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This paper presents a new formalism for workflow process definition, which combines
research in programming languages and in database systems. This formalism is based
on creating a library of workflow building blocks, which can be progressively combined
and nested to construct complex workflows. Workflows are specified declaratively, using
a simple high level language, which allows the dynamic definition of exception han-
dling and events, as well as dynamically overriding workflow definition. This ensures a
high degree of flexibility in data and control flow specification, as well as in reuse of
workflow specifications to construct other workflows. The resulting workflow execution
environment is well suited to supporting cooperative work.
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1. Introduction and Motivation

Workflows are gaining increasing acceptance in the business world as a means of

documenting and organizing procedures, as well as helping the coordination of

groups. Workflows were conceived to describe procedures which can be repeated

over and over again, for business environments and enterprise modeling.

The term workflow denotes “automation of a business process, in whole or part,

during which documents, information or tasks are passed from one participant to an-

other for action, according to a set of procedural rules”.18 Formally, a workflow defi-

nition describes the part of a business process that comprises automated processing

(i.e. does not involve specification of manual activities),30 whereas process definition

also includes manual activities. Workflow process definition comprises a number of

discrete steps, including human and computer tasks as well as rules that define how

the process should progress.30 In this paper, however, we follow the trend of using

the generic term workflow definition to include both automated and manual tasks.

Several workflow definition formalisms have been proposed in the last five years,

ranging from very high level abstraction constructs to low level programming spec-

ifications. Each formalism aims to provide the persons who specify workflows —

here called workflow designers — with better means to describe processes. Workflow
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definitions are expressed through set of tasks, along with their interdependencies,

inputs and outputs,26 as well as the actors responsible for executing these tasks.

Formalisms differ among each other in terms of how tasks are specified, the kinds

of control and data flow considered, and in actor/role designation. Nevertheless,

there are still several open problems in the domain of workflow definition. Ex-

amples include the constraints imposed on a process, exceptions raised during its

execution, and flexibility in workflow definition. Furthermore, according to Sheth

and Kochut,27 new solutions are needed to support scalability and adaptable and

dynamic workflows.

This paper is a step towards filling some of these gaps. Our proposal is based

on two main concepts:

• The construction of an open and extensible “library” of workflow building blocks,

which encapsulate rules and variables. These blocks can be progressively com-

posed and nested to build more complex blocks and workflows. Furthermore, they

can be dynamically redefined at execution time. These two features ensure spec-

ification reuse and flexibility. The main advantages of reusability are: increase in

flexibility, adaptability to change, and quality control of workflow specifications,

which evolve over time. As mentioned in Ref. 19, workflow evolution has several

causes, including progressive improvements and corrections, customization to the

needs of a case, or adjustments to real world situations. This is discussed at more

length at Sec. 5.

• A well defined workflow definition language, which constructs workflows by com-

bining blocks in the library. Unlike other languages for workflow specification,

our language allows defining not only the “static” workflow constructs — i.e. the

sequencing and nesting of the blocks and tasks — but also their dynamic behav-

ior, by associating event handling rules, and control/parameter passing among

workflow components.

We combine two research domains in order to support our approach: databases

and programming languages. The building block library as well as the documents

managed by workflows are handled within a database management system (DBMS)

environment. Database systems are already used in workflow management systems

as a basis for sharing documents and ensuring their security. We extend their use

to that of storing the workflow building blocks, similar to what is already done in

other contexts (e.g. of scientific workflows1,33,34).

Workflows are defined and instantiated using a declarative programming lan-

guage treatment. The design of the building blocks in the library uses an object-

oriented approach, separating their interface (the parameters) from their contents

— encapsulated tasks, rules and other blocks. A workflow definition is instantiated

(i.e. executed) through dynamic activation of its blocks according to the “flow”

specified in the definition. The use of a building block, in this sense, can be com-

pared to that of procedure invocation in a program — at runtime, procedures

are executed according to parameter values. By the same token, during workflow
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instantiation, blocks are activated according to the values of the parameters (events

and state variables) they accept in their interface. Furthermore, block parameters

have a naming scope within a workflow (e.g. events are only recognized within a

given workflow section), and can be renamed, just like variables in a programming

language.

As will be seen, our approach supports reuse and scalability, not only in workflow

specification but also at runtime. First, from a specification point of view, any

workflow can be progressively augmented by composing library blocks and creating

new blocks using sequencing, nesting and parallelizing of blocks. Second, at runtime

we postulate a flexible instantiation of blocks using a language approach. This allows

communication among blocks by parameter passing via their interfaces.

Furthermore, dynamic and distributed workflow specification is also ensured,

thanks to the dynamic overriding of block definitions and the event-handling fea-

tures provided by our language, similar to those found in active databases. This

allows generic specification of workflow behavior, which can then be instantiated

and executed differently for each case. As remarked in Ref. 28, particular com-

putational coordination mechanisms are designed to support cooperating actors

in specific aspects of their work, and thus workflows need to be customized and

adapted to contextual situations.

These properties — reuse and dynamic runtime modification — are the two

main advantages of our proposal. These are features considered necessary for es-

tablishing a cooperative work environment. Actors can jointly participate in work-

flow construction by storing and reusing/exchanging library blocks. At runtime,

communication is supported via event and parameter passing among blocks. Our

language is compliant with the standards proposed by the Workflow Management

Coalition30 and subsumes other language proposals. Furthermore, its redefinition

facilities are an additional feature not found in the literature.

The rest of this paper is organized as follows. Section 2 presents our workflow

language. Section 3 shows an example of how this language can be used to specify a

complex workflow application. Section 4 presents an overview of an architecture to

implement our proposal. Section 5 gives an overview of the literature, stressing re-

lated work on workflow specification formalisms. Finally, Sec. 6 presents conclusions

and future work.

2. The Workflow Specification Language

Our formalism consists in a declarative structured language based on the concept

of block — our main reuse unit, which extends the usual notion of activity block

of Workflow Management Coalition.32 A block is a workflow that encapsulates

tasks, events, state variables and event handling rules. State variables and rules are

associated to the execution of the block, and are used to control specific application

needs. Events correspond to situations in which task interruptions may be signalled,

in which case some actions may optionally be taken.
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The state or activation context of a block corresponds to the instantiation of a

block’s (declarative) specification with appropriate values substituted for the block’s

state variables, enabled rules and events that may be signalled within it. A block

activation corresponds to the execution of the tasks and blocks which it encapsu-

lates, within the proper context. A block may be activated several times within the

same workflow, possibly simultaneously and using different values for its param-

eters, therefore configuring a distinct activation context. From now on, whenever

we talk about “execution of block b” we also mean “execution of the task(s) and

block(s) encapsulated by b, within the context of b’s activation”. The execution of

a block (and thus of any workflow) is controlled by rules and variable values.

A block b may be constructed out of other blocks b1,. . . ,bn, in which case b is

called composite and bi are the components of b. A component block may again

be atomic or composite. Blocks can be connected using the standard iteration,

sequence and parallelization constructors30 for expressing activity coordination.

Atomic blocks are the smallest execution unit of a workflow. Tasks are also ex-

ecutable units, but are not defined within the workflow.

Figure 1 gives a schematic view of block and task. From a functional point of

view, both are executable units within a workflow. The main difference between

these concepts is that we are not concerned with task specification (and therefore

the task’s body is not shown). From a workflow definition point of view, a block just

needs to know a task’s interface. Our language assumes that tasks are executable

units which cannot be modified (e.g. have been provided by others) whereas blocks

can be coded and, as we shall see, even have their code dynamically redefined at

execution time.

The figure shows the separation of a block’s “code” (encapsulated) from its in-

terface. The interface is composed of the block name (optional) and its input/output

parameters: state variables and events. A block may export events to other blocks

(i.e. equivalent to event signalling). It may also make its state variables visible out-

side its context by making them part of its interface. Furthermore, all blocks accept

four specific commands — stop, resume, exit and start — which will change their

state.

ExportedName
STOP

RESUME

EXIT

START

STOP

RESUME

EXIT

START

(a) Block                                                                                                      (b) Task

Tasks

Blocks

Body

events
State Variables Name Exported

events
State Variables

EventHandling
Rules

Fig. 1. Block and task schematic diagrams.
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2.1. Blocks and tasks

Tasks are declared by the deftask construction, which defines the task name, its

interface (the events that it exports and the state variables that it imports or

exports) and the path for a directory or file where the task’s contents is stored (e.g.

a programming library):

(DEFTASK task name interface definition path definition)

Blocks are declared by the defblock construction, which defines an optional

block name, the block’s interface (the events that the block exports and the state

variables that it imports or exports) and body. The external-events section of the

block definition lists all external events (i.e. events generated outside the workflow)

for which this block has an event handling rule.

(DEFBLOCK [block name] interface definition

[(EXTERNAL-EVENTS external-events section )]

(BODY body section )

[ (EH-RULES eh-rules section) ]

)

The body section defines the internal components (blocks and tasks) of a block and

is intended to describe the standard execution of these components. The eh-rules

section lists all event handling rules.

These means of definition are natural for a workflow application and, what is

more important, facilitate reuse. In terms of naturalness, the block allows express-

ing two important concepts in workflow applications: the normal or standard flow

of activities (which in our language is expressed in the body section of the block

definition); and event handling rules. Thus, blocks embody aspects needed in work-

flow definition, such as task ordering, as well as information to be used at run-time

(such as task enabling conditions).

Most blocks have a name, to allow reuse and help workflow definition. Anony-

mous blocks are special blocks which have no name. This allows the definition

of sub-workflows which serve special purposes — e.g. environment setting — but

which cannot be reused later.

Blocks and tasks within a block’s body may be organized according to seq,

par, loop, and parloop constructs. (SEQ A B ) states that B is executed after

A terminates. It corresponds to the standard sequencing of activities in workflow

languages. (PAR A B ) states that A and B start at the same time, and that both

must be terminated for the execution to continue. It corresponds to an and-split

followed by an and-join in workflow languages.

(LOOP A) will execute A in an infinite loop, whose termination is forced when

A raises some specific event. (PARLOOP n A) is a non-standard control operator in

workflow languages, which launches n parallel instances of block A. It is useful when
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executing stopped
start stop

stop

to the nested blocks and tasks

to the nested blocks and tasks

resume

resume

exit

exit

terminated

exit

exit

Fig. 2. Block state-transition diagram.

one must start a number of parallel branches of the same block, but at modeling

time one does not know how many: n is dynamically determined at execution time.

Blocks can be in three states, as described in Fig. 2. A block can be executing,

which means that some of its internal blocks or tasks are executing. A block can

be in the stopped state, which means that all its internal blocks and tasks that

were executing are also stopped. And finally a block can be in the terminated state

(meaning its execution cannot be resumed). In the figure, full lines correspond to

block’s state transitions. Dashed lines represent the fact that a given state change

in a block requires the same state changes to be forced on the blocks and tasks it

encapsulates.

If an instantiation of a block receives a start signal, and it has not yet started,

it starts executing — i.e. becomes active for a given activation context. Thus, its

variables are instantiated and its event handling rules are added to the set of rules

that can be fired at any time. If the block is already in the executing state, or the

stopped state, it ignores the signal.

If the block is in the executing state, and receives the stop signal, this signal is

propagated to all its executing sub-blocks and tasks; the block’s state is saved and

it goes into the stopped state. If the block is in any other state, it ignores the stop

signal.

If the block is in the stopped state, and receives a resume signal, its internal

state is restored and the signal is propagated to its stopped sub-blocks and tasks.

For all other states, the resume signal is ignored.

Finally the exit signal terminates the block execution: if received in the ex-

ecuting or stopped states, it will be propagated to all its executing or stopped

sub-blocks and tasks, and the block goes to the terminated state, disabling all of its
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Table 1. Options for rule definition.

Event Role = Mandatory
Source ⊂ {Behavior invocation, Block, Clock, External}
Type ⊂ {Primitive, Composite}
Operators ⊂ {or, and, seq, times}

Condition Role = Optional
Context = BC

Action Options ⊂ {Behavior invocation, Event, Inform, External}
Context ⊂ {BS , BE , BC}

rules. Furthermore, a block’s termination provokes the abort of all eh-rules which

were part of its activation state, and which had been triggered.

2.2. Events and event handling rules

Events are captured by event handling rules, declared in the eh-rules section.

Event handling rules are similar to <E, C, A> rules in active databases. E stands

for the Event upon which the rule is triggered, C the Condition (predicate) to be

tested, and A the Action to be performed if the condition is met. From now on, the

term rule in this paper will denote this triple.

In order to describe our rules in detail, we use the same approach as in Ref. 23,

separating rule specification from the execution semantics. Table 1, adapted from

Ref. 23, shows the basic rule components, divided in event, condition and action.

EH-rules ensure flexibility during workflow execution.

Basic notions. An event is something that happens at a point in time, and all

rules must have an event specified (role = mandatory). Events can have different

types of sources — see the Table. Behavior invocation events are those raised by

activation of tasks and nested blocks. Examples of behavior invocation events are

“BOB” and “EOB”, denoting respectively begin and end of a block. Block events

are those specifically raised and exported by blocks, being part of a block’s interface.

Clock events are those that are signalled by the passing of time (e.g. “12-noon”).

Finally, external events are those which happens outside the workflow execution

environment (e.g. arrival of documents in an office). A block must declare in its

external-events section, which external events it treats.

External events can be seen and processed by all the blocks composing a work-

flow. Their names are global to the entire wokflow.

Events can be primitive or composite. Composite events are those created by

recursively combining less complex events using the set operators of Table 1 — e.g.

“e1 or e2”.

Conditions are predicates on the state of specific blocks or predicates on exis-

tence or non-existence of events. The condition field of a rule is not compulsory (and

thus a condition’s role is optional). A condition’s context defines for which block

state condition is to be evaluated. In our case, the context is always BC — at the
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point where the condition is tested. Examples of conditions are (active?block),

(terminated?block) and (stopped?block) verifying if a block is in the corre-

sponding states.

Actions may have distinct execution options. Behavior invocation actions ac-

tivate blocks or tasks. Inform actions notify given users/addresses — (notify

adress), whereas external actions invoke external procedures (call procedure).

Event actions are those that raise events (raise), that can send a start, stop, re-

sume, or exit signal to a block or a task (e.g. start block | task, stop block | task).

The stop and exit actions without any argument refer to the block that contains

the eh-rule itself. An action’s context defines when the action is to be performed:

at the start of the execution of the current block — BS ; at the point where the

event was raised — BE , or at the time the condition is actually checked — BC .

Rule execution environment. Once the syntax for defining a rule is specified,

we must consider the execution environment. In terms of rule execution, there are

five stages which must be considered again23: the signalling phase in which an event

occurs; the triggering phase in which the relevant rules are triggered; the evaluation

phase in which conditions are evaluated, generating a “conflict set” containing all

rules where conditions are satisfied and thus where actions are prone to be activated;

the scheduling phase determines how to process rules within the conflict set; and

the execution phase which corresponds to action execution.

These phases are executed according to two coupling modes: Event-condition

and Condition-action. The usual coupling modes found in rule execution environ-

ments include immediate — e.g. the condition is evaluated immediately after an

event is raised — and deferred — e.g. condition evaluation is deferred to some

point in the execution (for instance, until block end). In our case, all coupling

modes are immediate and therefore we will not concern ourselves with discussing

other alternatives.

The consumption mode, which defines how an event should be treated by the

event manager in case several events of the same type arrive is chronicle, i.e. events

are managed in a queue by the event manager, which must take into consideration

which block raised the event. When a rule triggered by an event is activated, the

event is consumed. Since blocks are reusable units, the same event may be raised

by several instanciations of a given block, indicating that the corresponding rule

must be fired distinct times, for each activation context.

Scheduling of actions may follow distinct priority policies. Again, in our case,

we assume strictly FIFO, meaning actions are executed in the same order the rules

were triggered. This means, among other things, that a workflow designer cannot

associate priorities to rules which would override this execution policy.

Some events are generated internally to a block and processed by it (we call these

internal events). An internal event of a block b may be produced by the blocks or

tasks inside b or may refer to the begining or end of the component blocks. For

example, if the block a is used in the body section of b, then during the execution
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of b, the event (eob a) refers to the event “end of block a”. (eob a +1h) is a

composite event that has two sources (behavior — eob — and clock — 1h) and will

be signalled one hour after block a ends. (bob +2h) is an event that will be raised

2 hours after block b itself started.

A block’s exported events are declared in its interface. A block b’ can make

available an internal event to its immediate ancestor b, by declaring the event as

exported in its interface. Then, the event becomes an internal event of b, i.e. b can

process the event by an event handling rule or it can again export it. To allow

for reuse, exported events are named similarly to parameters and arguments of

procedure definitions and procedure calls in programming languages. When a block

is activated, there is a positional matching between the exported event internal and

external names.

The execution of eh-rules is asynchronous with the execution of the blocks

where they are declared: if while a block is executing an event is raised, the relevant

eh-rules will execute. The event handling rules are only active when the block in

which they are defined is executing or stopped. If the block is terminated the rules

cannot be activated.

For example, consider the following block specification, where a is invoked by b.

(DEFBLOCK a (ev1) ()

...

)

(DEFBLOCK b (x) ()

(BODY

(a (x) () ) )

(EH-RULES

(x, , actionx) )

)

ev1 is an exported event of a. When a is activated within b, ev1 is known as x,

which is also exported by b. If, during the execution of a, the event ev1 (and thus

x for b) is raised, the action actionx will be executed.

2.3. State variables

State variables are the third central concept of the language. The basic idea of this

concept is to be able to represent resources that will be used by and transferred

among the tasks and the blocks at execution time. A calling block gives effective

resources to a callee block in transferring data to it and callee block tranfers results

in the same manner. In the interface, resources granted to a block (input) are

preceded by symbol “+”, whereas resources it transfers to other blocks (output)

are preceded by symbol “∧”. A symbol “?” before a variable name in a call declares

that the variable is shared between the calling and the callee blocks. At execution
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time, variable declarations are matched from calling to callee blocks according to

their order, just as in a programming language. The transfer of variables is usually

by copy except when the variable is preceded by “?”.

2.4. Features to enable reuse

A primordial objective of our language is to allow flexibility in workflow creation.

This is attained by supporting the reuse of the definitions of existing workflow, by

allowing their integration as building blocks (sub-workflows) into new workflows,

and by providing the possibility of dynamically redefining workflows. We recall that

flexibility in workflow specification is one of the basis for a cooperative workflow

construction environment.

Several specific features of the language were developed to achieve the reuse

goal: the first one, explained in the previous section, is the dynamic matching be-

tween calling/callee interfaces. Other features that ensure this are: (i) the PARLOOP

instruction; (ii) mechanisms for overriding rules, interface definitions, and task and

block definitions; and (iii) the possibility to permanently modify tasks and blocks.

As explained in Sec. 3.1, the PARLOOP instruction allows to launch simultaneous

parallel executions of the same workflow a number x of times, where the value of

x is defined dynamically at execution time. The remaining reuse-oriented features

are explained below.

2.4.1. Rule overriding

To facilitate reuse, an event handling rule defined in a block b may be redefined by

a block a which uses b. Thus, when there is block nesting, a rule may be redefined

several times. When there is rule redefinition, in the case of event signalling, it is

the outermost declaration of the rule that takes precedence. Let us consider the

following example, where b invokes a and is invoked by c:

(DEFBLOCK a (ev1) ()

...

)

(DEFBLOCK b (x) ()

(BODY

(a (x) () ) )

(EH-RULES

(x, , actionx) )

)

(DEFBLOCK c () ()

(BODY

(b (y) ()) )

(EH-RULES

(y true actiony) )

)
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Suppose ev1 is raised in block a (while executing within b, which has been activated

within c). This event is known as x within b and as y in c. The outermost rule for

this event is (y true actiony), declared in block c, and thus actiony will be

executed. If, on the other hand, the definition for block c were:

(DEFBLOCK c () ()

(BODY

(b (y) ()) )

)

then even though c is the outermost block, there is no rule to deal with event y (or

ev1 or x, for that matter). So the rule in b would be activated.

This rule overriding mechanism is well-adapted to the reuse of blocks. Let us

examine, for example, the block larger, specified below.

(DEFBLOCK larger (late) ()

(BODY

...

(process-order (late) ())

... )

(EH-RULES

...

(late, , (start notice () ()) )

)

Let us assume that the block process-order generates an exported event called

late as soon as the processing of a customer’s order has taken more than a certain

time. Block process-order is used within a larger block, with other activities and

blocks and which implements the standard policy for late orders. The standard

policy for late orders is just to start the block notice that, among other things,

notifies the customer that the order is late.

Now, let us suppose that a new customer policy is decided on. This new policy

starts a block apologize that involves running tasks which are different from the

ones performed in notice. The new policy is implemented by invoking block larger

and overriding the rule, capturing the late event.

(DEFBLOCK even-larger (late) ()

(BODY

...

(larger (late) ()) )

...

(EH-RULES

...

(late, , (start apologize () ()) )

)
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2.4.2. Interface definition overriding

The interface of a block b may be redefined by a block a which invokes b, by adding

exported events or/and exported variables. Let us examine the example below:

(DEFTASK a1 (ev1) () tpath)

(DEFTASK a2 (ev2) () tpath)

(DEFBLOCK b (z) ()

(BODY

.......

(a1 (x) () ) )

(a2 (y) () ) )

.......

(EH-RULES

(x, , RAISE z) )

(y, , RAISE z) )

)

(DEFBLOCK c (w) ()

(BODY

(b (w) ()) )

(EH-RULES

(w true actionx) )

)

Event z is exported by b and processed by c, where it is named w. The two rules

within b raise event z upon detection of event x (from task a1) or y (from task a2).

Since both tasks a1 and a2 raise z, in either case the rule within c will be activated.

Suppose now that we want to specifically process the event exported by task a1.

The definition of block c would be:

(DEFBLOCK c (w1) ()

(REDEFINESINTERFACE b (z, x) () )

(BODY

(b (w1,w2) ()) )

(EH-RULES

(w2 true actiony) )

)

2.4.3. Block and task definition overriding

Besides having its interface redefined dynamically, an entire block may be redefined

by a block which invokes it. It is indeed possible to have a cascading of redefinitions

of the same block. In this case, only the outermost definition is considered. In

addition, a block redefinition overrides an interface redefinition of the same block.

Let us suppose we add the following definition to the previous example:
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(DEFBLOCK d () ()

;---------------------------

(REDEFINESBLOCK b (x) ()

(BODY

.......

(a1 (x) () ) )

.......

); end of redefinition

;---------------------------

(BODY

(c (α) () ) )

(EH-RULES

(α true actionα) )

)

Block d calls block c which in turn calls block b. The interface redefinition of

block b in c is overriden by the redefinition of block b in d. Thus, for the execution

of c within d, the redefined block b no longer has any EH-rule. The net effect of this

redefinition cascading is that it is the outermost definition of b which will actually

be executed within d. The actual execution occurs as if we had the definitions below:

(DEFTASK a1 (ev1) () tpath)

(DEFTASK a2 (ev2) () tpath)

(DEFBLOCK b (x) ()

(BODY

.......

(a1 (x) () ) )

.......

)

(DEFBLOCK c (w1) ()

(BODY

(b (w1,w2) ()) )

(EH-RULES

(w2 true actiony) )

)

(DEFBLOCK d () ()

(BODY

(c (α) () ) )

(EH-RULES

(α true actionα) )

)
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Block redefinitions are dynamic and take place only during the execution of the

workflow where they are redefined.

A workflow may also override the task which is invoked within a block without

recoding the block. This is achieved by the redefinestask command, which serves

to indicate that a different task is to be invoked within a reused block. Just as block

definition overriding, this allows customizing workflows without affecting the block

library or existing workflows. Section 3.3 contains an example of overriding task

invocation.

2.4.4. Permanent modifications of blocks

Blocks may also be definitively modified, in which case their new definition is stored

in the block library. Some modifications have no consequence on existing workflows.

However, just as in any programming environment, it is up to the people who define

the blocks (or manage the library) to make sure there is no side effect on existing

workflows. Furthermore, again as in a programming environment, tasks may also

be redefined.

In order to provide a minimum of consistency to existing workflows when a block

they invoke is updated in the library, we impose restrictions on their interface defini-

tion. Basically, if a block b is modified in the library, the only allowed modifications

in its interface are those that add parameters (exported events or state variables) —

i.e. the updated definition of b cannot have less parameters in its interface. In this

case, pre-existing workflow definitions which use b will still execute and perform

positional parameter passing, but will ignore the additional parameters. Naturally,

this does not eliminate the need for ensuring the maintenance of the semantics of

these pre-existing workflows. Section 3.3 contains an example of this feature. The

same proviso applies to task modification.

3. Application

We will now discuss an application of the workflow language definition. We will

use a variation of the standard paper reviewing procedure that, we believe, is fa-

miliar to the reader. The basic idea is to describe the flow of the paper reviewing

procedure in a conference. The program committee chair sends papers to reviewers

according to some pre-arranged protocol, and then gathers up the reviews for each

paper. The examples concern the reviewer assignment/paper review/ final decision

protocols. We begin by presenting a basic example of this protocol. Then, in order

to demonstrate the reuse features of the language, we show how to reuse the blocks

defined in the first example to describe two other protocol examples with some

different procedures and policies.

3.1. Paper evaluation — Basic example

The main aspects of this basic example is that there is a list of possible reviewers.

Reviewers in the list are invited to review a paper and they may refuse to do it.
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Fig. 3. A simplified graphical representation of paper evaluation example.

Each paper should have at least two and at most three reviews. If it is not the case

that at least two reviewers accepted to review the paper, the paper is automatically

rejected, based on the assumption it is outside the conference’s scope.

The workflow is defined by a main (outermost) block named conference-track

which embeds four blocks find-reviewer-for-paper, 3-reviewers-for-paper,

collect-reports and evaluate-paper. The workflow blocks invoke six tasks, pop,

push, invite-reviewer, compute-results, evaluate and final-decision. The

general organization of the workflow is shown in Fig. 3, which represents the dif-

ferent invoked blocks and tasks. The figure shows a situation where there are only

two papers to be reviewed.

The figure portrays the general idea of the process, which consists of launching

several evaluate-paper blocks in parallel and computing the final results after

all papers have their evaluations returned. Each paper to be evaluated is popped

from a paper list, and passed on to the evaluate-paper block. The latter consists

of the execution of 3-reviewers-for-paper followed by collect-reports. Block
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3-reviewers-for-paper, in turn, consists on finding at least 2 and at most 3 people

who accept to evaluate the paper; block collect-reports sends these people letters

to confirm the request to evaluate, and waits for their reports. The results of the

evaluations are collected at some predefined deadline and finally the final decision

is taken on which papers should be accepted and rejected. The details and formal

definition of the workflow are described below.

The outermost block, conference-track, receives a list a papers, a list of po-

tential reviewers, and returns the final decision, with a list of accepted and rejected

papers.

(DEFBLOCK conference-track () (+size-of-list-of-papers

+list-of-reviewers

^final-accept ^final-reject)

(BODY

(SEQ

(PARLOOP size-of-list-of-papers

(BLOCK ( ) ( )

(BODY

(SEQ

(pop (empty) (paper list-of-papers))

(evaluate-paper (accept reject wait)

(paper list-of-reviewers))

))

(EH-RULES

(empty true EXIT)

(accept true (push () (paper ?list-of-accepted)))

(reject true (push () (paper ?list-of-rejected)))

(wait true (push () (paper ?list-of-pending)))

)

) ; end of anonymous block

) ; end of PARLOOP

(final-decision () (list-of-accepted list-of-rejected

list-of-pending final-accept final-reject))

))

)

Tasks push and pop respectively push and pop one element at a time from a

list. The pop task also raises event empty if the list is empty.

(DEFTASK push () (+element +list) t_path)

(DEFTASK pop (empty) (^element +list) t_path)
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Notice the PARLOOP structure, which allows defining that a block will be launched

for the number of times provided in the variable size-of-list-of-papers. Since

this variable is known only at execution time, this block can be used for any kind of

conference that employs the work procedures embedded in block evaluate-paper.

The final-decision task has the following definition:

(DEFTASK final-decision () (+list-of-accepted +list-of-rejected

+list-of-pending ^final-accept

^final-reject) t_path)

From the list of accepted, rejected and pending papers, the task produces the final

list of accepted and the final list of rejected papers.

The main evaluation policy is implemented by block evaluate-paper, whose

code is

(DEFBLOCK evaluate-paper (accept reject wait)

(+paper +list-of-reviewers)

(EXTERNAL-EVENTS (deadline))

(BODY

(SEQ

(3-reviewers-for-paper (x3 x2 nok) (paper list-of-reviewers

r1 r2 r3))

STOP

(collect-reports () (paper r1 r2 r3 report1 report2 report3))

STOP )

(EH-RULES

(nok true (SEQ (RAISE reject) EXIT))

(OR(x2 x3) true RESUME)

(deadline true (SEQ (compute-results (accept reject wait)

(paper x3 x2 report1 report2 report3))

EXIT))

)

)

This block initially invokes block 3-reviewers-for-paper, and goes to the

stopped state, waiting for either a failure in finding an acceptable number of re-

viewers or a success. In the first case, block 3-reviewers-for-paper signals event

nok, which will raise the first rule.

Events x2 and x3 respectively indicate that 2 or 3 reviewers were found, in

which case the block can resume its execution (second rule).

Event deadline is a time event which will raise the third rule of the block; this

rule invokes the task compute-results.
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Notice that here, as in several other parts of this section, the stop event is

signalled between block invocations, forcing the block to enter a stopped state. This

is needed to ensure synchronization between block execution and rule execution.

Since rules are executed asynchronously, this is needed in some cases to make sure

of the correct block execution semantics.

The task compute-results receives the number of reviewers that were assigned

to the paper, and their reports, and raises accept, reject, or wait if the paper

should be accepted, rejected, or is pending further discussion. The task has the

following definition:

(DEFTASK compute-results (accept reject wait) (+paper

+three-reviewers +two-reviewers +report1

+report2 +report3) t_path)

Block 3-reviewers-for-paper is in charge of finding reviewers for one paper

and is coded as

(DEFBLOCK 3-reviewers-for-paper (three-rev two-rev not-ok)

(+paper +list-of-reviewers ^rev1

^rev2 ^rev3)

(BODY

(SEQ

(PAR

(find-reviewer-for-paper (ok1 nok1) (paper rev1

?list-of-reviewers))

(find-reviewer-for-paper (ok2 nok2) (paper rev2

?list-of-reviewers))

(find-reviewer-for-paper (ok3 nok3) (paper rev3

?list-of-reviewers))

)

RAISE f

STOP )

)

(EH-RULES

(f (and ok1 ok2 ok2) (SEQ (RAISE three-rev) EXIT))

(f (or (and ok1 ok2) (and ok1 ok3) (and ok2 ok3))

(SEQ (RAISE two-rev) EXIT))

(f (or (and nok1 nok2) (and nok1 nok3) (and nok2 nok3))

(SEQ (RAISE not-ok) EXIT))

)

)

This block raises three-rev if three reviewers were found, two-rev if only two

reviewers were found, and not-ok if less than two reviewers were found.
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Block find-reviewer-for-paper will attempt to find a reviewer that accepts

reviewing the paper. Reviewers are taken from the list list-of-reviewers. It will

raise fail-assign if no one from the list-of-reviewers accepts to review the

paper.

(DEFBLOCK find-reviewer-for-paper (accept fail-assign)

(+paper ^reviewer

+list-of-reviewers)

(BODY

(LOOP

(SEQ

(pop (empty-list) (reviewer ?list-of-reviewers))

(invite-reviewer (accept refuse) (paper reviewer))

STOP

)

)

)

(EH-RULES

(empty-list true (SEQ (RAISE fail-assign) EXIT))

(accept true EXIT)

(refuse true RESUME))

)

The actual formal invitation is performed by task invite-reviewer. This task

will cause the paper and a letter of invitation to review to be sent to the reviewer

who may accept or refuse to review that paper:

(DEFTASK invite-reviewer (accept refuse) (+paper +reviewer) t_path)

Finally, block collect-reports returns the reports of each reviewer of a paper.

(DEFBLOCK collect-reports () (+paper +reviewer1 +reviewer2 +reviewer3

^report1 ^report2 ^report3)

(BODY

(SEQ

(extract-paper-id () (paper, paper-id))

(PAR

(evaluate () (paper-id reviewer1 report1))

(evaluate () (paper-id reviewer2 report2))

(evaluate () (paper-id reviewer3 report3))

)))

)
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The task evaluate called in the block is defined as

(DEFTASK evaluate () (+paper +reviewer ^report) t_path)

It confirms to the reviewer that this paper has actually been assigned and the

reviewer eventually responds in sending the report. If the variable reviewer is null,

the task does nothing.

Task extract-paper-id defined as

(DEFTASK extract-paper-id () (+paper, ^paper-id))

returns the identifier for a paper, that is used in further communication with the

reviewers. The paper identifier is supposed to be in the paper header.

3.2. Paper evaluation — A different conference

Consider now a variation of the previous example. In this variation, if no re-

viewer accepts to review the paper, it is assigned to two PC members. A new

issue arises, in comparison with the previous example: there is the problem of pass-

ing along the list of PC members, from the conference track block down to the

3-reviewers-for-paper block, where it is used.

The outermost block, here conference-track2, is defined as:

(DEFBLOCK conference-track2 () (+size-of-list-papers +list-of-papers

+list-of-reviewers +list-of-PC

^final-accept ^final-reject)

(BODY

(SEQ

(PARLOOP size-of-list-of-papers

(BLOCK

(BODY

(SEQ

(pop (empty) (paper list-of-papers))

(evaluate-paper2 (accept reject wait)

(paper list-of-reviewers list-of-PC))

))

(EH-RULES

(empty true EXIT)

(accept true (push () (paper list-of-accepted)))

(reject true (push () (paper list-of-rejected)))

(wait true (push () (paper list-of-pending)))

)

) ; end of anonymous block

) ; end of PARLOOP



January 9, 2003 15:37 WSPC/111-IJCIS 00055

A Reuse-oriented Workflow Definition Language 21

(final-decision () (list-of-accepted list-of-rejected

list-of-pending final-accept final-reject))

))

)

The block evaluate-paper2 redefines the interface of the block evaluate-paper

to be able to override the rule for processing the event nok. It is defined as

(DEFBLOCK evaluate-paper2 (accept reject wait)(+paper

+list-of-reviewers +list-PC)

(REDEFINESINTERFACE evaluate-paper (accept reject wait nok) (+paper

+list-of-reviewers))

(BODY

(evaluate-paper (accept reject wait nok)

(paper list-of-reviewers))

)

(EH-RULES

(nok true (SEQ

(pop (x) (rev1 ?list-PC))

(notify-PC () (paper rev1 report1))

(pop (y) (rev2 ?list-PC))

(notify-PC () (paper rev2 report2))

(collect-reports() (paper rev1 rev2 null report1

report2 null))

(compute-results (accept reject wait) (paper null

x2 report1 report2 null)

)))

)

The task notify-PC is defined as

(DEFTASK notify-PC () (+paper +PC-member ^report) t_path)

and it will cause the paper to be reviewed to be sent to the PC-memberwho responds

in sending his report.

3.3. Yet another different conference

As a third example, let us suppose that in the first example, we modify the reviewer

invitation process. Instead of inviting and expecting an answer, we send the paper,

with an invitation letter to the reviewer. If the reviewer refuses to evaluate the

paper, he will indicate this, otherwise it is expected that the report will be sent

before the deadline.

This modification is embedded in a new task invite-reviewer. The new task is

automatically invoked by the block because there is a redefinestask declaration.
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This new task is stored in a different path and its interface is distinct from the

other invite-reviewer task used until now.

(DEFBLOCK conference-track3 () (+size-of-list-of-papers

+list-of-papers +list-of-reviewers

^final-accept ^final-reject)

;------------------------------------------------------------

(REDEFINESTASK invite-reviewer (ack no) (+doc +name ^report) tpath2)

;------------------------------------------------------------

(REDEFINESBLOCK evaluate-paper (accept reject wait)(+paper

+list-of-reviewers)

(EXTERNAL-EVENTS (deadline))

(BODY

(SEQ

(3-reviewers-for-paper (x3 x2 nok)

(paper list-of-reviewers r1 r2 r3 rp1

rp2 rp3))

STOP)

)

(EH-RULES

(nok true (SEQ (RAISE reject) EXIT))

(deadline (true) (SEQ

(compute-results (accept reject wait)

(paper x3 x2 report1

report2 report3))

EXIT))

)

) ; end of redefined block

;------------------------------------------------------------

(BODY

(conference-track () (list-of-papers list-of-reviewers

final-accept final-reject))

)

)

The blocks find-reviewer-for-paper and 3-reviewers-for-paper are per-

manently modified as:

(DEFBLOCK 3-reviewers-for-paper (three-rev two-rev not-ok)

(+paper +list-of-reviewers ^rev1 ^rev2 ^rev3

^rp1 ^rp2 ^rp3)
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(BODY

(SEQ

(find-reviewer-for-paper (ok1 nok1) (paper rev1

?list-of-reviewers rp1))

(find-reviewer-for-paper (ok2 nok2) (paper rev2

?list-of-reviewers rp2))

(find-reviewer-for-paper (ok3 nok3) (paper rev3

?list-of-reviewers rp3))

)

)

(EH-RULES

(EOB (and ok1 ok2 ok2) (RAISE three-rev))

(EOB (or (and ok1 ok2) (and ok1 ok3) (and ok2 ok3))

(RAISE two-rev))

(EOB (or (and nok1 nok2) (and nok1 nok3) (and nok2 nok3))

(RAISE not-ok))

)

)

The interface of the block 3-reviewers-for-paper is modified to output the

report variable and the invocations of the blocks find-reviewer-for-paper are

updated.

This new version of the block 3-reviewers-for-paper is stored in the li-

brary, but will not affect the execution of pre-existing workflows (e.g. the one

described in Sec. 3.1). That original workflow assumes the old interface of

3-reviewers-for-paper, which does not return the reports. If the first workflow

is now used, the variables rp1, rp2 and rp3 will not match with any calling block

parameters.

(DEFBLOCK find-reviewer-for-paper (ok fail-assign)

(+paper ^reviewer +list-of-reviewers

^report)

(BODY

(LOOP

(SEQ

(pop (empty-list) (reviewer ?list-of-reviewers))

(invite-reviewer (accept refuse) (paper reviewer report))

)))

(EH-RULES

(empty-list true (SEQ (RAISE fail-assing) EXIT))

(accept true EXIT)))

)
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Notice that the interface of the block find-reviewer-for-paper is modified

to output the report variable, and the call to the task invite-reviewer is also

changed to invoke the redefined task invite-reviewer.

Like before, this new version of the block is stored in the library, but will not

affect the execution of pre-existing workflows. The original workflow will continue

using the ancient definition of the task invite-reviewer, whose interface moreover

does not return the report.

4. Architecture

A workflow management system (WFMS) must offer the designer several tools for

specifying workflows and the data they manipulate. Several architectures rely on the

so-called workflow repository, which stores workflow definitions. WFMS architec-

tures dispose of two main functional modules: repository services, where workflows

are stored and managed, and enactment service, to coordinate workflow execution.

The latter enforces inter-task dependencies, schedules activities, manages data and

is concerned with the overall reliability of the execution environment. Additional

modules provide security, authentification, user group monitoring and reporting

(e.g. workflow logs).

Our architecture, schematically shown in Fig. 4, follows the basic model of

the Workflow Management Coalition WfMC,30 comprising three main component

types:

• Software components for providing support for functions within the workflow

system.

• Control data and systems.

• Applications and application databases, which are accessed by a workflow in-

stance during run-time.

To ensure exception handling and workflow interoperability, we add two components

to the architecture proposed by WfMC: the event manager and the repository. The

repository contains workflow definitions and shared data to be used by all workflows

and their component sub-workflows.

During workflow/process execution, the workflow engine coordinates the se-

quencing of activities and the invocation of application tools. We recall that we

consider blocks to be sub-workflows. Thus, rather than having one single work-

flow engine, our architecture ensures that the activation of a block will instantiate

a temporary workflow engine, which will be responsible for the block’s execution.

Each engine manages the block’s internal control data, as well as its state variables.

This optimizes execution of the nested blocks, and block reuse. As blocks may be

simultaneously executed, several workflow engines may be active at the same time.

Figure 4 shows the architecture of our system. At the beginning of the execu-

tion of a workflow, only one workflow engine exists and executes the highest level

(outermost) block. This block is activated with the parameters provided by the



January 9, 2003 15:37 WSPC/111-IJCIS 00055

A Reuse-oriented Workflow Definition Language 25

workflow relevant data

workflow relevant data

instancies
and invokes

uses

creates and uses

event managersend events

workflow

engine

engine

declares events
task

(application)

uses and updates

notifies events

invokes

external events

uses and updates

creates and uses

workflow
shared data

definitions

WFMS repository

user

sends events

uses

workflow control data

maintains

workflow

name of the
workflow

uses and updates

Fig. 4. Architecture of the WFMS.

user (workflow relevant data). When the engine encounters a task definition, it in-

vokes the associated task module (which is stored in the workflow repository). If it

encounters a block definition, it instantiates the corresponding (sub-)workflow and

triggers its execution by means of a temporary engine.

Workflow instantiation is as follows. If a block’s body is not redefined, its defini-

tion is extracted from the workflow repository. Interface redefinitions, when found,

overide the ones stored in the repository. Next, a workflow/process is defined, to-

gether with the relevant data containing the effective parameters of the block,

including block redefinition, and the identification of exported events handled by

event-handling rules. When a workflow execution is terminated (corresponding to

the terminated state of the block) its engine sends an exit event together with the

block’s identification to the event manager.

The event manager processes all the events generated during the execution of

a workflow. Each workflow engine declares to the manager the external events it

processes and sends to it the events it exports together with its identification. The

event manager notifies each workflow engine of the arrival of the external events it

recognizes, of the events exported by its sub-workflows and of their exit events.

When a workflow engine receives an exit event from one of its sub-workflows, it first

extracts the sub-workflow’s relevant data and then deletes its temporary engine.

Figure 5 shows an instantiation of this architecture for the execution of block

3-Reviewers-for-paper. To keep the figure readable, we did not show the execu-

tion of the block find-reviewer-for-paper. The figure represents the normal case,

i.e. the case when block find-reviewer-for-paper finds a reviewer who accepts

the paper.
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First, the workflow engine for block 3-reviewers-for-paper starts. It receives

relevant data containing the effective parameters (in particular, the reference to-

wards a copy of list-of-reviewers which has been created by the outermost

block conference-track). During its execution, it instantiates three workflow en-

gines, one for each instance of the block find-reviewer-for-paper and launches

them with their associated relevant data. These engines, in turn, dynamically con-

struct the associated workflow definitions (selecting the block definition in the

database) and execute them. They send an ok event to the event manager fol-

lowed by an exit event. The event manager notifies the workflow engine of the

block 3-reviewers-for-paper of the arrival of each of the events ok1, ok2 and

ok3, together with the identification of their source. When an exit event sent by a

sub-workflow engine is notified to the engine 3-reviewers-for-paper, the latter

picks up the variables reviewer1, reviewer2 or reviewer3 from the data main-

tained by the corresponding sub-workflow engine and deletes that sub-workflow

engine. When the three sub-workflow engines have finished their execution, event

f is raised by the workflow engine 3-reviewers-for-paper which sends its identi-

fication plus two events — three-rev followed by exit — to the event manager.

5. Related Work

Research on workflows covers a wide gamut of aspects, ranging from the work en-

vironment where they are used (e.g. office procedures, communication paradigms7)

to their specification and execution. A recent trend concerns the use of workflows

across the Web, to support cooperative work organization (e.g. the special issue
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on internet-based workflows24, or the work on coordinating communication among

workflows5). Within this same context, a first draft of XPDL, an XML standard

for workflow definition has been published.31

Our paper concentrates on workflow specification and instantiation mechanisms.

Related work is usually linked to that on WFMS and covers several aspects which

vary from architectural issues to prototype implementation. Surveys2,21 discuss

some open research issues in the area. As stressed in these papers, workflow man-

agement systems originated from office automation or CSCW applications, and

thus have been geared towards routing, task identification, sharing and cooperation.

Limitations mentioned range therefore from lack in flexibility in their specification

to operational problems (such as scalability, fault tolerance, exception handling,

concurrent execution and long transactions). Several of the languages and systems

described but not all are WfMC compliant.

5.1. Main research trends

Roughly speaking, research on workflow definition and workflow management sys-

tems is centered on three main axes: (i) architectures and prototypes; (ii) extensions

to support non-business-oriented applications; and (iii) specification formalisms and

environments.

Research on architectures and prototypes is either based on extending DBMS

mechanisms (to ensure appropriate transaction management, concurrency control

and persistency — e.g. in Refs. 11, 15 and 20) or on artificial intelligence agent-

based proposals (to optimize parallelism, execution dynamics and task distribution

— e.g. Ref. 8). Support for collaborative facilities and reuse is also a common goal

(see, for instance in Ref. 27). Reuse and parallelism are frequently mentioned in

the context of enterprise-wide management, where several sites and/or enterprises

need to share and exchange documents.

Research on extensions to support other types of applications requires construc-

tion of new WFMS. An example of this type of work is that geared towards the

so-called scientific workflows, proposed to describe activities typical of experimental

(scientific) environments — e.g., Ref. 1, 33 and 34.

Finally, research on specification formalisms — which is the main focus of this

paper — aims to provide workflow designers with more expressive power in order

to better describe their applications. In the rest of this section, we concentrate on

this research aspect. This kind of work is either formulated in terms of state tran-

sition constructs (e.g. based on graphs, Petri nets, or statecharts) or on declara-

tive languages (e.g. standard structured languages, or object-oriented and reflexive

languages, eventually extended with ECA active database rules). In some cases,

specification tools combine declarative programming with a graphical interface.

Specification formalisms have evolved from simple state transition graphs with

little semantics to progressively more complex structures, separating data from con-

trol flow, to provide more expressive power and to allow flexibility in specification.
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However, the richer the constructs, the more complex becomes the specification. In-

deed, some formalisms are restricted to low level details such as variable values, and

are yet unable to allow designers to abstract data and control flows, complicating

the task of workflow definition.

State-centered proposals. Workflow formalisms which adopt state-centered

specifications are usually based on graphical notations. Most of these proposals

rely on digraph representations, where nodes correspond to activities and directed

edges correspond to data and/or control flow. An example is the work of Gal and

Montesi,14 where the emphasis is on modeling the communication between differ-

ent enterprises, represented by their business workflows, at a very high abstraction

level. Here, the workflow is expressed by means of Petri nets, which allows defining

synchronization events. An exception to the digraph specification paradigm is the

work of Wodtke et al.35 — the Mentor project — which uses Statecharts to spec-

ify workflows. This type of formalism presents a marked evolution in comparison

to other state-based proposals, since it allows expressing events and triggering of

activities in the diagram, with as many abstraction levels as desired. Nevertheless,

their events are still synchronous, and can only be raised at the end of an activity.

We, on the other hand, consider asynchronous events, which can furthermore be

raised during the execution of an activity.

Yet another state-based formalism relies on UML Activity Diagrams to spec-

ify workflows, and design patterns.9 UML (the Unified Modeling Language25) is

a software engineering theoretical framework which is being increasingly used to

model and document software. Based on several kinds of complementary diagrams,

it allows designing static and dynamic software components, associated databases,

and actors involved in software execution. Activity Diagrams correspond to the

formalism within UML which is responsible for modeling computational and orga-

nizational processes. They are transition diagrams akin to state machines. Because

of their characteristics, there have been some attempts to use these diagrams to

specify workflows. As pointed out by Dumas and ter Hofstede,10 however, though

they allow specification of several workflow characteristics, they do not support

synchronization of blocks or activities, and some of their constructs lack precise

syntax and semantics.

Language-based proposals. Most language-based proposals for workflow spec-

ification concern the definition of one language. An exception is the Ariadne29

notation system, which provides tools for specifying a language which a designer

can then use to specify a workflow. Ariadne defines families of symbols for specify-

ing workflows, and rules for this specification. It comprises three levels for workflow

specification, in which the most abstract level determines possible grammars to be

applied and the two others construct workflows by applying rules of the chosen

grammar. Though all tasks considered are primitive, its main goal is the coordina-

tion of cooperative actions.



January 9, 2003 15:37 WSPC/111-IJCIS 00055

A Reuse-oriented Workflow Definition Language 29

All other language-based proposals concentrate on specification of one language

and its constructs. Representative examples, described below, are the work of E.

Gokkoca et al.12 and R. Hull et al.,16 and that of F. Casati et al.6 and Z. Luo

et al.22 in the case of active rules.

E. Gokkoa et al.12 propose a block-based declarative structured language to

specify workflows. Blocks are used to encapsulate tasks and therefore provide more

abstraction to workflow specification, but have no specific semantics associated.

Thus, their blocks cannot be defined within other blocks (a usual feature workflow

graphical representations).

The goal of the Vortex environment16,17 is to specify heuristic workflow de-

scriptions, as well as to allow tuning of their execution. The specification language

combines graphical properties (called DecisionFlows) with textual specification —

the language is based on the OQL database language standard. Vortex takes ad-

vantage of active database facilities to define attribute values: it is ECA rules that

determine how and when to query a database to obtain attribute values.

Several other language-based proposals use active databases to serve as the

platform for WFMS, and as a consequence workflows are defined in terms of ECA

rules. Workflows and rules are stored in a database; the rules may either handle data

states or workflow execution (e.g. coordinating state transitions). Active database

approaches are usually low-level (rules concern variables or database states, but

not complex workflows) and do not allow nesting of workflows, due to limitations

of active database systems. The work of F. Casati6 exemplifies this type of system.

They employ a textual declarative means for defining a workflow, which combines

database specification (to define schemata) and rule definition. The reactive ap-

proach is also taken by Z. Luo et al.22 who enhance ECA rules by defining the

context in which they are examined, becoming J-ECA rules (Justified ECA). In

this proposal, reactive capabilities allow a workflow to reason about its current

state and act accordingly to handle exceptions.

Finally, the WIDE project4 combines the use of patterns and event handling

within database ECA rules. The goal — like that of our paper — is to allow exe-

cution flexibility. Their event handling concerns are similar to ours; however, these

concerns are dealt with using a database perspective, and workflow specification is

based on patterns and their specialization using inheritance mechanisms. In partic-

ular, inheritance is one of the means of achieving reuse.

Combining graphic and textual notation. Finally, some formalisms require

combining declarative languages to state-based diagrams. An example is the

Atreus13 environment. It associates textual metadata to a workflow graphical spec-

ification, in order to document activities and specify execution conditions. Besides

the usual concepts of top-down task refinement and sequence and parallel con-

structs, it also raises the question of deterministic and non-deterministic parallel

tasks. Many other authors also use metadata attached to workflows to help docu-

mentation of activities (e.g. in Ref. 36).
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5.2. Comparison with our work

Our work can be considered similar to that of Atreus13 as far as events are con-

cerned. However, it extends13 by allowing an arbitrary complexity of block nesting,

as well as event propagation within and across blocks. We can also draw a parallel

of our language to the Mentor statechart specification. However, they do not allow

reuse of blocks, and their use of data and variables is mostly for documentation

purposes in the activity chart. Ours can control the flow.

There is very little research on the expressiveness of languages to specify work-

flows. One such effort is the work of Bonner,3 who is intent on showing how Transac-

tion Datalog can be used to specify workflows in a database framework. Transaction

Datalog is a powerful formal tool used in studying database programming languages.

It is a (database) programming language that supports concurrent process specifi-

cation and advanced transaction modeling. Since it is a database language, but also

supports concurrency and embedded processes, it allows definition of both behavior

and state features. Bonner’s work is concerned with issues such as preservation of

states, and computational complexity of workflow specification using this language,

under specific conditions. While his study is centered on formal issues, the work

reported in Ref. 10 studies expressivenes from a practical perspective. It analyzed

the expressiveness of UML activity diagrams against a set of 21 design patterns that

specify desirable workflow constructs, some of which not supported by commercial

WFMS.9 These two papers3,10 — represent the two extremes that are found in the

literature when studying existing workflow specification proposal — from practical

specification concerns to theoretical complexity issues.

The main goal of our research was to support reusability in workflow specifica-

tion. Reusability is a major concern in software engineering, but has so far attracted

little attention in terms of workflow definition. Among the exceptions can be found

in Dumas and ter Hofstede,9 who use patterns or in Ref. 19, that consider using

versions to accomodate evolution. Neither proposal can be considered a language,

and thus needs further refinement for construction and execution of workflows.

Furthermore, they do not consider dynamic (temporary run-time) modifications or

propose language- specific features.

Workflow reuse is a practical issue, notably in the context of evolution, main-

tenance and adaptability. To start with, organizations have to deal with many

processes that are similar to each other, but with slight changes — e.g. in a gov-

ernment agency, various departments may deal with the same problem in distinct

ways. The differences may be very small — such as a process having an optional

review, or a distinct termination activity. In such situations, the workflows used by

each department are almost identical. Reuse in this case consists in adopting one

single specification, parts of which are redefined or overriden. This a typical situa-

tion in which we recommend applying our Redefines features. If a basic definition

is reused and just small updates are performed, not only is time saved, but several

specification errors may be avoided. In the same vein, many activities are repeated



January 9, 2003 15:37 WSPC/111-IJCIS 00055

A Reuse-oriented Workflow Definition Language 31

in distinct processes, and again one single reusable specification saves time. Second,

reuse is one of the basic requirements to attain maintainability and evolution which

occur naturally due to process reengineering activities and the natural dynamics

of the real world. For instance, enterprises have to change policies and procedures

to adapt to global and local market constraints, political context and technological

progress. Nevertheless, most changes are not radical, and many work methods can

be adapted — and again reuse is of interest.

Our main goal was proposing a language to foster reuse, rather than to pro-

vide constructs that would add expressive power as compared to other proposals.

By introducing reuse features, however, we also gained on expressiveness. First,

we are WfMC-compliant. Though our language does not explicitly contain certain

operators (e.g. OR), they can be implemented by adequate use of events and event-

handling rules. Second, like several other proposals, we support different kinds of

workflow — and block — states, in particular wait-for and cancel, which are needed

in real life situations. Third, our language allows expressing all of the concepts spec-

ified by the workflow patterns in Ref. 9.

Our language provides some features which are not common in workflow spec-

ification proposals, notably PARLOOP, asynchronous events, event propagation,

dynamic event management via event handling rules, and the different kinds of

parameter passing among workflows and their components. These features allow,

for instance, expressing the complex Multiple Instance patterns of Ref. 10 which

include dynamic (run-time) definition of loops and parallel branches. This same

set of properties can be defined using distinct specifications of PARLOOP with

appropriate parameter and/or event definitions.

The unique language feature offered by us is the Redefines clause, which does

not appear in other languages and which fosters dynamic modifications and reuse.

It is true that a clause of the same name appears in the XML proposal of WfMC,

XPDL.31 The XPDL redefines, however, does not have the same scope. It only

allows redefining the specification of header (documentation) items such as workflow

author or version. Thus, even though XPDL contemplates parameter passing, there

is no support to this kind of reusability.

6. Conclusions and Future Work

This paper presented a new formalism for specifying extensible workflows, based

on combining paradigms of programming languages and database systems. This

formalism is based on creating a library of workflow building blocks, which can be

progressively combined and nested to construct complex workflows. Control flow

along and across blocks is achieved by different kinds of events and exceptions,

which are handled by active rules. Workflows are specified declaratively, using a

simple high level language, which allows dynamically defining exception and event

scopes. This enables flexible workflow specification and orthogonality between static

and dynamic aspects.
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The proposed framework allows reuse of previously stored workflow definitions.

This is particularly appropriate for distributed cooperative work environments,

which are becoming more widespread with the advent of the Web.

Future work includes two kinds of activity — extending the language to add

new constructs, especially for different kinds of event handling and exception con-

sideration, and implementation of the architecture. We are also working on using

our language to specify workflows for several application domains, to check their

expressive power and limitations.

As compared to other similar efforts, the main advantage is that, besides features

offered by formalisms such as those discussed in Sec. 5, we support asynchronicity

of events, event propagation and explicit declaration of events and rules, and their

dynamic redefinition. This provides more flexibility as well as supports specification

of more complex situations. Furthermore, we allow specification of variables and

data which are part of a workflow state but are also used to help control the

execution. At present, we are mapping our language to the the first draft of the

XML Workflow Process Definition Language of WfMC (XPDL).31 So far, most of

our constructs permit a direct mapping, though some of these mappings are not

immediate. The main differences concern the PARLOOP construct and redefinition

facilities.

One limitation to our work is the fact that the language is not user-friendly. In

fact, even workflows with few states may become ungainly and hard to understand

and specify, as seen from the simple examples presented in the paper. Thus, one

extension would be to provide a programming environment which would hide this

complexity from the designer. Another limitation is that one cannot redefine just

part of a block; redefinition demands rewriting the whole block, even if just some

parts are changed. So far, we have not found a situation where this is critical, but

further experimentation may be needed. Finally, if the designer wants to redefine

a block which is deeply embedded in a block composition hierarchy, this may lead

in some cases to the redefinition of all the calling blocks within this hierarchy.

The solution in this case is to create new block specifications (in the paper called

permanent modifications). This does not affect pre-existing workflows. This kind of

approach is akin to creating a library of block versions, whose management is also

to be considered.
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Appendix — Language Syntax

The language syntax follows closely a LISP style, with the exception of the definition

and use of a block, which would correspond to a function definition and function call

in LISP. The difference is that in our language there are two classes of parameters

for blocks, exported events and state variables, and we decided to group them

separately, for clarity’s sake.

Below is the grammar for our workflow definition language. The symbol ( is

part of the language, but not to overload the rules we wrote them as ( instead of

‘‘(’’.

task ::= (DEFTASK task-name interface path)

block::= named-block | anonymous-block

named-block ::= (DEFBLOCK block-name block-definition

block-definition ::= interface

[(REDEFINESINTERFACE block-name interface

[(REDEFINESTASK task-name interface tpath)]

[(REDEFINESBLOCK block-name block-definition )]

[(EXTERNAL-EVENTS {event-name}* ) ]

(BODY body-form )

[(EH-RULES {eh-rule}*) ] )

interface ::= ({event-name}* ) ( {state-var-name1}* )

state-var-name1 ::= {+ | ∧} {state-var-name}

body-form ::= ({task-name | block-name} interface)

| anonymous-block

| (SEQ {body-form}+)
| (PAR {body-form}+)
| (LOOP body-form)

| (PARLOOP number-of-instances body-form)

| (RAISE event-name)

| (CALL {application-function+args})
| (EXIT)

| (STOP)

state-var-name2 ::= [?] {state-var-name}



January 9, 2003 15:37 WSPC/111-IJCIS 00055

34 M. J. Blin, J. Wainer & C. B. Medeiros

anonymous-block ::= (BLOCK block-definition)

eh-rule ::= (event-moment condition action)

event-moment ::= event-name | event-expression

event-expression ::= (EOB [block-name][+time-expression) |

(BOB [block-name][+time-expression)

condition ::= event-name

| (ACTIVE? block-name)

| (STOPPED? block-name)

| (TERMINATED? block-name)

| (AND {condition}+)
| (OR {condition}+)
| (NOT condition)

action ::= ({task-name | block-name} interface)

| (STOP [block-name] )

| (EXIT [block-name] )

| (RESUME block-name)

| (RAISE event-name)

| (SEQ {action}+)
| (CALL {application-function+args})
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