
44 (2007) 285–297
www.elsevier.com/locate/dss
Decision Support Systems
Scheduling meetings through multi-agent negotiations

Jacques Wainer a,⁎, Paulo Roberto Ferreira Jr. b, Everton Rufino Constantino a

a Institute of Computing, State University of Campinas, Campinas, 13083-970, SP, Brazil
b Instituto de Ciências Exatas e Tecnológicas, Centro Universitário Feevale, Novo Hamburgo, 93352-000 RS, Brazil

Received 28 March 2007; accepted 28 March 2007
Available online 29 April 2007
Abstract

This work presents a set of protocols for scheduling a meeting among agents that represent their respective user's interests. Four
protocols are discussed: a) the full information protocol when all agents are comfortable with sharing their preference profile and
free times; b) the approval protocol when only the preference profile can be shared; c) the voting protocol when only free time can
be shared; and d) the suggestion protocol if neither preference nor free time can be shared. We use non-standard metric to evaluate
the protocols which aims at maximizing the average preference, but also seeks to reduce the differences in preferences among the
agents. The full information and approval protocols are optimal, that is, they achieve the best solution. Results show that the voting
protocol achieves the best solution 88% of the time. Simulation results for the suggestion protocol with different numbers of agents,
different numbers of solutions, and different strategies are presented. The suggestion protocol is shown to be coalition-free.
© 2007 Elsevier B.V. All rights reserved.
Keywords: Meeting scheduling; Multi-agent negotiation; Calendar
1. Scheduling meetings

Group calendars and meeting schedulers have been
one of the first groupware applications [15]. Anyone
who has ever tried to schedule a meeting among more
than three people can appreciate the usefulness of some
sort of automatic help. The most common approach
implemented so far is the development of a single
calendar application that has meeting scheduling
facilities. Most commercial systems allow a user to
browse the other users' calendar data in order to find an
empty time slot, and book the meeting in that time slot.
⁎ Corresponding author.
E-mail addresses: wainer@ic.unicamp.br (J. Wainer),

pauloroberto@feevale.br (P.R. Ferreira),
constantino.everton@gmail.com (E.R. Constantino).

0167-9236/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2007.03.015
We follow a different approach: we assume that each
user uses different calendar systems ([3] discusses that
people have very different preferences in terms of the
form and use of their calendars). The user's calendar is
available to an agent that will perform the meeting
scheduling for its user. To schedule a meeting, the user
selects the participants and instructs his agent to
negotiate a time interval with all the other participants'
agents. The problem of scheduling a meeting becomes a
negotiation among agents that defend their users'
interests.

The control of one's own time is a socially delicate
issue. Many social measures of status and importance
are related to the control of one's and other's time. For
example, an “important” person can be late for a
meeting, can cancel a meeting with shorter notice, can
be less flexible in scheduling a meeting, and so on.
Thus, there are a lot of socially relevant issues related to

mailto:wainer@ic.unicamp.br
mailto:pauloroberto@feevale.br
mailto:constantino.everton@gmail.com
http://dx.doi.org/10.1016/j.dss.2007.03.015


286 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
time management that must be addressed by the
designer of a meeting scheduler/group calendar system.
We will address in particular the issues of preferences,
privacy, and homogeneity of the user's satisfaction
with the scheduled meeting.

People have different preferences as to the time to have
meetings; they may even have preferences that change
according to the kind of meeting: one may prefer
administrative meetings in the morning and research
meetings late in the evenings, and so on. The agents should
take that into consideration when negotiating a meeting on
behalf of its user. With the inclusion of preferences, the
problem of scheduling meetings becomes an optimizing
problem instead of a satisfying problem: one has to find a
time slot that is the best for all participants, instead of just
finding one that is free for all of them.

The second issue is privacy. Calendars are usually
considered private objects and their information confi-
dential. There are situations when one does not want
one's free time made public: who would hire a
consultant or schedule an appointment with a dentist
that has a lot of free time? Because of the social
attribution of “importance” to people with little free
time, one may not be willing to publish one's free time.
For symmetry, we will also consider that the participant
may not be willing to make his preferences known to the
other participants.

The third issue, homogeneity of the user's satisfac-
tion with the scheduled meeting, is an experimental one.
The standard metric for scheduling a meeting is to
maximize the group preference (or satisfaction) with the
meeting. But this may leave some people with the
feeling that they were forced to accept a low preference
time for the “greater good.” If strong, such feeling could
disrupt the creation of a good group environment for the
meeting. So, we propose a metric that aims at
homogenizing the satisfaction of all the participants,
as well as maximizing the group satisfaction. Thus, each
participant can have some assurance that the others have
similar preference for the meeting as he does.

Multi-agent meeting scheduling is an active research
area. Some of the work is discussed in Section 5, but in
general, research in this area falls into twomain categories:

• research on agents that learn its user's preferences,
[18,2,13,1,19] among others. This line of research,
which we will call adaptive agents, is usually
interested in the adaptability of the agent to its own
user — the negotiation and privacy issues are not
deeply dealt with. For example, [2] describes such an
adaptive agent which uses a negotiation protocol in
which all agents share their free times.
• research on the multi-agent aspects of the negotia-
tion, [20,7,11,16], among others. This line of
research is more concerned with defining a single
negotiation protocol that allows for many simulta-
neous meeting negotiations, and studying the
efficiency of the protocol, that is, the number of
negotiation rounds it takes to achieve a solution. For
example, [16] solves the meeting scheduling problem
as a distributed dynamic constraint satisfaction
problem. The problem is dynamic because the agents
are engaged in simultaneous negotiations and thus
their constraints change during the negotiation.
Furthermore, the paper defines two levels of
constraints — hard constraints refer to the availabil-
ity or unavailability of times intervals to schedule the
meeting for each agent, and soft constraints refer to
the agent's preferences regarding the different time
intervals. The soft constraint can be relaxed during
the negotiation if no solution was found in the
previous round of negotiation.

This paper falls into the multi-agent negotiation
approach but is different than most studies because:

• wepropose four protocols, one for each level of privacy
required,

• we do not allow for simultaneous meeting scheduling,
• we are more interested in the efficacy of the protocols
(the quality of the schedule) than in the efficiency
(the time or number of messages needed to achieve
the solution), and

• we use a non-standard metric to evaluate the quality
of a schedule, which attempts to balance the average
and the homogeneity of the participants' preferences
for the schedule.

Simultaneous meeting negotiations are not consid-
ered in this paper because in experiments with the
implemented system, negotiations never took more than
a few seconds, and thus it is very unlikely that an agent
will be called to negotiate a new meeting while a
previous negotiation is taking place.

Regarding our lesser interest in the efficiency of the
protocol, we assume that the agents are fully automated,
and thus the negotiation is performed without the
participants intervention. If the user has to intervene
during the negotiation, for example, as it is expected in the
system described in [2], then the number of messages and
rounds are important issues — one would not like to
bother the userwithmany interventions in the negotiation.

This paper is organized as follows. Section 2
describes the formal definitions and the metric used



287J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
for evaluating the resulting schedule. Section 3
discusses the different requirements regarding privacy,
and presents four different protocols to solve the
meeting scheduling problem. Section 4 discusses the
simulation results for the protocols that are not optimal.
Section 5 discusses the related work in more details and
Section 6 presents briefly details of the implemented
system and future work.

2. Formal definitions

For the scheduling purpose, a meeting m is a 6-tuple
〈A, ā, h, l, wb, we〉, where:

• A={a1, a2,…, an} is the set of agents invited to the
meeting,

• ā∈A is the owner of the meeting, that is, the agent
that called the meeting,

• h is the host that conducts the negotiations for
scheduling the meeting. It may be the case that h∈A,
if one of the members of the meeting takes into its
own hand the task of scheduling the meeting (in this
case usually h=ā), or h∉A if the moderator of the
scheduling is not one of the participants (for privacy
reasons),

• l is how long the meeting is planned to last, and
• wb and we are the beginning and the end of the
window for scheduling the meeting.

Each agent ai has a calendar that maps each time slot
to either a previously scheduled meeting, or to no
meeting at all. In the latter case we will say that the time
slot is free. In this work, the calendar of an agent ai is
represented by the set Free(ai) of free time slots. That is,
if ts∈Free(ai), then ts is a free time slot for agent ai.

Time interval is defined as a sequence of one or more
adjacent time slots. A time interval t is free, that is,
t∈Free(ai) if, for all time slots ts in t, ts∈Free(ai).
The duration of a time interval is the number of adjacent
time slots in it. When there is no risk of ambiguity, both
free time slots and free time intervals are referred as free
time.

Each agent ai has a preference function or utility
function Wi(m, t). The higher the value of Wi(m, t), the
more “preferred” is for agent ai to have the meeting m
scheduled at time t.

For a given meeting m= 〈A, ā, h, l, wb, we〉, we
define Poss(m)={t1, t2… tk} as the set of all possible
time intervals to schedule the meeting. That is, for all
tj∈Poss(m), tj∈Free(ai) for all agents ai∈A, the
duration of each tj is equal to l, and each tj is between
wb and we.
2.1. Metric of evaluation

Agent ai preference for scheduling the meeting m at
the time interval t∈Poss(m) is:

aiðtÞ ¼ 1
jtj

X
tsat

Wiðm; tsÞ

that is, the average user preference over all time slots
that make the time interval.

If there are N participants in the group, the group
utility with scheduling meeting m at the interval t is:

bðtÞ ¼ 1
N

X
i

aiðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
i

aiðtÞ � 1
N
R
i
aiðtÞ

� �2

N � 1

vuuut

The definition above is the mean of the users'
preferences 1

N RiaiðtÞ
� �

minus the standard deviation of

the preferences
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rið N Þ2
N � 1

s0
@

1
A. This metric is our solution to

the issue of the homogeneity of the user's satisfaction
with the scheduled meeting, as discussed in the
Introduction. The metric tries to maximize the average
of the users' preferences but penalizes a large dispersion
of the preferences (because that increases the standard
deviation).

The best schedule for the meeting m, denoted as m+

is the time interval t that maximizes β(t). And the worst
schedule for the meeting (m−) is the time interval that
minimizes β(t).

The optimization degree of scheduling the meeting at
the time interval t is:

NðtÞ ¼ bðtÞ � bðm�Þ
bðmþÞ � bðm�Þ

Given the sequence 〈t1, t2,…ti…tn〉 of time intervals
ti∈Poss(m), ordered by decreasing value of the group
utility, the group rank of the time interval t, denoted as R
(t) is defined as the rank of each time interval: R(t1)=1,
R(t2)=2,…, R(ti)= i.

In order to measure how satisfied a user is with
scheduling the meeting at a particular time interval t, we
will define the adjusted user satisfaction as:

aiðtÞ
maxxaPossðmÞaiðxÞ

that is, the relation between the user's preference for the
scheduled time interval and the user maximal preference
among the possible intervals to schedule the meeting.
The adjusted user satisfaction measures how close the
scheduled meeting is to the best possible meeting time



288 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
for the particular user. An adjusted user satisfaction of 1
indicates that for that user, the protocol was maximally
effective.

3. The negotiation protocols

3.1. Levels of privacy

As discussed in the Introduction, privacy is a
important issue regarding calendars and meeting
scheduling. It is clear that in some situations an agent
will not want to share its user's free time with the other
agents, and in some other situations, that user may have
no problem in sharing that information, specially if that
would increase the chances of scheduling a meeting in a
time interval that is good for him and for the group.

Four levels of privacy or modes of interaction are
defined depending on whether the users are comfortable
in sharing their preference profile and free time with the
host of the negotiation:

(1) full information: the user has no problem in
making both his free time and preference
information available to the host,

(2) preference: the user's preference profile can be
shared with the host, but not the free times,

(3) free time: the user's free time information can be
shared with the host, but not the preference, and

(4) no information: the user does not wish to make
either the preference or the free time available.

We consider that the no information mode has the
highest privacy level, followed by both the free time and
the preference modes, which are incomparable between
each other, and finally the full information is the lowest
privacy level.

To schedule a meeting the agent calling the meeting
(ā), sends to all other agents in A, an invitation for a
meeting, a tuple 〈A, ā, l, wb, we〉, where all symbols
have the same meaning as in the meeting definition.
Each agent in A sends to ā the lowest level of privacy it
will accept for the negotiations to schedule this meeting.
The host then computes the highest privacy level that is
greater or equal to all agents' requirements, and define
that as the privacy level for the negotiation.

3.2. Efficacy of the negotiation protocols

This paper is more interested in the efficacy of the
protocols than in their efficiency. Regarding efficacy,
two important properties of the protocols are whether
they are optimal, or, at least, complete. A protocol is
optimal if it always computes the best possible schedule
for the meeting (or fails if there is no possible schedule).
A protocol is complete if it will not falsely decide that a
meeting is not possible when it really is. Of course, an
optimal protocol is also complete.

Although efficiency is not the main concern of this
paper, we will present results regarding the upper bound
to the number of rounds and to the number of messages
needed to achieve a solution. We define a round as a
message from all agents to the host followed by the
host's answer, or a message from the host to all agents
followed by the agents' responses. A half-round is used
to refer to a one-way flow of messages. The protocols
below will exchange free time intervals, agreement or
disagreement with a proposed schedule, preferences,
and so on, which will be referred as pieces of
information, and each message will carry one of such
piece of information. Finally, N denotes the number of
participants and M denotes the number of time intervals
in the scheduling window.

3.3. Full information protocol

The full information protocol is used when none of the
participants have concerns about sharing, at least with the
host, both their free time and preference information. The
protocol is very simple: each agent sends to the host their
free time within the scheduling window, and the
corresponding preferences. The host computes the set
Poss(m) as the intersection of the free intervals for all
participant, and using the preference information com-
putes the best schedulem+. If the set Poss(m) is empty, the
host informs each agent that the meeting cannot be
scheduled. Otherwise the host returns m+ to each agent.

The full information protocol is optimal. The host has
the correct information regarding the free times and
preferences for all agents, and it computes the time
interval with maximal group utility, which is the best
possible schedule for the meeting.

The full information protocol achieves a solution after
one round. The amount of information exchanged in the
round is at mostN⁎2⁎M+1. Each of theN agents send at
most 2⁎M pieces of information or messages: if an agent
has no previously scheduled meeting, it will haveM free
intervals and M corresponding preferences for them.

3.4. Approval protocol

The approval protocol is used in the preference mode.
Each agent sends to the host its preference profile, that is,
the preference for all time intervals between wb and we,
even the one that are not free.



289J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
The host assumes that every agent has all time
intervals between wb and we free, computes the group
utility for each time interval, and order them by
decreasing group utility. The host then sends one time
interval at a time to the agents, which accept it or not. If
at least one agent does not accept the time interval, the
host submits the next best time interval to the agents'
approval. When all agents accept a time interval, it is
chosen as the time for the meeting.

The approval protocol is optimal. The proof is by
contradiction: suppose that the host creates the ordered
list of time intervals 〈t1, t2,… tx…〉 by decreasing order
of group utility, and that tx is the best schedule for the
meeting. That means that for all ibx at least one agent
does not have ti as a free time, and all have tx free. The
host will present t1, t2, and so on, in that order, as
possible schedule for the meeting, and at least one agent
will not accept ti since it is not free for it. tx will be the
first interval accepted by all (if they do not lie — more
on this below), and thus the protocol is optimal.

The protocol achieves a solution in at most 1+M
rounds — the first half-round for the agents to send the
preference profile, and at mostM rounds inwhich the host
sent a possible schedule and the agents approve it or not,
plus a half-round for the host to inform the solution. The
total amount of information exchanged is at most N⁎M+
(1+N)⁎M+1, where the first term corresponds to the first
half-round, the second to the proposal/approve/disap-
prove rounds and the last term is the last half-round.

Lying is a strategic behavior all agents can follow. In
the typical lying scenario an agent will say that time
intervals with a preference below a certain threshold are
not free and thus the meeting, if scheduled at all, will not
be scheduled at these low preference intervals. Lying is
possible in all protocols including the full information,
the voting protocols discussed above, and the sugges-
tion protocol discussed below, and will achieve the same
effect of increasing the user satisfaction with the
schedule at the expense of reducing the number of
possible time intervals to schedule the meeting.

All meeting scheduling protocols and implemented
systems are susceptible to lying (see [14] for a
discussion on lying in the first implemented meeting
scheduling system). Our protocols do not address this
issue, and as far as we are aware, the only attempt to
design a negotiation protocol that discourages lying is
presented in [8] which requires external mechanisms.

3.5. Voting protocol

The voting protocol is used for the free-time mode.
Each agent sends to the host its free intervals within the
scheduling window. The host returns to each agent the
set Poss(m). If the set is empty, the host informs them
that the meeting cannot be scheduled. Otherwise, each
agent ranks the set of intervals received from the host in
decreasing order of preference. The ranking allows for
grouping, so an agent can rank t4, t6, and t7 as the most
preferred set of intervals, and t5 and t2 as the second
preferred set, and so on.

The host then approximates a preference function for
each user from the rank of the sets: all time intervals in
the most preferred set receive the preference of 10, and
the intervals in the least preferred subset receive the
preference 1, and linearly between these two extremes,
for the other ranks. For example if a particular agent
ranks {t4, t6, t7} first, ranks {t5, t2} second, ranks {t3}
third, and ranks {t1, t8} last, then for that user, the host
defines a preference function such that the first set
receives preference 10, the second receives 6, the third
receives 3, and the last set receives preference 1.

Using the approximation to each user's preference
function, the host then computes the interval with the
highest group utility, which is returned as the scheduled
time for the meeting.

The voting protocol is not optimal, but it is complete.
Section 4.1 will discuss the efficacy of the protocol. The
protocol achieves a solution in two rounds, and the
number of messages exchanged is at most N⁎M+M+
N⁎M+1, where each term corresponds to each half-
round.

3.6. Suggestion protocol

The suggestion protocol is used in the no-information
mode — the users do not want to divulge either their
preferences or free time information. Intuitively, the
protocol is based on the idea of a suggestion. In each
round of the negotiation, each agent must send a new
suggestion for the meeting. A suggestion is a time interval
that the agent will accept as the time for the meeting. The
host collects the suggestions, remove the information of
which agent madewhich suggestion, and sends themback
to all agents. Each agent can see which other suggestions
were proposed in the previous round and choose its own
next suggestion taking that into account.

Both host and agents retain the state of the negotiation,
so the host has to return just the new suggestions proposed
in the previous round. Similarly, in each round, the agent
only needs to send one new suggestion to the host. If the
agent has no new suggestions, it sends a particular
message (⊥) to indicate that.

Algorithm 1 describes the protocol as an algorithm.
Sj is the cumulative set of suggestions made until the



290 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
beginning of round j. Rj is the set of suggestions made
until round j by agent i. ri

j is the suggestion made in
round j by agent i. At each round, given the new
suggestions ri

j, the host updates the lists Ri
j and Sj. Time

intervals that were added in the round are returned to the
agents as the new suggestions. At the end of a round, if
an interval in the list has been proposed by all agents, it
is set as the time for the meeting. If more than one
interval have been proposed by all agents, the host
selects the earliest interval for the meeting. Finally, if in
a round, all agents send the ⊥ message, the meeting
cannot be scheduled and the agents are informed.

Algorithm 1. The suggestion protocol

the host sets S←S0←Ø
the host sets Ri

0←Ø
j←1
loop

the host sends to all agents the set Sj−Sj−1 of all

new suggestions made at round j
for all agents ai do
if there is a new time interval r i

j∈Free(ai) and

ri
j≠ rik for kb j then
ai answers rij
else

ai answers ⊥
end if
end for
the host sets Ri

j←Ri
j−1⋃{ri

j}
if ∩i Ri

j=Ø then
return the earliest of all x̂∈∩iRi

j as the schedule

for the meeting.
else if for all agents i, ri
j=⊥, and ∩i R i

j=Ø then
return the meeting cannot be scheduled

end if
the host sets Sj+1←⋃i Ri

j

j← j+1
end loop

3.6.1. Analysis of the suggestion protocol
The suggestion protocol is complete, but not optimal.

The proof of completeness is as follows. If it is possible
to schedule the meeting at tx, and since each agent must
send at least one new suggestion at each round, then
after at mostM rounds, all agents will have suggested tx,
stopping the protocol.

Regarding efficiency, the maximum number of rounds
is M, and the total number of messages is M⁎ (N+N),
where in each round there are at most N new suggestions
from the agents to the host, and the corresponding answer
from the host with the N new suggestions.
3.6.2. Strategic alternatives
The suggestion protocol allows for strategic varia-

tions regarding the agents behavior. An egotist agent
will try to schedule the meeting at its own best time, at
the expense of providing some information about itself
to the host. The egotistic strategy is to rank its set of free
intervals in decreasing order of preference 〈x1, x2…xk 〉.
At each round j, the egotist sends as its suggestion the
time interval xj.

The laconic agent will prefer not to provide too much
information about itself, even at the cost of having the
meeting scheduled at a less preferred time interval. The
laconic strategy is to send a suggestion from the set of
suggestions already made by others in previous rounds,
whenever possible. At round j if Sj is the set of
suggestions made until the previous rounds, and 〈X=x1,
x2…xk〉 is the set of ordered free intervals for the agent,
and Rj−1 is the set of suggestions the agent already
offered in previous rounds, then:

• if X∩ (Sj−Rj−1)=Ø, the laconic agent will suggest
the xi∈X∩ (Sj−Rj−1) with the highest rank in X

• if X∩ (Sj−Rj−1)=Ø, the laconic agent suggests the
xi∈X−Rj−1 with the highest rank in X.

Thus, the laconic will avoid sending new information
about itself but if new information must be provided, it
will provide the information that it is best for its
purposes.

The deceiving agent behaves as the laconic agent, but
when new information must be provided, it will choose
a random new suggestion from its list of possible time
intervals (as opposed to the laconic which will choose its
best time interval as the new suggestion). Using the
same notation as for the laconic,

• if X∩ (Sj−Rj−1)=Ø, the agent will suggest any
randomly selected xi∈X∩ (Sj−Rj−1).

• if X∩ (Sj−Rj−1)=Ø, the agent suggests any random-
ly selected xi∈X−Rj−1.

The deceiving agent then will provide the least
information about itself allowed by the protocol. Even if
a new suggestion is made by the deceiving agent, one
will not be able to derive any preference information
from it.

4. Simulation results

The protocols were implemented in a simulated
environment in order to measure their efficacy according
to our metric. The full information and approval protocols



291J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
are optimal and thus no simulations was run. The
simulation results refer to the voting (Section 4.1) and
suggestion protocols (Sections 4.2–4.5).

The simulations parameters are:

• the number of participants,
• the number of solutions for the scheduling problem,
• the range of preferences for each agent.

The number of participants is clearly an important
parameter because the larger the number of participants,
the harder is the negotiation to schedule a meeting.
Furthermore, the number of participants is the only
parameter the user can see when using the system.
However, the number of participants conceals different
factors which may be independent from each other. For
example, the larger the number of participants, the
smaller is the number of possible free intervals to
schedule the meeting. On the other hand, more
participants will likely increase the spread of prefer-
ences for each possible free time, which by itself would
make the negotiation harder. Thus, besides the number
of participants, the effect of these two independent
factors in the efficacy of the meeting is also evaluated.
The third simulation parameter controls the range of the
preference values for each free time. The preferences are
randomly selected from the interval from 1 to the
specified range, for each free time and for each agent.

The simulation involved 50 repetitions of creating a
set of calendars with the appropriate number of solutions
and number of participants. All agents would also have
at least twice the number of solutions as free intervals,
and each free interval was shared among at least two
agents. For each participant, the preference for each time
slot was randomly generated from a uniform distribution
from 1 to the specific range. Simulations were carried
out for 5, 10, and 15 participants, for 5, 10, 20, and 30
solutions, and for 2, 5, 7, and 10 as the range of
preferences.
Fig. 1. Voting protoco
4.1. Efficacy of the voting protocol

The voting protocol is not optimal, but it is very
effective. The average optimization for the voting
protocol is 0.98 (95% confidence interval from 0.977
to 0.985). The average rank of the solution is 1.14. Only
12% of the simulations did not schedule the meeting on
the best time interval and only 3% did not schedule it on
the second best time interval.

As for the dependence on the parameters of the
simulation, Fig. 1 displays the changes of the mean
optimization levels for the preference ranges, for the
number of participants, and for the number of solutions.
The vertical bars indicate the Bonferroni corrected 95%
confidence interval on the mean optimization. The
Bonferroni method is a multiple comparison method in
which the confidence level is corrected so that
statements that refer to all possible pairwise compar-
isons have the desired significance level. If n popula-
tions are to be compared, there are n(n−1) /2 pairwise
comparisons. To achieve a global significance level of
1−α, pairwise comparisons are made at the significance
level 1� a

nðn� 1Þ=2. For example, for the number of par-

ticipant graph, each vertical bar will indicate the

1� 0:05
3� 2=2

¼ 98:3% confidence interval on the average

optimization. The statement that all averages are not
significantly different (because their confidence intervals
taken pairwise have non-empty intersections) has a 95%
significance level.
4.2. Suggestion protocol: homogeneous groups

This section presents the results for groups where all
agents were either egotistic, laconic, or deceiving. The
group of egotistic agents achieves an average optimiza-
tion of 0.797, and an average rank of 2.42. 48% of the
simulations achieved the best solution, 20% the second
best solution, and 12% the third best solution.
l optimization.



Fig. 2. Optimization level of egotistic group of agents.

Table 1
Summary of the group statistics for different strategies

Strategy Group rank Optimization

Mean 95%
Confidence

Median Mean 95%
Confidence

Lower Upper Lower Upper

Egotistic 2.42 2.32 2.51 2 0.79 0.78 0.80
Laconic 4.64 4.45 4.83 3 0.60 0.58 0.61
Deceiving 5.54 5.32 5.76 4 0.56 0.54 0.57

292 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
Fig. 2 summarizes the effect of the number of
solutions, number of participants, and range of prefer-
ences on the optimization level. The efficacy of the
egotistic strategy depends on each of the parameters.
The interesting result is that if the range is too small (2),
that is, the intervals are judged by the agents as either
“good” or “bad” for a meeting, the quality of the
schedule is poor. This is surprising given that if the
preference is the same for all agents than the egotistic
strategy is optimal. The reasons for the low quality of
the schedule for a range of 2 seems to be more related to
the metric itself that to the protocol. If all intervals have
only two possible preference values, there are few
possible results for the group satisfaction, and the results
are spread apart, and thus if the protocol does not select
the best interval, the optimization level will be low. The
phenomenon disappears if the range is equal or greater
than 5.

As expected, the quality of the schedule decreases
with the number of participants, but the difference
between 10 and 15 participants is not significant. If there
are only few solutions (5), the quality of the solution is
lower, but stabilizes for 10 or more solutions. A group of
egotistic agents performs significantly better than a
group of laconic agents, which in turn performs better
than the deceiving agents. Table 1 summarizes the re-
sults for each strategy with the 95% confidence interval
for both the optimization and the rank.

Figs. 3 and 4 summarize the influence of the number
of participants, number of solutions, and range of
preferences on the mean optimization level achieved for
groups of laconic and deceiving agents. The results
regarding the range and preferences are similar to the
egotistic strategy — a range of 2 decreases the
optimization significantly, but ranges of preferences
equal or above 5 have the same mean optimization. The
laconic strategy is independent of the number of
participants and the number of solutions. The reason is
that as soon as a possible schedule is proposed, it is
chosen.

Table 2 summarizes the results regarding the user
satisfaction for groups of egotistic, laconic, and
deceiving agents. The confidence is also Bonferroni
adjusted, so all comparisons can be made with 95%
confidence. The table shows that the adjusted user
satisfaction is significantly higher for egotistic agents,
and that laconic outperform deceiving agents.

In summary, groups of egotistic agents perform better
than groups of laconic agents, from the point of view of
group optimization, with an optimization of 0.78 and an
average rank of 2.42, and laconic agents perform better
than deceiving ones. From the agent's point of view, the
egotistic strategy also results in better adjusted satisfac-
tion (0.73) than the laconic or deceiving strategy.

4.3. Suggestion protocol: heterogeneous groups

If one considers groups with agents with different
strategies, the egotistic strategy is still advantageous.
For example, a single egotistic agent in a group of
laconic agents achieves a mean satisfaction of 0.92
against a mean satisfaction of 0.69 for the laconic agents
(the 95% confidence interval for the difference is 0.23±
0.01). Thus, it is better for a laconic agent to switch to
the egotistic strategy.



Fig. 3. Laconic agents.

293J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
On the other hand, it is not advantageous for one
egotistic agent in a homogeneous group of egotistic
agents to change its strategy to laconic. A single laconic
agent in a group of egotistic has a mean satisfaction of
0.72 against the mean satisfaction of 0.74 for the
egotistic agents. The 95% confidence interval for the
difference is −0.034 to −0.006; thus the difference is
small but significant.

These simulations together with the simulations for
homogeneous groups show that there is very little
incentive to use the laconic or deceiving strategies,
besides the fact that they provide less information about
its user's free time and preferences than an egotistic
strategy. Thus, from now on laconic and deceiving
agents will not be considered.

4.4. Suggestion protocol: Learning during the
negotiations

A learning agent will, through previous negotiations
with the other agents, learn the other agents' preference
profiles or even strategies (for example [5]). That should
be contrasted with an adaptive agent which tries to learn
Fig. 4. Deceivin
his own user's preferences. The frontier between the two
types is somewhat fuzzy—some adaptive agents may just
use the logs of all previous interaction of another agent to
learn that agent's preferences, as in [12]. If the learning
agent knows that a particular user prefers morning
meetings, or even that he prefers meetings at 9am with
preference 8, at 10 am with preference 9, and so on, how
can this information be used?We define an altruistic agent
as an upper limit to a learning agent. The altruistic agent
knows all the other agents' preferences, but not their
free times, and will use this knowledge for the benefit of
the group. An altruistic agent will rank its own free time
intervals according to the groups utility. We performed
300 simulations with 10 agents, 10 solutions, range of 10,
and varying number of altruistic agents from 0 to 3, where
the remaining agents were egotistic.

Fig. 5 shows that there are no significant differences
among a group of zero altruistic agent to groups up to 3
altruistic agents. Thus the altruistic agents “acting for the
greater good” does not make any difference on the
optimization level achieved. On the other hand there is a
personal loss in behaving altruistically, the adjusted user
satisfaction for an altruistic agent is 0.56±0.04, which
g agents.



Table 2
Summary of the adjusted user satisfaction for each strategy

Strategy Adjusted satisfaction

Mean 95% Confidence

Lower Upper

Egotistic 0.73 0.73 0.74
Laconic 0.70 0.69 0.70
Deceiving 0.66 0.66 0.67

Fig. 5. Optimization levels for groups with altruistic agent.

294 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
should be compared with the egotistic agent, which has a
satisfaction of 0.69±0.04.

4.5. Suggestion protocol: coalitions

In some situations, a subgroup of the participants in a
meeting have no problem in sharing information among
themselves, but have restrictions with sharing it with
participants outside the subgroup. This subgroup may
form a coalition that negotiates among themselves the
scheduling of the meeting in a low privacy mode, and
behave in a unified way in the general negotiation, in the
hope that a better meeting for the subgroup would be
scheduled. Coalitions seems reasonable if the negotia-
tion is being made in the no information mode, and a
subgroup trust each other well enough to negotiate in
full information or preference modes, which would
guarantee the subgroup's optimal scheduling.

We tested coalition formation in a group of egotistic
agents working in no-information mode. Among the
egotistic agents, coalitions of 2, 3, and 4 agents were
created, which previously negotiated in full information
mode, and during the main group negotiation acted in an
uniform way. Each coalition agent used the coalition's
free intervals and preferences as its own free intervals
and preferences.

The presence of a coalition does not change
significantly the optimization level achieved by the
group, when compared with a set of egotistic agents
with no coalition. The left plot in Fig. 6 shows the
optimization levels for a group with no coalition, and
with coalitions of 2, 3, and 4 agents. The right plot in
Fig. 6 shows the results for the personal ranking of the
first agent, when it does not belong to any coalition, and
when it belongs to the coalitions of 2, 3, and 4 agents.
The coalition members fare the same as the non-
coalition members in terms of the personal ranking of
the resulting meeting.

This result shows that there is no incentive to form
coalitions. The reason why coalitions are ineffective in
the suggestion protocol is that the interval that is chosen
as the meeting time is the first one that is agreed upon by
all agents. There is no measure of how strong an agent
agree with that time interval, nor how many agents
“strongly or weakly” agree with it. Thus, the agents in
the coalition, since they behave as a block, only count as
a single agent in the negotiation process.

5. Related work

As discussed in the Introduction, this work follows in
the multi-agent negotiation line of research, and has
some intersection with other papers in this same line.

The work by Garrido and Sycara [11,10] present a
negotiation protocol that combines the suggestion and
approval protocols presented in this paper. Their pro-
tocol is based on randomly selecting a host among the
agents, which then proposes a time interval for the
meeting. Each of the other agents accept it or not. If not
all agents accept the interval, a new host is selected and a
new round starts. The metric of quality of the meeting is
the average of the preferences. Another metric of in-
terest in the paper is the number of rounds to achieve a
solution.

The work by Sen and Durfee [6,7] is mainly con-
cerned with the problem of simultaneously scheduling
multiple meetings among many agents, and the interfer-
ence that one meeting causes on the scheduling of the
others. The authors propose a general protocol: the host
sends out a meeting time proposal, collects the answers,
and if there is no convergence, the host starts a new
round.

To further define the protocol, the authors define
three sets of parameters:

• announcement strategies: whether the host suggest
only one or three possible time slots for the meeting,
respectively the best and good strategies.



Fig. 6. Optimization and Adjusted user satisfaction for coalitions.

295J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
• bidding strategies: whether each agent answers the
host with a yes/no for each proposal (the yes/no
strategy), or whether the agents must propose an
alternative to the host's proposal if it does not accept
it (the alternative strategy).

• commitment strategies: whether each agents blocks
the time slots proposed (by the host and by itself) and
only unblocks them if the negotiation fails (the com-
mitted strategy), or whether no such commitment is
made (non-committed strategy). This is only relevant
for the case of multiple simultaneous negotiations.

The work in [6,7] has similarities with ours: the
suggestion protocol proposed in this paper, using [6,7]'s
language, assumes the best announcement strategy, and
alternative as the bidding strategy. But there are
significant differences: there is no concept of prefer-
ences in their research and the metrics of interest are
whether the meetings could be scheduled or not, and the
number of rounds to achieve a solution. The authors
present both analytical and simulation analysis of the
various alternatives for heuristic strategies.

In [20] the concept of preferences is added to the
basic model. Their preference model assumes that
preferences can be constructed from the composition
of orthogonal characteristics such as day of the week,
time of the day, participants, topic, location of the
meeting, and so on. The user attributes preferences to
these values and the system computes the ranking of
preferences for a single user. These preferences are not
used to measure the resulting meeting, only to help in
selecting the user's answer to the host's proposal. No
simulation or analytical results are presented.

A recent work by Crawford and Veloso [4] discusses a
protocol in which there are no preferences, and the agents
make public their free times, but agents are engaged in
many meeting scheduling concurrently, so even if an
agent declared before that a time interval was free, it may
no longer be free because another meeting was scheduled
at that interval. The metric of interest is the number of
messages exchanged and the time to reach an agreement.

This paper is an extension of previous work [9] by
two of the authors. The protocols were first defined in
that work, but the metric of evaluation used is different.
Some of the strategic variations for the suggestion
protocol are also not present in [9].

6. Discussion and future work

6.1. Implementation

A prototype of the system proposed here was
developed in C++ and TK/TCL for Linux workstations.
The main program is the personal agent, or PA, which
implements both the host and the agent described in the
paper. A version of the program with just the host
component can also be generated.

The PA also deals with issues not discussed in this
paper. For example, besides the privacy levels discussed
in the paper, the PA may request that the host for the
negotiation is not one of the agents involved, and a
protocol to propose hosts was developed.

The PA reads in the user calendar data, stored in the
iCalendar format [17], and a preference data file which
associates to each meeting type and to each time slot a
preference. The PA also reads in a rule file which contain
privacy rules and other negotiation parameters, stated as
IF/THEN rules. In this file the user specifies the email
addresses of the people with whom he is willing to
negotiate in full information mode, the ones with whom
he is willing to negotiate in free time mode, and so on.
The file defines a default privacy mode which will be
used for the participants for which there is no specific
privacy rule.

The implemented system also deals with cancellation
and rescheduling of meetings. Each participant can
cancel or withdraw his/her participation in an already
booked meeting, and the owner of the meeting, that is



296 J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
the participant that called the meeting, has the power to
cancel the meeting altogether.

These actions open up the possibility for reschedul-
ing meetings: the cancellation of a meeting allows each
of the would be participants to reschedule some other
meetings because now there is more (or at least a
different set of) free time slots available. In the case of
withdraw, the remaining participants of the meeting can
try to reschedule it, in the hope that without the
constraints brought in by the participant that canceled
his participation, the new scheduled time may be better
for the remaining participants.

A protocol to renegotiate a meeting was developed, but
no simulation on it was run. The effect of rescheduling a
meeting depends on the meetings that were scheduled after
it, so that, at rescheduling, the set of free time intervals is
different. It is yet unclear how to set up experiments that
would allow to extract any useful statistical information on
the advantages or not of renegotiating a meeting.

6.2. Conclusions

This paper presented some results on a multi-agent
based scheduling system. The protocols for different
levels of privacywere presented. The information the user
is willing to make public is the central aspect of the
protocols. The protocols for the cases where the group has
no problem in sharing all information (free time and
preferences) or just the preference profiles, are optimal.
For the cases where either preferences or both free time
and preferences are not made public, the protocol is not
optimal, but it is complete.

We presented efficacy results for the non-optimal
protocols. In particular for the suggestion protocol, we
showed that the egotistic strategy will achieve better
efficacy when compared with other strategies if they are
uniformly adopted by the agents. In heterogeneous
groups the egotistic strategy also fares better than non-
egotistic agents, regarding the adjusted satisfaction.

We showed that the suggestion protocol is coalition-
free, that is, it is not useful for an agent to form coalitions
with a subset of the participants and, after negotiating in a
lower privacy mode with the coalition members, act as an
united front against the non-coalition members. Further-
more we showed that there is no gain in learning the other
users preference profiles and acting according to the
resulting group preferences.

Finally, there is interesting research to be done
regarding lying and rescheduling meetings. It is not
clear if lying regarding free intervals would bring any
other consequence besides reducing the number of possi-
ble solutions. It is also not clear what are the consequences
of lying about preferences in the full information and
approval protocols.

References

[1] Pauline Berry, Melinda Gervasio, Tomas Uribe, Karen Myers,
Ken Nitz, A personalized calendar assistant, AAAI Spring
Symposium Series, March 2004.

[2] Amedeo Cesta, Daniela D'Aloisi, Mixed-initiative issues in an
agent-based meeting scheduler, User Modeling and User-
Adapted Interaction 9 (1999) 45–78.

[3] Alphonse Chapanis, J.F. Kelley, How professional persons keep
their calendars: implications for computerization, Journal of
Occupational Psychology 55 (1982) 241–256.

[4] Elisabeth Crawford, Manuela Veloso, Opportunities for learning
in multi-agent meeting scheduling, Proceedings of the AAAI
2004 Symposium on Artificial Multiagent Learning, 2004.

[5] Elisabeth Crawford, Manuela Veloso, Learning to select negoti-
ation strategies inmulti-agentmeeting scheduling, Proceedings of
the 12th Portuguese Conference on Artificial Intelligence, EPIA,
Lecture Notes in Computer Science, vol. 3808, Springer Verlag,
2005, pp. 584–595.

[6] Edmund Durfee, Sandip Sen, On the design of an adaptive
meeting scheduler, Tenth IEEE Conference on Artificial
Intelligence Applications, 1994, pp. 40–46.

[7] Edmund Durfee, Sandip Sen, A formal study of distributed
meeting scheduling, Group Decision and Negotiation 7 (1998)
265–289.

[8] Eithan Ephrati, Gilad Zlotkin, Jeffrey Rosenschein, Meet your
destiny: a non-manipulable meeting scheduler, Proceedings of
the ACM 1994 Conference on Computer Supported Cooperative
Work, ACM Press, 1994, pp. 359–371.

[9] Paulo Ferreira, JacquesWainer, Schedulingmeetings throughmulti-
agent negotiation, Proceedings of the 15th Brazilian Symposium on
AI (SBIA), volume 1952 of Lecture Notes in Computer Science,
Springer Verlag, 2000, pp. 126–135.

[10] Leonardo Garrido, Ramon Brena, Katia Sycara, Cognitive
modeling and group adaptation in intelligent multi-agent meeting
scheduling, First Ibero American Workshop on Multi-Agents,
1996, pp. 55–72.

[11] LeonardoGarrido, Katia Sycara,Multi-agent meeting scheduling:
preliminary experimental results, Second International Confer-
ence on Multi Agent Systems (ICMAS'96), 1996, pp. 95–102.

[12] Melinda Gervasio, Wayne Iba, Pat Langley, Learning user
evaluation functions for adaptive scheduling assistance, Proceed-
ings Sixteenth International Conference on Machine Learning,
1999, pp. 152–161.

[13] Melinda Gervasio, Michael Moffitt, Martha Pollack, Joseph
Taylor, Tomas Uribe, Active preference learning for personalized
calendar scheduling assistance, IUI '05: Proceedings of the 10th
International Conference on Intelligent User Interfaces, ACM
Press, New York, 2005, pp. 90–97.

[14] Jonathan Grudin, Why CSCW applications fail: problems in the
design and evaluation of organizational interfaces, Proceedings
of the 1988 ACM Conference on Computer-supported Cooper-
ative Work, ACM Press, 1988, pp. 85–93.

[15] Jonathan Grudin, Groupware and social dynamics: eight
challenges for developers, Communications of the ACM 37 (1)
(1994) 92–105.

[16] Ahlem Hassine, Xavier Defago, Tu Ho, Agent-based approach to
dynamic meeting scheduling problems, Third International Joint



297J. Wainer et al. / Decision Support Systems 44 (2007) 285–297
Conference on Autonomous Agents and Multiagent Systems,
vol. 3, 2004, pp. 1132–1139.

[17] icalendar. http://www.ietf.org/rfc/rfc2445.txt.
[18] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott,

David Zabowski, Experience with a learning personal assistant,
Communications of the ACM 37 (1994) 80–91.

[19] Jean Oh, Stephen Smith, Learning user preferences in distributed
calendar scheduling, The International Series of Conferences on the
Practice and Theory of Automated Timetabling, 2004, pp. 35–49.

[20] Sandip Sen, Thomas Haynes, Neeraj Arora, Satisfying user
preferences while negotiating meetings, International Journal of
Human–Computer Studies 47 (1997) 407–427.

JacquesWainer is an associate professor at the Institute ofComputing in
the State University of Campinas (UNICAMP), Brazil. His academic
interests and publications are in the areas of collaborative computing,
artificial intelligence, and medical informatics. He is also a visiting
professor at the Department of Medical Informatics at the Federal
University of Sao Paulo (UNIFESP). Dr. Wainer has consulted for many
companies in the area of workflow systems and artificial intelligence.
Paulo R. Ferreira Jr. is a PhD Student at Institute of Informatics in
the Federal University of Rio Grande do Sul (UFRGS), Brazil. His
academic interests and publications are in the areas of artificial
intelligence and collaborative computing. He is also an associate
professor at Feevale University Center (Feevale).

Everton Rufino Constantino is a computer science master student at
the Institute of Computing in the State University of Campinas

(UNICAMP), Brazil. He is currently researching time series forecast
using ensemble methods.

http://www.ietf.org/rfc/rfc2445.txt

	Scheduling meetings through multi-agent negotiations
	Scheduling meetings
	Formal definitions
	Metric of evaluation

	The negotiation protocols
	Levels of privacy
	Efficacy of the negotiation protocols
	Full information protocol
	Approval protocol
	Voting protocol
	Suggestion protocol
	Analysis of the suggestion protocol
	Strategic alternatives


	Simulation results
	Efficacy of the voting protocol
	Suggestion protocol: homogeneous groups
	Suggestion protocol: heterogeneous groups
	Suggestion protocol: Learning during the �negotiations
	Suggestion protocol: coalitions

	Related work
	Discussion and future work
	Implementation
	Conclusions

	References


