes places based on rules. Thus, it
is possible for an appointer to give access to
privileges that she does not possess. Still other
related work on role hierarchy supporting restricted
permission inheritance may be found in [16].
This approach is based on dividing a single role
hierarchy into inter-related hierarchies for control-
ling permission inheritance behavior. Approaches
for delegation in the context of trust management
systems are discussed in [17,18]. Another method
of delegation that can constrain the ‘‘shape of
delegation chains’’ through regular expressions is
discussed in [19].

Our proposal for revocation differs from the
standard SQL revocation mechanism. The issue
centers around multiple chains of delegation. The
SQL revocation mechanism uses a time stamp to
identify which delegations causally derived from
others. Thus if delegation d1 is derived from d0,
which among other things means that d1 must have
happened after d0, then the revocation of d0 also
revokes d1. In opposition to this causality-based
view, we follow a logic (or atemporal) view: the
revocation of d0 will only revoke d1 now, if d0 is the
only support for d1. In our view, if there is another
delegation d00 which supports d1 (even if d00 was
accepted after d1, and thus, was not ‘‘really’’ used to
determine if d1 was accepted) then the revocation of
d0 will not revoke d1.

Bertino et al. [8,20] propose a constraint based
security model for workflow systems, whose lan-
guage allows for more expressive power than the one
presented here. Their language and model refer to the
many instances of the activation of a task within a
case, which was not considered here, and their work
discusses in detail optimizations that can be per-
formed off-line so that queries performed on line
would have a good chance of being answered quickly
(but the worst case is still exponential). However,
delegation is not addressed in any form in [8,20].

Security in workflow systems are also considered
e.g. by Castano et al. [21], Atluri and Huang
[22–24], Karlapalem and Hung [25,26], Pernull
and Herrman [27,28] and the Meteor project
[29–31]. Each of the models mentioned above
explore different aspects of workflow related secur-
ity, but none addresses delegation issues, the focus
of the present paper. Finally, Kumar [32] introduces
issues of user to user delegation support in workflow
systems and related security implications in a non-
RBAC framework.

The work of Atluri et al. [33] has some similarities
to this one. The authors propose a delegation
framework in workflow systems that correspond
to our generic delegations, added to ‘‘delegation
rules’’ which roughly correspond to our generic
constraints. Their framework does not contemplate
specific delegation, delegation rights, chaining, and
revocation.

9. Conclusions and future work

Researchers have recently noted [2–4] that the
current RBAC model does not handle delegation
well and has various shortcomings in this respect. In
this paper, we extended our previous on WRBAC
[6] to incorporate delegation in a workflow context
in an RBAC environment. The DW-RBAC model
allows a fine- grained delegation, in which rights
to execute a task for a workflow case, and
delegation rights are delegated among users in an
ad hoc way, controlled by general, organization-
level constraints. A novel aspect of our approach
lies in providing two types of constraints: generic

constraints for managing overall delegation policies,
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and dynamic constraints for implementing case-
specific policies that pertain to a specific case. Case
specific policies are important when binding or
separation of duties has to be enforced. In addition,
we discussed algorithms for revocation of delega-
tions, and also described a proof of concept
implementation done in Prolog to test our proposal.

The paper also discussed our ideas for how the
framework can easily be extended to incorporate
other variants of delegations such as: transfers, strong
delegations, and temporal delegations. Another ex-
tension that would be useful and deserves considera-
tion is delegation to a group, such that the group (as
opposed to an individual) is required to perform the
delegated task. For example, a VP may delegate a task
(say, approval of a loan request) to two of her
department heads, with the provison that they must
review it independently and unless both give their
approval, the decision will be negative. The problems
with delegation to a group is that it involves creating a
subworkflow for the members of the group to execute
the delegated task. Further work is required with
regards to these extensions.
Appendix A. Details of Prolog implementation

Prolog is well suited for the implementation of the
algorithms and definitions presented. For example
the code for verifying if a delegation can be accepted
is simply written as

%% acceptance of a specific delegation

accept-delegation(Grantor,Delegate,
T+D,Case)

:-
task-right(T),
accept-delegation(Grantor,

Delegate, T, Case),
accept-delegation(Grantor,

Delegate,D,Case).

accept-delegation(Grantor,Delegate,
R,Case)

:-
can-accept(Grantor,Delegate,

R,Case),
asserta(accepted-del(
Grantor,Delegate,R,Case)),

add-to-storage(accepted-del(
Grantor, Delegate, R, Case)).
% verify if can accept task right
ystems 32 (2007) 365–384 383
can-accept(Grantor,Delegate,T,Case)
:-
task-right(T),

has-max(Grantor,TT,Case),

greq(TT,T),

has-max(Grantor,D1,Case),

( D1 ¼ ud(TPlus,_)

; D1 ¼ cd(TPlus,Q,_)),

satisfy(Delegate,Q)

),

greq(TPlus,T),

ok-generic-constr(Delegate,T).
% verify if can accept a delegation
right

can-accept(Grantor,Delegate,D,Case)
:-
delegation-right(Delegate,T),

has-max(Grantor,TT,Case),

greq(TT,T),

has-max(Grantor,DD,Case),

decrement(DD,Dminus),

greq(Dminus,D),

( Dminus ¼ ud(TPlus,_)

; Dminus ¼ cd(TPlus,Q,_),

satisfy(Delegate,Q)

),

greq(Tplus,T),

ok-generic-constr(Delegate,D).
where
�
 accepted delegations are asserted as the
fact accepted-del(Grantor,Delegate,R,
Case) both in the Prolog fact base and in the
permanent storage (which is performed by the
add-to-storage predicate).

�
 has-max(U,R,C) if R is a maximal right that

user U has for case C. For direct rights it verifies
the list of pre-computed maximal rights for a user
(independent of the case), and for delegated rights
it returns the maximally stronger rights received
by the user.

�
 greq(R1,R2) verifies that R1XR2. The code for
greq follows from the definition.

�
 satisfy(U,Q) is true if user U satisfy all

predicates listed in Q

�
 ok-generic-const(U,R) verifies if user U

does not violate any generic constraint, if she
receives the right R.
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