
October 15, 2003 19:4 WSPC/111-IJCIS 00080

International Journal of Cooperative Information Systems
Vol. 12, No. 4 (2003) 411–440
c© World Scientific Publishing Company

A FULLY DISTRIBUTED ARCHITECTURE FOR LARGE SCALE

WORKFLOW ENACTMENT

ROBERTO SILVEIRA SILVA FILHO

School of Information and Computer Science

University of California, Irvine, 92697-3430 Irvine, CA, USA

rsilvafi@ics.uci.edu

JACQUES WAINER∗ and EDMUNDO R. M. MADEIRA†

Institute of Computing, University of Campinas, 13083-970 Campinas, SP, Brazil
∗wainer@ic.unicamp.br

†edmundo@ic.unicamp.br

Standard client-server workflow management systems are usually designed as client-
server systems. The central server is responsible for the coordination of the workflow ex-
ecution and, in some cases, may manage the activities database. This centralized control
architecture may represent a single point of failure, which compromises the availability
of the system. We propose a fully distributed and configurable architecture for workflow
management systems. It is based on the idea that the activities of a case (an instance
of the process) migrate from host to host, executing the workflow tasks, following a
process plan. This core architecture is improved with the addition of other distributed
components so that other requirements for Workflow Management Systems, besides scal-
ability, are also addressed. The components of the architecture were tested in different
distributed and centralized configurations. The ability to configure the location of com-
ponents and the use of dynamic allocation of tasks were effective for the implementation
of load balancing policies.

Keywords: Large-scale workflow management systems; fully distributed workflow archi-
tectures; CORBA workflow implementation; and mobile agents.

1. Introduction

Workflow Management Systems (WFMSs) are used to coordinate the execution of

a vast set of cooperative applications ranging from business processes, such as loan

approval and insurance reimbursement, to large-scale software development projects

and manufacturing control systems, to list some examples. Such processes are rep-

resented as workflows: computer interpretable descriptions of activities (or tasks),

and their execution order. A workflow can also describe the data available and

generated by each activity, parallel and optional execution paths, synchronization

points and other aspects of the execution of complex inter-dependent cooperative

tasks. Some of these aspects include policy constrains such as when the activities

should be executed, a specification of who can or should perform each activity, and

which tools and programs are needed during their execution.8

411

October 15, 2003 19:4 WSPC/111-IJCIS 00080

412 R. S. S. Filho, J. Wainer & E. R. M. Madeira

Many academic prototypes and commercial WFMSs are based on the stan-

dard client-server architecture defined by the WFMC (Workflow Management

Coalition).27 In such systems, the workflow engine, the core of a WFMS, is ex-

ecuted in a logically centralized server that typically stores both the application

data (the data that is used and generated by each activity within the workflow),

and the workflow data (its definition, the state and history information about each

instance of the workflow, and any other data related to its execution). Even though,

in most of such systems, different people or processes in their local hosts execute

the workflow activities, a central server coordinates the control and data flow.

There are many reasons for a more distributed architecture. Firstly, workflow

processes are inherently distributed: different processes may run in different parts of

the organization (the travel reimbursement processes are different when performed

in the North American branch and in the South Asian branch), or increasingly,

a single case may run in different parts of the organization (part of a marketing

campaign is executed at the headquarters of a company, whereas some of the ac-

tivities of the campaign are executed in the South American branch, and the post

production in the European Branch). In both cases, a single workflow server is in-

appropriate. Secondly, if the number of workflow cases increases, the central server

may become a bottleneck, or even a single point of failure, that risks the whole

business operation.1 A distributed architecture is not the only solution for both

problems: interoperability among different workflow systems can solve the issue

of geographical distribution among processes and among activities within a sin-

gle process; improvement in hardware and architecture (such as grid computing)22

are practical solutions for the scalability problems. However, distributed workflow

architectures are also potential solutions for both problems.

Different approaches, ranging from the completely centralized to radically dis-

tributed architectures have been studied in the literature.7 In commercial work-

flows, however, more pragmatic solutions such as replicated servers and computer

clusters are used to address the required levels of scalability and fault tolerance in

organizations such as banks and multi-national corporations.

In a previous work, we introduced the WONDER (Workflow ON Distributed

EnviRonment) architecture,20 a radically distributed and configurable WFMS sys-

tem, based on the mobile agent paradigm. A mobile software agent, or an agent for

now on, is defined as an object that migrates through many nodes of a heteroge-

neous network of computers, under its own control, in order to perform tasks using

resources of these nodes.5,11

In the WONDER architecture, the control, the storage of data, and the execu-

tion of activities are completely decentralized. Moreover, the component configura-

tion is completely customizable and the workflow execution can be distributed over

the many hosts of an enterprise computer network. WONDER provides a highly

configurable and fine grained suite of components that can be arranged in different

distribution scenarios, ranging from a complete centralized setting, where all the

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 413

components are collocated in the same host, to a completely distributed setting,

where each component is located at each host of a distributed system.

In this paper, we explore the use of different distributed workflow components

configurations, analyzing its impact in the overall scalability of the workflow man-

agement system.

1.1. Scenario

To illustrate our approach, consider the following simplified example. ABC Fi-

nancial Services has branches operating in many states, which are responsible for

analyzing and approving thousands of finance applications on a daily basis. Loan

applications represent a significant set of these proposals. Hundreds of requests are

received every hour. These requests are issued electronically in the form of stan-

dard web forms, providing information such as the loan amount requested, the

client information and the purpose of the loan. Each request (or case) is analyzed

separately, in a different loan application process. Once received, the form is routed

to an analyst in the credit department, who checks the client’s credit history. This

usually requires access to different credit databases. Once approved, the request is

forwarded to another analyst, in the finance department, who calculates the appro-

priate interest rate and issues a personalized loan contract to the client. If a client

has an insufficient credit history, the loan application can be rejected or, according

to the analyst’s criteria, an adjusted proposal can be issued, with a reduced credit

amount. In both cases, a final proposal is then issued to the client, who can accept

or reject it. If the proposal is accepted, a loan manager in the local branch of the

company processes the request and issues a payment order in the name of the client.

At the end, whether successful or unsuccessful, the whole process is archived for

future reference. It is important to highlight that the activities can be performed in

company branches scattered over different parts of the country. For example, while

the credit department is in city A, the client branch may be in city B, and the

services providing credit information may be hosted in a different country.

The workflow for this scenario is represented in Fig. 1 as follows. The Check

credit history activity is subdivided in 3 activities in a sub-workflow that checks

different financial institutions.

1.2. Terms

We will use, from now on, the following definitions. A process definition or a plan

is described in terms of the WFMC primitives: sequencing, and-join, and-split, or-

join, and or-split.27 A case is an instance of a process. Thus, if loan approval is a

process, then “Joe’s Friday $10,000.00 loan request to buy a car” is a case. Processes

are defined in terms of activities or tasks (boxes in Fig. 1), which represent a set

of atomic actions performed by a single person or by a program. Activities can be

executed sequentially or in parallel (in AND — mandatory — or OR — optional —

branches). Role is the generic description of a set of abilities required to a person

October 15, 2003 19:4 WSPC/111-IJCIS 00080

414 R. S. S. Filho, J. Wainer & E. R. M. Madeira

���������	
�

�	�
��
�

������

����������

������������
���

���������

�����������
	���

��

���

��
���	��
�

���������

��������
�

�������

�	���	�������

����	�����������

������	
�

�����	��

�����	��

������	��� �����

���
�������

������ �!�

Fig. 1. Loan approval process description.

in order to perform an activity. Thus, credit analyst, finance analyst and branch

manager are roles. People or programs that perform the activities are called users

or actors, and a particular user can perform many roles. If the user is a person,

she has a preferential host, a computer (or workstation) to where all her work

related notifications and activities are sent. In particular, the notifications are sent

to her task list.

1.3. Large-scale WFMSs issues

Because it is used to automate and coordinate intrinsically multifarious collabora-

tive activities, the set of requirements that WFMSs must address is very broad. In

particular, a comprehensive list of such requirements is discussed in Ref. 6.

In this paper, we focused on providing support for the following key requirements

of large-scale WFMSs:

Scalability: The WFMS should not have its performance degraded due to the

increase of: concurrent processes, cases or activity instances. It should also support

a large volume of application data and/or large set of actors.

Failure recovery: The WFMS should be able to detect and deal with both

software and hardware failures with the minimum user intervention as possible.

Availability: The system must not become unavailable or unreachable for long

periods of time, especially due to failures or use load.

Monitoring: The WFMS should be able to provide information about the

current state of all cases (and their activities) in execution.

Traceability: History (trace) information of currently executing or already

terminated cases must be provided.

Interoperability. Different WFMS should be able to inter-operate through

both inter- and intra-organizational boundaries.

Support for external applications. The execution of a particular activity

may require external tools (such as word processors, spreadsheets, CAD systems,

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 415

expert systems, and so on). The WFMS should be able to interface with these

applications and determine when these tools have been terminated, managing the

data read and produced by these applications.

Load Balancing. The human work as well as the processing power of the

system as a whole should be allocated in a way that prevents excessive or idle use

of such resources.

1.4. Paper description

The next section briefly presents the main components of the WONDER archi-

tecture. Section 3 discusses the implementation of this architecture using CORBA

(Common Object Request Broker Architecture). In Sec. 4, the process language is

discussed. Section 5 presents results obtained during the execution of performance

tests with a system prototype, Sec. 6 describes related work and Sec. 7 presents

some conclusions.

2. The Distributed Model

In general terms, the WONDER architecture is based on the idea of combining the

workflow engine (or scheduler) with the task executor components. This approach

removes the need of a central authority that orchestrates the workflow execution,

which results in total decentralization of control, allowing the independent move

of the task executor component. In this schema, the case (a workflow instance) is

enacted by a set of mobile agents (or components) that migrate from host to host to

perform the case activities. The agent encapsulates both, the case data (forms and

documents) and the plan for that case (the process description). The mobile agent

has its own micro workflow engine and moves itself to a particular user’s host once it

determines, typically at runtime, the user/host that will perform the next activity.

Once the activity is finished, the agent identifies another user to perform the next

activity and moves to his/her host carrying the data produced in that process step.

The use of mobile agents provides autonomy and processing load distribution to

the system, coping with the scalability requirement, since there is no central control

or data server, and there is no performance bottleneck. It also allows the dynamic

allocation of tasks to actors, coping with load balancing and, since it does not rely

on any central control, and the execution is scattered over many hosts, it improves

the fault tolerance of the whole system.

Some additional components were defined in order to support the operation of

the mobile task executor agent and to deal with the other requirements. The plan

is a generic description of the workflow process and does not specify a particular

user as the performer of an activity. Instead, it defines activity executors in terms of

roles. Consider the credit approval activity in our example; the plan will state that

a “credit evaluator”, and not a specific actor, should perform the activity of “credit

approval”. In order to cope with this requirement, a role coordinator component

October 15, 2003 19:4 WSPC/111-IJCIS 00080

416 R. S. S. Filho, J. Wainer & E. R. M. Madeira

was defined. Each role coordinator instance contains information about a particular

role. In the example above, the case queries the credit approver role coordinator,

and asks about a user to perform that activity. Once the user is identified, the case

moves to that user’s preferential host.

Monitoring is also an issue in our architecture. How to determine, without broad-

casting, the current state of the case, composed of many activities scattered over

a computer network? This task is performed by many case coordinator component

instances that keep track of each specific case status as it moves along. Each time

the case moves to a new user’s host, it sends a notification to its particular case

coordinator, allowing this component to track the progress and current state of that

case.

Another important problem for the mobile agent architecture is failure recovery.

The distributed characteristic of the architecture introduces many failure-candidate

points, but keeps the failure isolated from other processes. What happens to the

case if the host where one of its activities is executing crashes? To deal with this

failure scenario, some caching policies were specified. In the even of a crash while

one activity’s case is executing in the current host, a persistent copy of its last

state is stored at the previous hosts visited by the activities of the case. As soon as

the failure is detected, the case coordinator elects another host/user to restart or

resume the process in a consistent state before the crash. Furthermore, in not very

reliable networks, to improve fault tolerance, the case coordinator may direct hosts

to transfer this information to a backup manager.

In its essence, the WONDER architecture is structured as a distributed hierar-

chy of monitoring and policy enforcement components that provides the support

framework for the migration and execution of the mobile workflow executors, im-

plemented as mobile agents. These auxiliary components correspond to the process

coordinators (there is one per process definition), the case coordinators (one per

case), the role coordinators (one per role), the backup manager(s) and others de-

scribed in the next section.

Even though our approach of decentralized components eliminates the bottle-

neck of traditional workflow systems, the use of distribution may increase communi-

cation among the distributed components. We feel that in the case of the WONDER

architecture, there is no significant increase in the amount of communication, as we

discuss below. The case coordinator manages one specific instance of a process and

receives very short asynchronous notifications from the mobile agents (activities).

These notifications comprise only the agents’ current status and destination host.

On the other hand, the backup manager may receive large amounts of data, but

this transfer is done asynchronously when network and server load permit. The only

standard servers, in a client-server sense, are the role coordinators, which receive

a query and must return an answer before the agent migration proceeds. However,

the respective amount of information exchanged also is small, involving the sending

of a short query and the return of a user identity as an answer. Therefore, since

message exchanging is small and asynchronous, the communication overhead is not

a problem.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 417

����������
	
�
�
��

�����
���

�������
����
��
�
�

�������
����
����
�

�������
����
���������

	
�
�
��

��
�����
	
�
�
��

��
���
�����

�����������
�
���� ���������

������

	
�
�
��

����������	
������

��������

 �
��
�� �
��
��

�
!�
��
��
����
��"
�
�#��
�
����

$����

����������
��

$����

�
����
���$�����

	
�
�
��

"
�
����
��
��

�%
�
$
��
���������

	
�
�
��

Fig. 2. The main components of the architecture.

2.1. Main Components of the architecture

The architecture, represented in Fig. 2, is composed of autonomous distributed

components, which are described in the next subsections.

2.1.1. Process coordinators

Each process coordinator instance is responsible for the creation and management

of case coordinators that monitors instances of a particular process definition. Upon

a request for a new loan approval workflow, for instance, “the $2,000.00 loan appli-

cation for the purchase of a computer”, the “loan approval” process coordinator will

create a new case coordinator for this particular request. This case coordinator will

be responsible for the management of these particular loan application activities

during the life time of such process instance.

Each process coordinator keeps track of all of its corresponding case coordinator

instances in execution, being responsible for location, initialization, changing and

termination of these cases. For example, if the general definition of a process is

changed, say to introduce a new pre-approval credit activity, the corresponding

process coordinator will update its own definition and will adopt these changes to

all new cases to come.

2.1.2. Case coordinators

Each case coordinator tracks and manages the execution of a particular set of

activities representing a process instance. Each case coordinator is responsible for

detecting activities failures and for coordinating their recovery procedures. They

execute the finalization procedures of their case, collecting cache information left

by activity managers in the hosts of the system. They also collect and store the case

data in the history managers. Each case coordinator also answers queries about the

current state of a case, notifies the process coordinator when a case is terminated,

as well as other management procedures.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

418 R. S. S. Filho, J. Wainer & E. R. M. Madeira

Each case coordinator creates a synchronization activity for each and-join spec-

ified in the process definition, adding their addresses (or names) to the plan used

to configure the first activity of the case (see Sec. 2.1.4).

A new case coordinator is created for each new process instance. Its location

in the network can be specified at creation time, by the process coordinator, to

comply with load balance policies. When the case finalizes, the case coordinator is

terminated.

2.1.3. Role coordinators

Each role coordinator is a specific resource locator component. It is responsible for

the identification of users qualified to perform a particular activity. It also periodi-

cally collects information about a particular set of users, such as the activities that

they are currently executing and their current work load. With this information, a

“finance analyst role coordinator” can answer queries like “Who is the least loaded

analyst?” or “Who are the available analysts?” There is one role coordinator per

role in the system.

Each role coordinator may also have access to the History Managers (which

store information about completed cases), and to corporate databases. With the

help of these servers, the role coordinator can answer queries like: “Who is the

analyst with the most experience in that kind of loan?” or “Who was the analyst

that approved that line of credit?”

In summary, the role coordinators are components responsible for selecting the

user (or users) that will perform a particular activity. There is not much literature

on user selection policies, but we can anticipate some useful policies, all of which can

be computed with the proposed architecture: “choose randomly among the users

that can fill the role”, “choose the least loaded user”, “choose in a round-robin

way”, and so on. We can conceive other policies that use historical information

about all cases, such as choosing the user with most experience with that customer,

for example.

2.1.4. Synchronization activities

And-joins and Or-Joins are a particular problem in our workflow model based on

mobile agents. Each join of a case must be created before the case begins, otherwise

a mobile agent would not know where to go when it needs to synchronize with other

mobile agents executing in parallel branches of the same case. The synchronization

activities of a case will wait for all notifications (and-join) or the first notifica-

tion (or-join) from its preceding activities before starting the following (output)

activities. For example, in the workflow of Fig. 1, synchronization activities have

to be created representing the or-joins before the activities “get client approval”

and “finalize and archive process”. During these or-joins, once one of the two pos-

sible mobile agents of this example has finalized and moved its data and state to

the synchronization activity, this component merges all case data, and composes a

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 419

new single agent that will execute the next activity. In an and-join synchronization

activity, all input agents have to arrive before triggering the sequencing of the next

activity.

A synchronization activity may also wait for other synchronization signals, such

as external events. Although that is not contemplated in the WFMC definition,

one can conceive that, for example, a meeting can only take place after all its

preparatory activities are completed (the input activities for the and-join), but it

may also have to wait for an external event that informs that the meeting room is

available. In this case, the synchronization activity would also wait for this external

event notification before proceeding to the next activity.

The synchronization activities are created specifically for each case, being deac-

tivated when the case is finalized. Errors related to the failure of synchronization

activities in the middle of a case, as well as delays or the lack of synchronization of

parallel executing branches, are handled by the case coordinator.

2.1.5. Task lists

The user interface is implemented as a task list, similar to an e-mail client. Each

task list notifies the user of new activities that she is supposed to perform. This

allows the user to accept or to reject the incoming activity according to the current

specified policy. Furthermore, the user task list is her main interface to the WFMS

itself. It allows the user to customize its preferred external applications, the policies

for sorting the coming activities, her preferential host, and so on. It also monitors

the user activity and collects her current workload state, forwarding this information

to the role coordinators. The task list also provides access to the user workspace,

the set of files and data necessary to execute each activity. There is one task list

component per user in the system.

2.1.6. History manager

The history manager (or managers) is (are) front-end(s) for the repository of com-

pleted cases. When a case coordinator finishes its work, all relevant data used by

the case are stored in the history repository. Such procedure allows for the cases to

be audited and the memory of the cases to be archived for further review.

2.1.7. Backup manager

The backup manager (or managers) is (are) front-end(s) for the repository of the

intermediary state of the active cases. As we mentioned before, a copy (cache or

backup) of the mobile agent execution state and the workflow data are stored in

some of the hosts where the activity manager executed. These hosts are neither

trusted to store this information indefinitely, nor to be active when this cached

data is needed (in recovery procedures, for example). The backup manager runs in

a more reliable and powerful machine. It collects the cached data left by the mobile

October 15, 2003 19:4 WSPC/111-IJCIS 00080

420 R. S. S. Filho, J. Wainer & E. R. M. Madeira

agents, under the command of the case coordinator. Once the backup is performed,

the state information can be erased from the users’ hosts.

There may be many backup managers in the systems, one per process, one for a

group of processes, or many for a single process. The identity of the backup manager

and the moment to perform the backup is parameterized in the case coordinator.

This decision is based on many parameters such as network and system loads. Once

the backup is made, the user host can erase the past state information of that case.

2.1.8. Activity managers

Each activity manager is a mobile agent that executes and conveys the case data

throughout the network of user’s hosts. The mobile agent is implemented using a

weak migration strategy15: there is no mobility of binary code between hosts, only

the agent execution state and the necessary case data are transferred between hosts.

Each time it migrates, the activity manager coordinates the execution of an

instance of an activity for a particular case. When the activity manager detects

the end of the current activity, it initiates the migration process. Using the weak

migration process, the current activity manager creates an instance of itself in

the preferential host of the user that will perform the activity. This new activity

manager instance is, then, configured with the next activity specific data, and the

current activity case state.

Only the necessary data is transferred from one activity to another. The plan

has the last location of all the case data in the form of links. This allows the current

activity to fetch the necessary data for its execution. Once modified, a copy of the

piece of data is stored in the local host of the current activity and its new location

is updated in the plan.

Once created, the next activity is started at the point that the previous one had

stopped. The previous activity manager is terminated and has its state and data

saved to a special repository in the local host. The plan interpretation is resumed

in the new host and the activity is performed using the appropriate applications,

through the use of application wrappers. The recent created activity becomes the

current one. This activity manager waits until the user finishes the activity exe-

cution and then computes who should execute the next activity (by interpreting

the plan that came along with the case state and by querying the appropriate role

coordinator). If the next activity is to be performed by a user, the activity man-

ager sends the appropriate information to that user’s task list, notifying the case

coordinator that the activity has ended and who is the user selected to perform the

next activity. After that, it transfers the case information to the recently created

activity manager and the workflow execution is resumed. This process is repeated

until the end of the case.

At the beginning of a case, the case coordinator creates the first activity manager

for that process instance, which starts executing. This agent can clone itself in order

to follow AND branches in the workflow.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 421

2.1.9. Application wrappers

An application wrapper is a component that controls the execution of a particular

invoked application (office, CAD, database tools and so on). It launches the appli-

cation with its necessary initialization parameters, together with the activity data,

collecting the application output. It is a bridge between specific programs and the

activity manager. When the task finishes, the Wrappers notify the corresponding

Activity Manager that collects the generated data in the user workspace.

2.1.10. Gateway activities

In order to address the WFMS Interoperability requirement, the gateway activity

component was defined. It is responsible for bi-directional conversion of workflow

data and control between two different WFMSs, defining a special bridge to external

applications in the WONDER model. This component can, for example, interme-

diate the communication between two or more WFMSs using the Wf-XML data

interchange format standard.26

3. CORBA Implementation

CORBA16 was chosen as the middleware to support the WONDER architecture

implementation, based on its ability to integrate heterogeneous applications and

its high-level support for distributed object management whose use in the imple-

mentation of WFMSs is discussed in Ref. 7. CORBA also provides a set of services

and communication transparencies that improve the distributed applications de-

velopment. It specifies an object-oriented distributed bus, providing transparencies

of access (independence of hardware, language or operating system) and location

(independence of the host where the object is executing). It offers object-oriented

programming advantages, such as inheritance, information hiding, reusability and

polymorphism. It also enables the use of legacy applications, which were devel-

oped for different hardware and software platforms. This is possible through the

definition of the IIOP (Internet Inter Orb Protocol) and the CORBA IDL (Inter-

face Definition Language) that allows the generation of interfaces to a large set of

programming languages.

Each component of the architecture, described in the previous section, was

mapped to a particular CORBA object. In order to fully support our approach,

some additional services had to be implemented on top of the standard CORBA

implementation. A more detailed description of this mapping is described in Ref. 20.

3.1. References to CORBA objects

The CORBA 2.0 standard IORs (Interoperable Object References) are not fully

adequate for our application. IORs uniquely identify an object in the CORBA

name space. These references are dynamically allocated by the ORB and include

October 15, 2003 19:4 WSPC/111-IJCIS 00080

422 R. S. S. Filho, J. Wainer & E. R. M. Madeira

information such as the IP address and port number that respectively locate the

access point to an object interface in a particular host.

Since the total execution time of a case may least many days, or even months

(in a large software development process, for example), one cannot assume that, for

a whole case execution lifecycle, an object (such as the synchronization activities or

case coordinator) will be active, on the same port it was created, having the same

IOR. Objects need to be deactivated when inactive for a long time, in order to

allow the execution of other processes, or even due to host and connection failures.

Recently, the OMG (Object Management Group) finished the specification of

the object persistency service. However, by the time of the implementation of the

WONDER system, such service was not available. Thus, our own persistency service

had to be developed. In our scheme objects are locally stored and identified using

the following naming scheme: [host, process, case, actor, activity, file] for files; [host,

process, case, actor, activity] for activities; [host, process, case] for case coordinators;

[host, process] for process coordinators; [host, backup-server] for backup managers,

and so on.

In order to provide transparent object persistence, each host has a special com-

ponent called Local Object Activator (LOA). It executes as a hook in the WONDER

runtime environment daemon (orbixd — OrbixWeb locator daemon) and interme-

diates the object creation (bind), activation, deactivation and persistence, saving

the object state and data in a local reserved disk area (the object repository).

For example, the case coordinator for a $500.00 loan approval (case C4375), of

the process “loan approval” (process P12), in the host abc.def.com is identified

by (abc.def.com, P12, C4375). To access this object (or formally to bind to this

object), a process must send the reference (P12, C4375) to the LOA in the machine

abc.def.com, which will activate and restore the state of that case coordinator.

This activation uses the information previously stored in the object repository. The

LOA then returns the new IOR of the restored object to be immediately used.

3.2. CORBA services

Many CORBA based Workflow architectures use a subset of the OMA CORBA

Services.17,24 The most commonly used services are the Naming, Event, Noti-

fication, Security and Transaction. Due to the large-scale requirements of the

WONDER architecture, and its mobile object approach, some inadequacy points

of these services came up. These issues are discussed as follows.

Some workflow implementations use the CORBA Transaction Service to co-

ordinate the data flow among many different servers.17,23 This approach creates

a fail-safe data transfer protocol among different activities, providing a set of

“transactional communication channels”.

Large WFMSs usually require transactional semantics, but may not always

require distributed transactions.19 In the WONDER architecture the Activity

Manager peers enforce a transactional semantic when the data is transferred. All the

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 423

data and the case state are transferred simultaneously, in a single operation invo-

cation, from one activity manager to another. During splits, this process is iterated

for each activity in the branch. Hence, the CORBA method invocation mechanism

is sufficient for our implementation. Errors at this time are handled using retrans-

mission policies. If some error occurs during the remote operation invocation, due

to a temporary link crash, for example, the ORB throws a SystemException. This

exception is caught and resolved by the data sender which, according to the failure

reason, can result in another method invocation when the link is up again. If failure

persists, the case coordinator carries on the error handling procedure, creating an

alternative path to be followed. This simple approach dispenses a more complex

control implemented by a transaction server.

The CORBA Event and the Notification Services decouple the producer and

consumer objects, implementing a message queue. These messages can be made

persistent in some COSNotification proprietary implementations.18 This safe event

channel, however, increases the failure detection complexity: how can an activity

manager identify the failure of a case coordinator if their communication is decou-

pled by the notification service?

The WONDER architecture does not rely on any standard CORBA naming

service because of the IOR problems described in Sec. 3.1. Instead, each host exe-

cutes an activation agent that resolves markers (OrbixWeb human-readable object

names) to IOR object references, working as a local name service. This activation

agent, operating with the LOA, is also used to implement the objects activation

and deactivation, besides their persistence. The activation agent is implemented

using the OrbixWeb orbixd daemon and an OrbixWeb LoaderClass hook, where

specialization implements the LOA object.

3.3. Execution scenarios

In this section, some execution examples are presented. They emphasize the be-

havior of the main objects of the architecture, showing their communication and

interaction. For simplicity, we will not represent the interaction with the LOA object

in our diagrams. This interaction occurs each time an object is created, restarted or

reconnected. The scenarios are described using the UML sequence diagram notation.

3.3.1. Activity sequencing

Figure 3 presents a typical example of an activity sequencing (or agent migration)

procedure. Generic activity and case coordinator names are used. When the activity

execution ends (sending messages 5 and 6), the activity manager AM2 starts the

new activity sequencing process. The case coordinator CC1, executing in a different

host, receives an “end of the activity” notification (6). The AM2 activity interprets

the process plan and determines which activity will be performed next. The AM2

queries RC1 (the role coordinator for the role to execute the next activity — message

8), which selects an appropriate user for that task. The AM2 notifies the user about

October 15, 2003 19:4 WSPC/111-IJCIS 00080

424 R. S. S. Filho, J. Wainer & E. R. M. Madeira

�

�
�

�
�

� ���������
�	�
�
��
��

� � � � � � �

� � �����
�
�� � � � � � �
� � � ������������

����
����
� � � � �

� � � �
������������	
��

� � � � �

� � ����
�
���
���

	��
��
��

� � � � � �

� � � !�����������

�
�
����

� � � � �

� � � �
"�����������

��#���	
����

� � � � �

� � � �
$��%����&�����

� � � � �

� � � � � '�%����(���
�� � � �
� � � �)����������

�	�
�
��
��
� � � � �

� � � � � � �����������
���	
	���

� �

� � � � � ��������� � � �
� � � �

����*	�����++�
� � � � �

� � ����,
�-
���
./�0���12�

� � � � � �

� � �
����3��(���
��

� � � � � �

� � � �!�����(���
�� � � � � �
� � � �"���--�

�	�
�
��
��
� � � � �

� � � � � � ����
�����
���	
	���

� �

� � � � � � �
�'����
�
��

� �

� � � � � � � �
�)������
������

�����
����

�

� � � �������������

�
�
��
����

� � � � �

� � � �
��������
��

� � � � �

�
���������

� � �
���������
�
��

� � � � �

�
������
�
��

� � � � � � � �

�4���	�
�
��
4�������

&�����
56��5��0�

6
���
�4���	�
�
��

4�������
77��7����

7���-
������
�7����8��

7���-
������
56��5��0�

6
��� &�����

�4���	�
�
��
4�������

9���9
�����
4�������

Fig. 3. Activity sequencing diagram.

the new activity. This message is sent to TL2 (10). If the selected user accepts the

activity, the migration procedure starts (10 to 13). The activity manager AM2

requests the creation of the next activity manager, AM3, in the user’s preferential

host (13), and transfers all necessary data to this object (16). Since AM2 does not

have all the necessary pieces of data to send to AM3 locally, it collects the necessary

data files from AM1 (14 and 15). The data is wrapped in a data container together

with the case state. Finally, the AM3 activity manager is inserted in the User2 task

list (17). It is initialized (19) and the AM2 activity is finalized (21 to 23).

For performance reasons, only data necessary for the created activity is

transferred. The remainder data are passed as links, in order to be retrieved by

subsequent activities.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 425

��7�������
/7���
��

� � � � � � �

� ���**	�����++� � � � � � �
� � � � � � � �
� ������(���
�� � � � � � �
� �

�����
�
��
� � � � � �

� � � � � � � �
� � ���:; ���������

<�
��
������18��=�
�
**	�����++�

� � � �

� � � � � � � �
� � !�%����&����
�� � � � � �
� � � "��%����(���
�� � � � �
� � $����������

�	�
�
��
��
� � � � �

� � � � ���������� � � �
� � � �)������� � � � �
� � �

����**	�����++�
� � � � �

� � � � � � � �
� � �������(���
�� � � � � �
� � �����--�

�	�
�
��
��
� � � � �

� � � � ������
�
�� � � �
� � � � � � � �

>7��>��	���

7���-
������&�����

77��7����
7���-
������

�7����8��
7���-
������

56��5��0�
6
��� &�����

9���9
������
4�������

�������	���
�
?��
���	��

�4���	�
�
���
4��������

Fig. 4. Case creation sequence diagram.

3.3.2. Case creation

The case creation procedure, presented in Fig. 4, is initiated by a user (User 1)

request in the process coordinator PC1 interface (1). This request results in the

case coordinator CC1 creation and configuration (2 and 3). The setup process starts

and the CC1 creates the synchronization activities for the case (5). After querying

the RC1 role coordinator for a user to perform this activity (User 2), and after the

activity acceptance by this user (8 to 10), the CC1 creates the first case activity

AM1 (11 to 14) and the case starts.

3.3.3. Activities and-split

The and-split is implemented as a parallel sequence of activities; the procedure

described in Fig. 3 is iterated for each activity in the branch. The newly created

activities follow independent paths until a synchronization activity (and-join) is

found.

3.3.4. Activities synchronization

The synchronization activities are created by the case coordinator, and their local-

ization is placed in the process plan at the beginning of the case. When an activity

ends, and its following activity is an and-join, the plan will have a reference to this

synchronization activity address.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

426 R. S. S. Filho, J. Wainer & E. R. M. Madeira

9

1: SetData()

2: Synchroniz()

3: SetEvent
(finish)

4: SetData()

5: Synchroniz()

6: SetEvent
(finish)

7: Save() 9:QueryUsers()

 8: Exit() 10: Suggest
Activity()

12: Save() 11: Accept

13: Exit() 14: True

15: SetEvent
(sequencing)

16:<<Create>>

17: SetData()

18: AddActivit()

19: Init()
20: SetEvent
(finish)

22: Save()
21: SetEvent

(started)

 23: Exit()

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List

User2
SA4:Synchro

nizationAct
AM1:Activity

Manager

AM2:Activity
Manager

AM3:Activity
Manager

Figure 5. An and-join synchronization diagram

3.3.5. Case Finalization. The Figure 6 presents the se-

quence diagram of a case finalization procedure. The case

coordinator CC3, by the end of each case, removes the

data stored at each host that executed at least one activity

of the case, as well as all case data stored in the backup

manager(s) (9, 11 and 13). An execution summary con-

taining relevant data for future queries is stored in the

History Manager HM2 (12).

 1: SetEvent

(finish)

 2: SetEvent
(finish)

 3: Save()

 5: Garbage
Collect()

 4: Exit()

 6: *[for each
activity in the
case]

bind()

7: GetData()

8: Exit()

 9: Remove
Data()

 10: Exit()

 11: Remove
Object()

12: SetData()

13: Remove

Data ()

 14: Exit()

AM80:Activity

Manager

?:Activity

Manager
CC3:Case

Coordinator

PC2:Process

Coordinator

HM2:History

Manager
BM2:Backup

Manager

Figure 6. A sequence diagram of a finalizing case

3.3.6. Failure Recovery. The case coordinator controls

the failure recovery process. Whenever an activity stops

sending notifications, or a host failure is detected during

periodic polling of the most recent activities in the case,

the case coordinator starts the recovery process. It consists

in: halting the current process (current executing activi-

ties), restoring the system to a previous stable state, modi-

fying the case process definition (adding compensation

activities), and finally resuming the case. The Case Coor-

dinator manages this routine using data stored in the ob-

ject repository of each host, and in the backup managers

scattered over the system.

Failures in the synchronization activities of a process

instance are handled in a similar way. A new synchroniza-

tion activity is created in another available host of the

system and the agents are notified of the change. Their

process definition is then updated to reflect the change.

One problem that may occur is the failure of the synchro-

nization activity in a partially synchronized state. In a

branch with two activities, for example, the first may have

already synchronized when the activity fails. In this case,

the case coordinator will use the cached information in the

previous host (of the synchronized activity) to reinitiate

the synchronization process of this activity, after the crea-

tion of the new synchronization activity.

4. Process Description Language

As described in previous sections, the workflow man-

agement engine is a component of the activity manager

that interprets the plan for the current case. The plan is

described using a LISP-like language called PLISP (Proc-

ess LISP). Since the central research question of the paper

was to determine the behavior of the architecture compo-

nents and the overall system in different distributed con-

figurations, a simplified process language was defined.

PLISP supports the basic workflow control constructs

as sequences and splits (joins are implicit). It also defines

activities and its components: wrappers and data elements.

The activity definition allows the optional specification of

the location (hostname) where it will be created, the role

or the user to perform it, a custom query to be performed

in the role coordinator, a priority value, a deadline, a short

description and a set of wrappers to execute. Each wrap-

per can define a set of data elements created, read and

modified by it. An example template is presented in

Figure 7.

An auxiliary bootstrap application was also imple-

mented in order to initially load the case, role and process

coordinators in the hosts specified in the boot-up script.

Fig. 5. An and-join synchronization diagram.

The synchronization procedure involving the activities AM1, AM2, and SA4

is described in Fig. 5. During this synchronization process, each activity manager

notifies the synchronization activity SA4 and the case coordinator CC1 (2 and 3).

After both activity managers (AM2 and AM1) have notified SA4, it starts the

following activity in the standard way as described in Sec. 3.3.1. As usual, CC1 is

kept informed of the progress of the case, manages the case and handles its failures.

3.3.5. Case finalization

Figure 6 presents the sequence diagram of a case finalization procedure. The case

coordinator CC3, by the end of each case, removes the data stored at each host

that executed at least one activity of the case, as well as all case data stored in the

backup manager(s) (9, 11 and 13). An execution summary containing relevant data

for future queries is stored in the History Manager HM2 (12).

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 427

� ���������
��
	��
���
�

� � �

���������
��
	��
���
�

� �������	
� � �

���2��3�$��
)�..���	
�

� ������������������"��	
� � �

� ���45���������
����������
�����
����6��

�
3�
+	
�

� �

� �
���2������	
�

� � �

� �
!���"��	
�

� � �

� � � ���-�7����
����	
�

�

� � � �
��������#���"��	
�

�

� ����-�7����
839���	
�

� � �

� �
�����������	
�

� � �

� �
����-�7����

�����	
�

� � �

� �
�������������"��	
�

� � �

%1!#�%��������

1�
�$���

:�%��������

1�
�$���
))��)����

)���+�
�����

;)��;������

)���+�
�����

<1��<�������

1�
�$���
=1��=��0�>�

1�
�$���

Fig. 6. A sequence diagram of a finalizing case.

3.3.6. Failure recovery

The case coordinator controls the failure recovery process. Whenever an activity

stops sending notifications, or a host failure is detected during periodic polling of the

most recent activities in the case, the case coordinator starts the recovery process.

It consists in: halting the current process (current executing activities), restoring

the system to a previous stable state, modifying the case process definition (adding

compensation activities), and finally resuming the case. The Case Coordinator man-

ages this routine using data stored in the object repository of each host, and in the

backup managers scattered over the system.

Failures in the synchronization activities of a process instance are handled in

a similar way. A new synchronization activity is created in another available host

of the system and the agents are notified of the change. Their process definition is

then updated to reflect the change. One problem that may occur is the failure of

the synchronization activity in a partially synchronized state. In a branch with two

activities, for example, the first may have already synchronized when the activity

fails. In this case, the case coordinator will use the cached information in the pre-

vious host (of the synchronized activity) to reinitiate the synchronization process

of this activity, after the creation of the new synchronization activity.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

428 R. S. S. Filho, J. Wainer & E. R. M. Madeira

4. Process Description Language

As described in previous sections, the workflow management engine is a compo-

nent of the activity manager that interprets the plan for the current case. The plan

is described using a LISP-like language called PLISP (Process LISP). Since the

central research question of the paper was to determine the behavior of the archi-

tecture components and the overall system in different distributed configurations,

a simplified process language was defined.

PLISP supports the basic workflow control constructs as sequences and splits

(joins are implicit). It also defines activities and its components: wrappers and data

elements. The activity definition allows the optional specification of the location

(workflow st1

 (options

 (garbageCollect false)

)

 (declarations

 (data data1

 "/home/msc98/931680/Data/teste1.doc" reference)

 (data data2

 "/home/msc98/931680/Data/teste2.doc" file)

 (data data3

 "/home/msc98/931680/Data/teste3.doc" reference)

 (data data4

 "/home/msc98/931680/Data/teste4.doc" file)

 (data data5

 "/home/msc98/931680/Data/teste5.doc" file)

 (application ap1

 "/n/dtp/StarOffice5.1/bin/soffice")

 (wrapper wp1

 ap1 (read data1 data2) (create data4) (modify data3))

 (wrapper wp2

 ap1 (read data3 data2) (create data5) (modify data1))

 (wrapper wp3

 ap1 (read data1 data2 data3) null (modify data5))

 (activity act01

 "iguacu" "role1" "role query" "priority" "deadline" "descript1" wp1)
 (activity act02

 "iguacu" "role2" "role query" "priority" "deadline" "descript2"

 wp1 wp2)
 (activity act03

 "iguacu" "role3" "role query" "priority" "deadline" "descript3"

 wp1 wp2 wp3)

) // declarations

 (sequence sq1

 act01
 (andsplit split1

 (sequence sq2 act01 act02)

 (sequence sq3 act01 act03)

)

 act02

)
)

Fig. 7. A PLISP process template example.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 429

(hostname) where it will be created, the role or the user to perform it, a custom

query to be performed in the role coordinator, a priority value, a deadline, a short

description and a set of wrappers to execute. Each wrapper can define a set of

data elements created, read and modified by it. An example template is presented

in Fig. 7.

An auxiliary bootstrap application was also implemented in order to initially

load the case, role and process coordinators in the hosts specified in the boot-up

script.

5. Tests

This section describes the tests performed with a prototype of WONDER. The

tests were designed to access the general behavior of the system, analyzing the

scalability, load balance and delay characteristic of the architecture when operating

in different distributed and centralized configurations.

For these tests, the core components of the architecture, including the Activity

Manager, LOA, Synchronization Activity, as well as the Case, Process and Role

coordinators were implemented. The remaining components were partially imple-

mented in order to mimic the behavior of the real system.

The system was developed in Java (Sun JDK 1.1), using the Iona OrbixWeb

3.1c framework, a CORBA 2.0 compatible ORB implementation.

The test was performed using SUN OS workstations. In special, pairs of similar

machines were used: two Sun Ultra 2 (252 MB RAM), two Sun Ultra Enterprise

(512 MB RAM), and two Sun SPARCStation 4 (64MB RAM). These hosts were

connected by a 10Mb Ethernet Local Area Network.

5.1. Overhead tests

In order to determine the influence of the WONDER runtime environment alone

in the overall performance of the machines, we defined an experiment in which a

case was executed in different distributed configurations. For this test, there were

no external applications invoked by the case, nor any additional case data being

used by the activities. For this set of tests, the time intervals described in Fig. 8

were collected. A comparative chart with the results is presented in Fig. 9. The test

consisted in the execution of a single and simple case, with 20 consecutive activities

in two different configurations, centralized and distributed. The test was repeated

for every pair of identical machines used throughout the tests. In the centralized

tests the activities of the case and the coordinators (process, case, role) all execute

in a single separated host. In the distributed tests, the activities were programmed

to alternate between a pair of equivalent hosts, so that consecutive activities execute

in different machines. The coordinators were configured to execute in a third host.

The initial motivation of this set of tests was to determine in a detailed way,

the delays associated to every phase of an activity life cycle in order to identify and

October 15, 2003 19:4 WSPC/111-IJCIS 00080

430 R. S. S. Filho, J. Wainer & E. R. M. Madeira

�������������	�
�����������
����������������
�����������	�������
���

�������������	�
����������
���������������
����������	�������
�����

��	���	���
	�����������

��	���	���
	��������

��������������

����������������

�����������	

����������

��!"#

$�	%
�	�"#

���	"#

Fig. 8. Activity times collected during tests.

compare the costs associated to the activation, deactivation and migration of the

activities.

The activity execution times were collected and computed by the case coordi-

nator. The time measures, described in Fig. 8, represent all the phases of the life

cycle of an activity. It is important to highlight that the negotiation, creation and

configuration phases require the exchange of messages between consecutive activi-

ties. The normalized results of the average times collected in this test are presented

in Fig. 9. The first three lines represent the distributed tests, while the remaining

represent single host tests.

In Fig. 9, the average activity execution times were normalized and presented

together. The first three rows represent distributed execution of cases using two

hosts, whereas the last ones represent centralized execution times for each one of

the hosts used in the tests.

Note that in these tests, no wrapper is being executed. In a real world applica-

tion, performed by humans, this time tends to least minutes, hours or even days.

The figure allows us to draw two main conclusions about the activity execution

costs:

• Casting aside the hardware performance differences, there is no expressive differ-

ence between the centralized and distributed relative proportions in the execution

times. This can be explained by the use of the same communication mechanism

(IIOP over Sockets) implemented by OrbixWeb, in both local and remote server

communications. The chart also reveals that the network latency is not very

expressive in the overall execution time.

• The time intervals spent in message exchange operations, negotiation and con-

figuration do not represent more than 20% of the total activity time. The biggest

latency is associated to the CORBA objects creation, specially the loading of

independent Java virtual machines that execute each one of the CORBA objects

involved in these tests.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 431

���������	
��������
�
�����������

������

����	�

�
����

������

������

�
����

����
�

���
��

������

����	�

�
�	��

�	�	��

�	��
�

���		�

���
	�

�	�
��

���
��

������

�
�
��

�
��	�

����	�

�
�	��

������

���	��

������

�����

���
��

��
��

�����

�����

���
�

�����

�����

�����

��	��

�����

�

� �
�

� �
�

� �
�

� 	
�

� �

�

�

�������

�������

������������

������������

��������

��������

��������

��
�����

��
����������

���
���

��������������

 �!��������

"�������

"��#�!$������

Fig. 9. Relative comparison among average distributed and centralized execution times. Single
case execution.

5.2. Scalability tests

The objective of these tests is to analyze how well the architecture scales when

parameters such as number of concurrent cases, size of data generated in the process

instance and the activity load are increased.

In order to assess these parameters, we devised three experiments. In the first

two tests, the number of concurrent cases simultaneously executing in the system

was gradually increased. These tests make use of three different distribution con-

figurations of the WONDER objects: in a single host, in two hosts or in four hosts.

In the case of two hosts, the next activity of each process would be executed by an

Activity Manager located in the other host, and the coordinators were randomly

distributed among the two hosts. In the four hosts configuration, all coordinator

components are located in a single host, and the activity managers of each case

are randomly distributed amount the remaining three hosts. In the test presented

in Fig. 11, the activities did not invoke external applications; in the second case

(Fig. 12), a highly CPU consuming operation (bubble sort) was executed during

each case step. Finally, the last test (Fig. 13) analyzes the influence of traffic of

data in the execution times of the cases.

In the first two tests, the concurrent cases were gradually initiated as described

in Fig. 10. In each one of the following tests, 20 concurrent cases, having 20 activities

each, were executed. The number of concurrent cases was incremented by 5 at each

test round. A delay after each case start was specified in order to avoid a sudden

overload of the system.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

432 R. S. S. Filho, J. Wainer & E. R. M. Madeira

���������� �������	�� �������
�� ����������

���������	 �������	�	 �������
�	 �������
��

���������
 �������	�
 �������
�
 ���������
����

����

���������	
��

��
���

��
�

Fig. 10. Initiation procedure of parallel activities.

��������	�
����

�������

�
�
�
��
�
�
�
�
��
�
�
��
��
�
��
�
�

����

����

����

���

����

�

��	���������

�������

�
������

��������

Fig. 11. Average case execution time. No wrapper execution. 1–20 concurrent cases. Error bars
refer to a 95% confidence interval.

Figure 11 presents the results collected during the execution of a case whose

activities are not CPU intensive. The graph indicates that the degradation in

performance for a single host configuration seems to be worse than linear, which

would indicate a scalability limitation of such configuration. The data for both

the 2 and 4 hosts configurations are consistent with a linear degradation of perfor-

mance with the increase of the number of concurrent cases, and curiously the 2 host

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 433

��������	�
����

�������

�
�
�
��
�
�
�
�
��
�
�
��
��
�
�
��
�
�

����

���

����

�

��	���������

�������

�
������

��������

Fig. 12. Average case execution time. Bubble sort of 1000 random numbers. 1–20 concurrent
cases. Error bars represent a 95% confidence interval.

configuration has a statistically significant marginally better performance (probably

because two of the hosts in this configuration were less powerful machines than the

other two, and one of them was assigned to execute some of the activity manager

component). In particular, the 2 host configuration has a slope between 39 to 47

(with 95% of confidence) whereas the 4 host configuration has a slope between 49

to 60 extra seconds in the execution of a case for each new concurrent case (a single

case in a single host would execute in 588 seconds).

In Fig. 12, in the presence of heavy processing activities, the CPU intensive

activities (bubble sort of 1000 random numbers) is shown to impose a more severe

delay in the execution times of concurrent activities, to the point that 20 concurrent

cases were not able to execute in the single host configuration. In this example,

there is no statistically significant difference between the slope of the 2 and 4 hosts

configuration. Within a 95% confidence interval, the first is between 42 and 54

and the second between 39 and 49 extra seconds of the total case execution time,

for each new concurrent case (a single case in a single host would execute in 225

seconds).

One initial assumption in our model was that the overall system performance

would be jeopardized by the increase of data traffic through the network, as the

agents and data packages migrate through the many nodes in the system. In order

October 15, 2003 19:4 WSPC/111-IJCIS 00080

434 R. S. S. Filho, J. Wainer & E. R. M. Madeira

���������	�
�����
����������

�

���

��

���

���

���

���

���

 ��!�
""�!� ��� "���!� ����" ���

!�

�����������������
����������������
�������
�

����

�
��

�
��

�

��

#���������$

�����%�&�$

Fig. 13. Average case execution time. Increase of data exchanged among consecutive activities.
Single case.

to evaluate this impact, successive tests with increasing case data were performed

and compared.

The graphic in Fig. 13 shows that the increase of the case data, exchanged

between consecutive activities, did not significantly affect the performance of the

system, if compared to the parameters tested in the previous two tests. A ten-fold

increase in the size of the data resulted in a 20% increase in the average execution

time of the case.

5.3. Tests conclusions

The ability to distribute the activities among different hosts at runtime, signifi-

cantly contributes to the capacity of the system to handle an increasing number of

concurrent cases, thus, coping with scalability and load balancing. The examples

show that distributing the components from a single host to two hosts improves

significantly the scalability of the architecture (which in one case goes from a non-

linear increase in case execution time to a linear one). The examples were not

stressful enough so that limits of the two host configuration were reached and thus

we could not show the point in which the four host configuration would improve

scalability. The tests also show that there is a linear increase of the case execution

time with the increase of data exchanged by the activities.

5.3.1. The influence of notifications

During the tests, there were not significant delays associated with the asynchronous

notifications, sent by the activities to the case coordinators. The same behavior is

observed in the transmission of notifications from the case coordinator to the process

coordinator. This indicates that the scalability of the system can be increased with

the addition of new hosts and the distribution of the activities between them.

Note that nor the case coordinator nor the process coordinators represent bot-

tlenecks since there is one case coordinator per workflow execution instance and

process coordinators can be replicated.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 435

5.3.2. Prototype versus full implementation

Even though the tests were performed using a simplified prototype implementation,

the main aspect of the architecture, which is its ability to distribute the activity load

in a decentralized fashion, could be analyzed. We argue that the system behavior

would not be very different if the other components were fully implemented since:

(1) the notifications sent to the coordinators are asynchronous. (2) The processing

of these messages does not introduce delays in the agent migration procedure. (3)

The backup managers would only execute during low usage periods of the system.

The only set of components that could introduce delays in the agent migration

procedure would be the role coordinators. More complex queries, requesting his-

tory information could delay the negotiation phase of the agent in some seconds.

However, the processing of such queries would be executed in dedicated machines,

hosting these components, isolating its impact from the other concurrent activities.

5.3.3. Java and CORBA issues

The average execution time associated with the centralized execution of the tests

overcame the distributed execution after the first increase in the number of concur-

rent cases. Hence, the use of CORBA objects written in Java, executing in different

virtual machines, do not have a good performance in centralized environments,

when the number of concurrent cases is big enough to overload this machine. In

distributed scenarios, however, where the number of servers executing in one node

is smaller, its performance is acceptable, specially if considered that most of the

tasks are supposed to be performed by humans in their workstations, which time

to accomplish the activities, can take from minutes to days.

The biggest delay, associated to the mobility of the architecture agent is the

creation of these objects. This procedure consumes memory and CPU, influencing

the performance of the other objects executing in the same host.

This overload of the centralized execution is explained by the way the OrbixWeb

manages CORBA objects. It does not differentiate local and remote method invo-

cations. Hence, the method invocations between client and server objects are per-

formed using the IIOP over the TCP/IP stack whether these objects are local or

remote. The WONDER architecture does not implement any local data transfer op-

timization since this responsibility should be provided by the CORBA middleware

implementation.

5.3.4. General considerations: accidental versus fundamental issues

We consider these later CORBA and Java implementation issues as accidental, i.e.

they are dependent on particular CORBA implementation features and are inde-

pendent of the model itself. The execution of CORBA objects as threads instead

of different processes as well as the use of local inter-process communications be-

tween local objects (as shared memory, for example) are features available in more

October 15, 2003 19:4 WSPC/111-IJCIS 00080

436 R. S. S. Filho, J. Wainer & E. R. M. Madeira

up-to-date CORBA implementations, not available at the time the prototype was

implemented.

The use of the optimizations described in the last paragraph, however, would

only “raise the bar” in our tests, allowing the execution of more concurrent cases in

a single host. The fundamental problem of centralized control and the inability to

fine-tune load balance between different hosts, would still persist. With a significant

increase of the number of concurrent cases, the system would be overloaded if not

with tenths, with hundreds of concurrent cases, and the centralized bottleneck and

single point of failure would still persist. In this case, the addition of new hosts and

the use of a fine-grained distributing policy, as in the distributed execution tests,

would evenly reduce the execution and coordination loads of the system, obtaining

the same results as described in the tests.

6. Related Work

Some of the components of the Exotica project,10,13,14 developed at IBM Al-

maden Research Center, have similarities to our proposal. In particular the

Exotica/FMQM (Flowmark on Message Queue Manager) architecture is a dis-

tributed model for workflows, using a proprietary standard (MQI — Message Queue

Interface) of persistent message queues. The case data is bundled in a message that

is conveyed from one activity to the other through a fault tolerant message oriented

middleware. Nevertheless, the proposal is not very detailed on how to deal with all

the other requirements for a WFMS described in this paper.

The OMG Workflow Management Facility17 implements a workflow framework

that satisfies the basic workflow management requirements. This specification is

based on the WFMC standards and defines a set of basic objects and interfaces.

Because of its generality, this specification was not designed to handle the large-

scale workflow specific requirements.

The Mentor Project24 of the University of Saarland defines a traceable and

scalable workflow architecture.

Fault tolerance is achieved by using TP-Monitors and logs. CORBA is used

as a communication and integration support for heterogeneous commercial compo-

nents. Scalability is achieved by replicating the data in backup managers. Similar

to our architecture, the data and references to data are exchanged between Task

List Managers when the activities are being executed and terminated. A limited

first prototype was implemented and future extensions should include support for

dynamic change of processes and the rollback of cancelled or incomplete workflows.

Rusinkiewicz et al. from the Houston University, developed a workflow model

based on INCAs (Information Carriers).4 This model was developed to support the

execution of dynamic workflow processes. The process is executed over autonomous

execution units (hosts). In this architecture, the process definition and the workflow

data are wrapped in a container called INCA, which migrates through the execution

units of the system.

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 437

The WONDER architecture extends the INCA concept with the mobile agent

paradigm, defining active entities (the ActivityManagers) which interpret the case

plan. INCAs are passive entities that execute in active hosts (service providers). On

the other hand, the WONDER model defines active entities that execute in passive

hosts.

Instead of defining compensation actions for fault tolerance, like the INCAs

model, WONDER allows the specification of compensation activities. The INCAs

checkpointing police, which stores copies of the agent in the hosts of the system, is

also used in WONDER. The auditing, monitoring and dynamic allocation of actors

are not addressed by the INCAs model.

Recent projects19,23 have shown the use of the mobile agents paradigm and

CORBA in the enactment of WFMSs. Their study is focused on the use of these

technologies to provide interoperability and integration of business processes from

different organizations. These studies also highlight the advantage of the model in

obtaining load balancing and dynamic reconfiguration of the workflow in case of

failures and exception handling or dynamic process change. None of them, however,

study the feasibility of this technology to address the requirements of large-scale

workflow.

The advantages of fully distributed architectures were previous studied.7 This

work originated from the METEOR project and its CORBA implementation,

OrbWork.9 This model defines Task managers, CORBA components that incor-

porate schedulers (micro-workflow engines) and can be distributed over different

hosts in a distributed system in a similar way to WONDER Activity Managers.

These components are programmed with their corresponding sub-workflow parts,

and are placed at different hosts. Whenever a task is completed, events are gen-

erated which trigger the execution of the following tasks. Checkpoints for failure

recovery are defined and data references are transmitted between consecutive tasks.

The system execution is monitored by external components (watch dogs) analogous

to WONDER case coordinators.

Different than WONDER, OrbWork allocates task managers at their execution

hosts at the beginning of the workflow. It does not support dynamic allocation of

actors and tasks through the use of mobile agents.

Recently, Atluri et al.21 studied the use of decentralized architectures for inter-

organizational workflow enactment. The system uses the concept of self-describing

workflows (analogous to the mobile case strategy used in WONDER) that are exe-

cuted by workflow stubs in different sites. The stubs interact with the local resources

in each site, invoking execution agents and enacting the corresponding sub-workflow

using the resources of each site. The workflow autonomously migrates through dif-

ferent hosts as the process is being executed achieving control and data flow de-

centralization. In special cases, the issues related to security and conflict-of-interest

among organizations are addressed with the use of a modified version of the Chinese

Wall Security Model. In this model, policies prevent competitors and non-authorize

October 15, 2003 19:4 WSPC/111-IJCIS 00080

438 R. S. S. Filho, J. Wainer & E. R. M. Madeira

users to receive information that would give them competitive advantage toward

the other workflow participants.

This work addresses some of the security problems identified in our work, and

shows the application of a decentralized model in inter-organizational workflow

execution. However, no experimental data (qualitative or quantitative) regarding

the use of the system is provided.

7. Conclusions

In this paper, we presented WONDER, a distributed architecture for large-scale

workflow enactment. The architecture is based on the mobile agent paradigm,

where workflow activities execute through different user’s workstations. The migra-

tion follows a workflow plan interpreted by the agents. This characteristic provides

decentralization of control. A set of auxiliary components is defined in order to

support the agent in its migration and to address the other WFMS requirements.

Such decentralization of control and data allows for the definition, enactment and

management of large-scale workflows, providing the necessary scalability, decen-

tralization of control and fault tolerance for these applications. It also allows the

implementation of load-balancing strategies and policies.

The WONDER uses CORBA’s communication framework as its basic commu-

nication and distribution system. The CORBA hides all low-level communication

and distribution issues, providing location and access transparences in a standard

object-oriented programming framework. The use of CORBA as the support en-

vironment for such architecture has problems with the persistence of objects. The

standard CORBA references were not designed for applications in which objects

can be dynamically deactivated and reactivated, in different host ports, during its

lifecycle. The information about where an activity should be created and executed

is an important issue in our architecture. An application specific naming space was

created using persistent location-dependent object names. Some CORBA services

were not used due to simplifications and requirements of our architecture.

A prototype version of the system was implemented and performance tests were

executed. The tests show that in a single host configuration the system has a worse

than linear increase in the case execution with the increase of the number of con-

current cases, even for as low as 15 concurrent cases. But in a 2- and 4-hosts

configuration, the increase in execution time is linear. The costs associated to Java

and CORBA are dependent on the way the ORB used for the tests is implemented,

representing an accidental issue that can be solved by the use of new and optimized

ORB implementations. The tests demonstrated, however, that the central issue of

scalability can be solved by the distribution of the many activities of each process

instance by different hosts in a system.

The ability to arrange the WONDER components in different configurations

(ranging from fully centralized to fully distributed), as demonstrated by the tests,

shows the flexibility of the approach and its potential use in different load-balancing

October 15, 2003 19:4 WSPC/111-IJCIS 00080

A Fully Distributed Architecture for Large Scale Workflow Enactment 439

and distributed arrangements. This flexibility, however, pays a price. It increases

the security vulnerability of the system since copies of important workflow infor-

mation are deposited in less reliable workstations. This approach also introduces

many potential points of failure in the system, proportional to the number of hosts

used. The decentralized control of the architecture based on mobile agents and a

hierarchical monitoring infrastructure, diminishes this problem. Moreover, the fail-

ure of a node affects only the workflow cases whose components were standing on

that node.

Future extensions include support for dynamic change of process definitions,

the implementation of more sophisticated load-balancing policies, and ad hoc work-

flows. In special, the WONDER distributed and autonomous approach facilitates

the ad hoc change of the plan during the case execution, since the workflow activi-

ties and user allocation is done on demand, at runtime, using the process definition

enacted by the mobile object.

The study of approaches to safely store the workflow data, as encryption and

access control, is also part of the future work.

Acknowledgments

The authors would like to thank FAPESP (Process 98/06648-0), CNPq, CAPES,

and the Pronex — SAI project — MCT/Finep for their support.

References

1. G. Alonso, D. Agrawal, A. El Abbadi and C. Mohan, Functionality and limitations
of current workflow management systems, IBM Technical Report, IBM, 1997.

2. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan, R. Günthör and M. Kamath,
Exotica/FMDC: A persistent message-based architecture for distributed workflow
management, Proc. IFIP WG8.1 Working Conf. Information Systems Development

for Decentralized Organizations, Trondheim, Norway, August, 1995.
3. B. R. Odgers, J. W. Shepherdson and S. G. Thompson. Distributed workflow co-

ordination by proactive software agents, Proc. Intelligent Workflow and Process Man-

agement, IJCAI-99 Workshop, August 1999.
4. D. Barbara, S. Mehrotra and M. Rusinkiewicz, INCAs: Managing dynamic workflows

in distributed environments, J. Database Management 7, 1, 1996.
5. D. Rus, R. Gray and D. Kotz, Transportable information agents, Proc. First ACM

Int. Conf. Autonomous Agents (1997) 228–236.
6. G. A. Bolcer and R. N. Taylor, Advanced workflow management technologies, software

process — Improvement and practice, June 1998, 125–171.
7. J. Miller, A. Sheth, K. Kochut and X. Wang, CORBA-based runtime architectures

for workflow management systems. J. Database Management, Special Issue on Multi-

Databases, 7, 1 (1996) 17–27.
8. S. Jablonski and C. Bussler, Workflow Management — Modeling Concepts, Architec-

ture and Implementation (International Thomson Computer Press, 1996).
9. K. J. Kochut, A. P. Sheth and J. A. Miller, ORBWork: A COBRA-based fully dis-

tributed scalable and dynamic workflow enactment service for METEOR, Technical

October 15, 2003 19:4 WSPC/111-IJCIS 00080

440 R. S. S. Filho, J. Wainer & E. R. M. Madeira

Report UGA-CS-TR-98-006, Department of Computer Science, University of Georgia,
1998.

10. M. Kamath, G. Alonso, R. Günthör and C. Mohan, Providing high availability in very
large workflow management systems, Proc. Fifth Int. Conf. on Extending Database

Technology (EDBT’96), Avignon, France, March 25–29, 1996.
11. L. Ismail and D. Hagimont, A performance evaluation of the mobile agent paradigm,

Proc. Conf. on Object-Oriented Programming, Systems, Languages, and Applications,
1999, 306–313.

12. M. Merz, B. Liberman and W. Lamersdorf, Using mobile agents to support interorga-
nizational workflow-management, Int. J. Applied Artificial Intelligence, 11, 6, 551ff,
September 1997.

13. C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Güthör and M. Kamath, Exotica:
A project on advanced transaction management and workflow systems, ACM SIGOIS

Bulletin, 16, 1 August 1995.
14. C. Mohan, G. Alonso, R. Günthör, M. Kamath and B. Reinwald, An overview of the

exotica research project on workflow management systems, Proc. 6th Int. Workshop

on High Performance Transaction Systems, Asilomar, September 1995.
15. N. M. Karnik and A. R. Tripathi, Design issues in mobile-agent programming systems,

IEEE Concurrency, July–September, 1998.
16. OMG, The Common Object Request Broker: Architecture and Specification, Revision

2.0, July 1995.
17. OMG, Workflow Management Facility, OMG dtc/99-07-05, July 30, 1999.
18. Open Fusion CORBA Services:

www.prismtechnologies.com/products/openfusion/main.htm
19. R. Stewart, D. Rai and S. Dalal, Building large-scale CORBA-based systems, Com-

ponent Strategies 59 (January 1999) 34–44.
20. R. S. Silva Filho, J. Wainer, E. R. M. Madeira and C. Ellis, CORBA-based architec-

ture for large scale workflow, IEEE/IEICE Special Issue on Autonomous Decentral-

ized Systems of the IEICE Transactions on Communications, Tokyo, Japan, E83-B,
5 (May 2000) 988–998.

21. V. Atluri , S. A. Chun and P. Mazzoleni, A Chinese wall security model for de-
centralized workflow systems, Proc. 8th ACM Conf. Computer and Communications

Security, Philadelphia, PA, USA, November 05-08, 2001.
22. W. Bausch, C. Pautasso, R. Schaeppi and G. Alonso, BioOpera: Cluster-aware com-

puting, Proc. 4th IEEE Int. Conf. on Cluster Computing, Chicago, USA, September
2002.

23. S. Weather, S. Shrivastava and F. Ranno, CORBA compliant transactional workflow
system for internet applications, Proc. Middleware’1998, 3–17

24. J. Weissenfels, D. Wodtke, G. Weikum and A. Dittrich, The mentor architecture for
enterprise-wide workflow management, University of Saarland, Department of Com-
puter Science, 1997.

25. WFMC, The Workflow Reference Model Version 1.1, WFMC-TC-1003, January 1995,
http://www.wfmc.org/standards/docs/tc003v11.pdf

26. WFMC, Workflow Standard — Interoperability Wf-XML Binding, WFMC-TC-1023,
Version 1.0, May 2000, http://www.wfmc.org/standards/docs/Wf-XML-1.0.pdf

27. WFMC, Workflow Terminology & Glossary Version 3.0, WFMC-TC-1011, February
1999, http://www.wfmc.org/standards/docs/TC-1011 term glossary v3.pdf

