
www.elsevier.com/locate/dsw

Decision Support Systems 40 (2005) 89–105
Meta workflows as a control and coordination mechanism for

exception handling in workflow systems

Akhil Kumara,*, Jacques Wainerb

aPenn State University, 509 BAB Building, University Park, PA 16802, USA
b Institute of Computing, State University of Campinas, Campinas, 13083-970, Sao Paulo, Brazil
Available online 2 June 2004
Abstract

A higher level control and coordination mechanism is required for exception handling in workflow systems. This paper

describes such a framework based on events, states, and a new kind of process called a meta workflow. Meta workflows have five

kinds of meta activities and facilitate control over base workflows. We describe the framework and illustrate it with examples to

show its features. The paper gives an architecture for incorporating it into existing workflows and also provides a formal

semantics of execution. This framework can be used in Web services, supply chains, and inter-organizational applications where

coordination requirements are complex, and flexible and adaptable workflows are needed. It is also useful for handling not just

failure recovery but also various kinds of special situations, which arise frequently in web-based applications.
D 2004 Elsevier B.V. All rights reserved.
Keywords: Workflow; Meta workflow; Coordination; Exception handling; Event-state-process (ESP) framework; WQM model; BPEL4WS

1. Introduction of a process and tend to collapse when variations are
Web services and supply chains [3,13,17,12] are

workflows that span multiple organizations. Thus, they

require coordination and control of both the data flow

and control flow across multiple organizations. Excep-

tions are a common occurrence in workflows [4,11,

15,18]. Even a seemingly simple process like a travel

expense claim or order processing can become difficult

to describe if one tries to cover all the special situations

and exceptions in the description. This creates a very

awkward process description that is hard to read and

understand, and also error-prone. Therefore, most

workflow systems are able to capture the simpler form
0167-9236/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.dss.2004.04.006

* Corresponding author.

E-mail addresses: akhilkumar@psu.edu (A. Kumar),

wainer@ic.unicamp.br (J. Wainer).
introduced. Exceptions can be planned or unplanned.

A planned exception is an abnormal situation that has

been anticipated and a way for handling it has been

included in the process. On the other hand, an un-

planned exception is one that has not been anticipated.

In this paper, we present a formal methodology for

describing exceptions in a workflow. An exception is a

special situation that occurs infrequently in a workflow.

The main idea is to describe a basic, primary process

first and treat abnormal and infrequent situations sep-

arately as supporting workflows. Our goal is to provide

support for the planned exceptions and also be able to

incorporate the unplanned ones relatively easily. We

introduce two new notions, meta workflows and ESP

(Event-state-process). A meta workflow is a special,

higher level control process that consists of five control

commands: start, terminate, suspend, resume and wait

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–10590
and suspend. An ESP rule causes a meta workflow to

run when an event occurs and a workflow case is in a

certain state. This may cause a meta workflow to

execute, and thus perform control operations like

suspending certain workflows and starting other work-

flows, etc. Thus, we make a clear distinction between

two types of workflows: base workflows and meta

workflows. The base workflow corresponds to specific

tasks that must be performed. The meta workflow is

only for control purposes and consists of the control

commands described above. In general, when it is not

qualified the term workflow refers to a base workflow.

The advantages of this approach are modularity,

extensibility and adaptability. The basic workflow

description is kept simple while variations to the basic

process are described separately in a modular manner.

It is possible to add new ESP rules and corresponding

base- and meta workflows when a new situation arises

thus giving extensibility. Minor changes may be made

to ESP rules (or a module) to adapt the workflow to

certain situations. Such small changes would be hard

to make on a monolithic workflow. Finally, the

simplicity of the approach helps in minimizing errors,

while at the same time making it easier to describe

complex situations.

Consequently, this framework constitutes a new

methodology for workflow modeling which has appli-

cations in various kinds of web services. The organi-

zation of this paper is as follows. Section 2 gives a

formal description of our framework along with

semantics. Then Section 3 illustrates the framework

with examples. Next, Section 4 discusses an architec-

ture and expressive power of our framework, while in

Section 5 we present some discussion of this approach

in the context of related work, in particular

BPEL4WS. Finally, Section 6 concludes this paper.
2. Formal description

The ESP framework involves the concepts of

workflows, events, states and meta activities.

2.1. Workflow and workflow instances

At the outset it is important to keep in mind the

distinction between process classes (or templates) and

process instances. A process definition, say ‘‘fabrica-
tion of a car’’ is a process class (or a template),

composed of three activities, A, B, and C, to be

performed in sequence. Activities A, B and C also

belong to activity classes or templates. Both the

fabrication process and the three activities are generic.

A particular instance of ‘‘fabrication of a car,’’ say

the car with the VIN XYZ345, is a case, or an instance

of a process. Case XYZ345 (assuming the VIN is

used as the case id) may be executing activity B; i.e.,

the activity B (for case XYZ345) is in the executing

state. In the ESP framework, as we will see later,

multiple processes may be invoked with the same case

number. Thus, a process instance is initiated and

assigned a case number, and the same case number

is used as a reference when other process templates

are invoked. For example, suppose the fabrication of

car XYZ345 is to be canceled while B is the current

activity. Hence, B must be stopped, and a new

cancellation activity, say ‘‘returning the reusable parts

to the inventory’’ might start, and other activities may

follow. The case is still identified by id XYZ345, but,

of course, it is no longer an instance of the fabrication

process, but an instance of the cancellation process.

We use WQM (workflow query model Ref. [2]) as

the language to describe workflows. In WQM, a

workflow process is described in terms of 10 basic

primitives or control elements: task, start, end, se-

quence, split-choice, join-choice, split-parallel,

join-parallel, start-while-do, and end-while-do (see

Ref. [2] for more details). In this paper we will use a

graphic representation of WQM in which tasks are

represented by rectangles, sequences by arrows, and

the other control elements by ellipses with the appro-

priate labels for type and name. Fig. 1 is an example

of such a graphical representation; a textual represen-

tation of the same workflows are possible using XML

and the XML Schema for it is described in the

appendix of this paper. This example describes a

workflow for ordering a laptop and it will be dis-

cussed in more detail in the next section.

2.2. Activities and state of activities

The standard states for an activity within a work-

flow are:

� not-ready: if some of its prerequisite activities

have not been done.

Fig. 1. An example base workflow, wf1, using WQM model [2].

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 91
� ready: if all its prerequisites are done, but the

activity has not yet started.
� executing: if the activity is executing.
� suspended: if the activity is suspended.
� done: if the execution of the activity has

terminated.
� aborted: if the execution of the activity is aborted

abnormally.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–10592
The transitions between these states are shown in

Fig. 2. Because our workflow allows for loops using

the start-while-do and end-while-do constructions,

some activities may be executed more than one time.

In the example in Fig. 1, the activities A1, A2, B11,

B12, B2 and B3 may be executed more than one time

for the same case. We then speak of a round of a

while-do construction, and of incarnations of an

activity. The execution of A1 in the first round of

the loop is its first incarnation; the execution of A1 in

the fourth round is its fourth incarnation, and so on. It

may be the case that a particular activity will not have

a corresponding incarnation because it was not chosen

at a choice node: in the example in Fig. 1, the split

choice in round 3 of the loop may decide to execute

A2. In this case A1 will have no third incarnation.

Thus, for an activity, being done in one round is

equivalent to being not-ready in the following round.

Thus the diagram in Fig. 2 illustrates with the

continuous lines the state transitions allowed within

one incarnation. The dotted line indicates the only

possible transition from one incarnation to another,

that is, from done in one incarnation to not-ready in

the next.

We extend the concept of states of activities to the

other control elements next. For the join-parallel

element:

� it will be in the done state if all its parents are in

the done state
� it will be in the abort state if any of its parent is in

the abort state
� else it will be in the suspend state if any parent is

in the suspend state
� else it will be in the executing state if any parent is

in the executing state. For the other control
Fig. 2. State transit
elements, the same rules apply, except for the first

which is
� it will be in the done state if any parents are in the

done state.

Aworkflow instance is active if any of its activities

is not done; otherwise, the workflow case is inactive,

which may mean that the case has already ended (all

activities are done) or has not yet started. Aworkflow

that is terminated before it completes execution is

aborted.

2.3. Events

In the ESP framework we assume that events are

instances of classes which carry the case id informa-

tion. Thus, if case XYZ345 must be cancelled an

event of class cancellation with case id XYZ345 must

be generated.

We consider three super-classes of events. A syn-

chronous internal event is an event generated by the

workflow engine when an activity ends. An asynchro-

nous internal event is generated by internal timers, for

example when an activity has a deadline and it is late.

Finally, an external event is an event generated from

outside the workflow execution.

2.4. ESP framework

The ESP framework has two components: the

workflow description part and the ESP rules. The

description component is of the form:

Base-workflow-id: workflow-definition

The description component describes a workflow

process and associates a workflow name to it so that
ion diagram.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 93
the activation rules refer to it by that name. In general,

there would be several base workflows. In this paper,

the workflow processes are shown as figures for easy

readability, although they can be written formally in

XML also.

The ESP rules are of the form:

Base-workflow-id=event-class : state

! meta-workflow-id

The basic semantics of an ESP rule is the follow-

ing. If an event of event-class is received for a case

(called the current case), and the base workflow

given by the base-workflow-id is active for the current

case, and is in the state given in the rule, then the

corresponding meta workflow is started for the current

case. In this case, we will say that the event was

captured by the rule.

Furthermore, we assume the following:

� once an event is captured by a rule, no other rule is

tested. Thus, the rules should be organized by

priority such that the most important rule is listed

first. Once an event is captured by a high priority

rule it will not trigger any of the less important rules.
� an event may not be captured by any rule. In this

case nothing happens.
� we assume that all ESP rules are evaluated

atomically, that is, the state of the workflow does

not change during the evaluation of the ESP rules.

We assume that the computational infrastructure is

able to implement such atomicity. A possible

implementation is that whenever an event is

received, the workflow engine is interrupted until

all rules are evaluated. If none of the ESP rules fire,

then the workflow resumes automatically. On the

other hand, if a rule qualifies to fire, then the

workflow is suspended automatically. Other more

complex mechanisms are possible.

The name ESP is an acronym for E(events)

S(states) P(process), a deviation from the more com-

mon Event, Condition, Action (ECA) rules [14].

2.5. Meta activities and meta workflows

What distinguishes a meta workflow from a base

workflow is that a meta workflow only has five
special activities, called meta activities that control

and operate the base workflows. These meta activities

are:

� start(wf,[c]): starts the base workflow wf and

associates it with the current case. If the argument c

is present, then the base workflow wf is started and

associated with a (possibly new) case c. Start(wf)

will not wait for the workflow wf to finish—the

meta activity only starts the workflow wf asyn-

chronously and then finishes.
� terminate(wf): terminates the base workflow wf

for the current case. The terminate meta activity

aborts all executing activities, and places the base

workflow in the inactive state.
� suspend(wf, [A]): suspends the activity A in the

base workflow wf for the current case. If activity A

is not executing, it has no effect. Finally, if the

argument A is missing, all executing activities are

suspended.
� wait and suspend(wf, [A]): this meta activity waits

for the activity A in the base workflow wf to be

done and then suspends whatever activity or

control element follows A in wf. If the argument

A is missing, then the process is repeated for all

executing activities in wf.
� resume(wf, [A]): resumes activity A in the base

workflow wf. If A is not in suspended state in the

base workflow, the meta activity has no effect. If

argument A is missing, then the workflow resumes

where it was suspended. All activities are resumed

asynchronously, that is, resume(wf,A) will not wait

until A is finished.

In the meta activities above, the argument for an

activity could specify an activity name (such as A),

or be an expression A+, which refers to the control

path of the workflow immediately after A. This is a

syntactic abbreviation that is convenient in the case

of the wait and suspend activity: after a wait and

suspend(A) one can execute a resume(A+), which

will resume at whatever task or control element

follows A.

A meta workflow is described as a sequence

of meta activities, separated by ‘‘;’’. The opera-

tional semantics of each of these meta activities

is given in Fig. 3 along with appropriate data

structures.

antics of the meta activities.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–10594
2.6. State representation in ESP framework

We will define a state representation in ESP as a

logical formula which may refer to the states of

activities (done, executing, ready, aborted, suspended)

and to conditions that refer to case data (that is,

application data that pertains to the current case).

Since we extended the concepts of states to the control

elements, one can also make reference to them on

such expressions, as well as use the syntactic abbre-

viation A+ discussed above. The symbol Done refers

to the set of all activities and control elements that are

in the done state; similarly the set Executing refers to

all activities and control elements in the executing

Fig. 3. Operational sem
state, and so on. Also, all expressions make reference

to the current round of a while-do construct.

Thus, the formula:

ðAaDone ^ fB;CgpExecuting ^ CostV300; 000Þ
_ðfA;B;CgpDone ^ IðDaDoneÞÞ

represents the situation in which activity A is done,

activities B and C are still executing, and the case

data cost is less than or equal to $300,000, or A, B,

and C are all done but D is not.

The semantics of referring only to the current

round places some limitations on the expressive

power of the language. For example, one cannot refer

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 95
to different rounds (say, A was executed in the last

round but not in the current one) or count the number

of incarnations of an activity (A and B where executed

more than three times). However, this limitation can

easily be overcome by minor changes in syntax.
Fig. 4. A base workflow, wf2, for additional budget approval.
3. Examples

In the previous section, we described the meta

workflows framework that consists of a collection of

base workflows, ESP rules and meta workflows. The

operational semantics of this framework was also

discussed in detail. In this section, we give examples

to illustrate our framework. These examples illustrate

generic situations that often arise in workflows and

also consider synchronous, external and asynchronous

events. These examples are discussed in the context of

a basic setting that describes a base workflow for

ordering a laptop.

3.1. Example 1

Consider a base workflow, wf1, as shown in Fig. 1

[2], for ordering a laptop. This workflow corresponds

to the WQM model, and includes several tasks or

activities such as entering the order, obtaining multi-

ple approvals, placing separate orders for components

of the laptop, receiving the parts, assembly and

delivery. The split-choice node allows one path to

be taken based on a condition (e.g., new/old order).

The split-parallel node allows multiple activities to

proceed in parallel. The While-do construct is used to

expression repetition. The various activities of this

workflow process have been labeled (A, B11, B12, etc.)

in the figure for ease of reference. The subsequent

examples will make reference to these activities.

3.2. Example 2: workflow modification

In this example, we consider a process that will

perform an ‘‘additional budget check’’ after the reg-

ular ‘‘budget check’’ activity is done, if the budget for

this order is found to be greater than $3000, since that

is the maximum allowed by company policy for a

laptop. In this case, the VP of Finance and the

President must approve the request as an exception

since it exceeds the company limit. We name this sub-
workflow process shown in Fig. 4 as wf2. It will be

triggered by meta workflow mwf1 if an internal

synchronous event generated when the activity B3

(from Example 1 of Fig. 1) ends (denoted as synch_e-

vent11 =Done(B3)) is received by the system and the

associated condition is true. The condition requires

that activity B2 also be already done, the result from

B2 should be ‘okay’ and the Budget amount be greater

than $3000. The rationale for this is that unless the

technical check is approved, there is no point in

sending this case for an additional budget approval

(the same might also apply to the VP/manager ap-

proval but we omit that for simplicity). Thus, event11
is captured by an ESP rule only if this compound

condition based on the state and case data evaluates to

true; otherwise, the event will be disregarded. If the

condition is true, the ESP rule will trigger a meta

workflow to suspend wf1 and start wf2 to perform the

additional reviews. After the additional approvals

finish, the event Done(wf2) will trigger the meta

Fig. 5. A workflow, wf3, for process cancellation.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–10596
workflow mwf2 to resume the original base workflow

wf1. Now, if the condition is false, then the meta

workflow is not activated and the original workflow

keeps running. The second ESP rule is similar to the

first and covers the case where B2 is done after B3.

The states, meta workflows, and exception rules for

this situation are shown in Table 1.

3.3. Example 3: workflow cancellation

Cancellation is a common activity in workflows. In

many situations a cancellation workflow must be

invoked in order to undo the partial effect of another

workflow. Let us consider that the employee cancels

her order after the orders have already been placed

with the laptop, card and case vendors. In this case a

cancellation workflow wf3 will be started as shown in

Fig. 5. The cancellation workflow must cancel the

respective orders with the three vendors, and after

receiving a confirmation from them, the employee

should be notified. There may also be a cancellation

charge that may apply to the employee’s account. The

event that initiates this is a cancel event. When this

event is received by the ESP module, a condition

check is performed to verify that the parts have not

been received. If so, meta workflow mwf6 is started.

This will first suspend the base workflow and then run

the cancellation workflow. Finally, the base workflow

will be terminated.

The states, meta workflows, and exception rules

for this event are shown in Table 2. Note that

cancellation is an external event, as opposed to an

event generated by a running workflow. Also note that

if the condition check fails, i.e., activity F is in

executing or done state, then another ESP rule will

be required to perhaps run a different workflow. For
Table 1

Formal definition of additional budget check

Events synch_event11 =Done(B3)

synch_event12 =Done(B2)

synch_event2 =Done(wf2)

Meta workflows mwf1: suspend(wf1) ; start(wf2);

mwf2: resume(wf1);

ESP rules wf1/Done(B3): B2aDone^B2.result = ‘okay’^
Budget>$3000!mwf1
wf1/Done(B2): B3aDone^B2.result = ‘okay’^
Budget>$3000!mwf1
wf2/Done(wf2)!mwf2
instance, if some parts of the order have already

arrived, then they may have to be returned to the

vendor involving some additional steps. The work-

flow in Fig. 5 will need to be modified accordingly.

3.4. Example 4: change order—change an existing

order

Next we consider how an order can be changed in

response to a change_order event. This is a complex

request because it might be permissible to change the

order only if it has not gone into assembly. Therefore,

when the event arrives, it is necessary to check whether

the assembly task has started executing (or it might

even be already done). In this case, the change order

request is denied. On the other hand, if the order is

neither done nor has it gone into assembly, then the

main workflow wf1 is suspended and workflow wf4 is

started. This workflow first calculates the amount of

the revised order. Then, if the amount of the revised

(new) order is less than the amount of the current order,

then new components are ordered, any old components

are returned and the workflow wf4 (see Fig. 6) returns
Table 2

Formal definition of workflow cancellation

Events ext_event3 = Cancel

Meta workflows mwf3: suspend(wf1); start(wf3); terminate(wf1);

ESP rules wf1/Cancel: Faready_F anot_ready!mwf3

Fig. 6. A base workflow, wf4, for change_order.

Table 3

Formal definition of rules for handling change_order event

Events ext_event4 = change_request

Meta workflows mwf4: wait and suspend (wf1); start(wf4);

mwf5: start(wf5);

mwf6: resume(wf1); start(wf6);

mwf7: start(wf3); terminate (wf1); start(wf7);

ESP rules wf1/change_request: I(assemble a executing) ^
I(assembleadone)^join_parallel1adone!mwf4
wf1/change_request: assembleaexecuting _
assembleadone!mwf5

wf1/done(wf4): result = ‘okay’!mwf6

wf1/done(wf4): result = ‘cancel’!mwf7

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 97
a result of ‘okay.’ Alternatively, if the new order

amount is greater than that of the current order, the

order must be cancelled and resubmitted. Next, the
Fig. 7. Workflows wf5
done(wf4) event is captured, and based on the result

being okay or cancel, metaworkflows mwf6 or mwf7,

respectively, are started. The meta workflow mwf6

causes the main workflow wf1 to resume and also

starts wf6 (see Fig. 7) to notify the customer that the

change has been confirmed. On the other hand, meta

workflow mwf7 starts wf3 to cancel the current order,

then it terminates wf1 and starts wf7 (see Fig. 7) to

notify the customer. Table 3 gives the states, meta

workflows and exception rules for this example.

3.5. Discussion

Above we discussed three different examples of

varying degrees of complexity to illustrate the features

of the meta workflows approach. Status notification is

another common scenario in workflow applications. In

our running example, if the parts arrive late, the
, wf6 and wf7.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–10598
delivery of the final product may be potentially delayed

and, hence, the assembly line, final customers, and

suppliers should be notified. Therefore, after activity F

of Fig. 1 is completed, an asynchronous event would be

generated and a workflow associated with it.

These examples serve to illustrate the main idea

behind this approach which is to decouple the control

aspects from the process descriptions. Thus, we are

able to exploit meta workflows as a mechanism for

stitching together workflow snippets, where each

snippet can serve as a component and be called from

meta workflows. As an example, the cancel workflow

was called in the change_order process implementa-

tion in Section 3.4. Moreover, business processes can

be modified more easily by making changes to the

ESP rules and adding small workflow snippets. For

instance, in the change_order example, if the change

order policy were to be modified such that changes

could occur only if the parts had not yet been

received, this could be achieved by only changing

the ESP rules of Table 3.
4. Architecture and expressive power of ESP

4.1. Architecture

The architecture for incorporating this frame-

work is shown in Fig. 8. The philosophy behind
Fig. 8. An architecture for
this architecture was to exploit an existing work-

flow engine and expand its functionality by adding

meta workflow support to it. In this architecture

we extend an existing workflow enactment service

with two modules: an event support module and a

meta workflow module. The workflow engine is

shown on the left of the figure with standard

components. The components on the right are new

additions.

The ESP support module allows users to specify

rules. It registers events of interest with the work-

flow engine. These events could be standard events

like start of an activity, end of an activity, etc., and

also non-standard events unique to each workflow

case (such as parts arrived late, special approval

required, etc.). In addition, there will also be external

events like cancellation of a running workflow

instance. An event is accompanied by a case-id

and case data. The case data will pertain to the

current state of a running instance and also specific

data values pertaining to the case. The ESP module

will use this information to select the first applicable

rule from its database, and the corresponding meta

workflows to run. The ESP module passes the meta

workflow and case information to the meta workflow

(MWF) execution support module. The MWF sup-

port module manages the execution of the meta

activities by sending them to the main workflow

engine.
the ESP framework.

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 99
Clearly, to support this architecture, some modifi-

cations are required in an existing workflow engine.

The main requirements are as follows:

� Allow registration of events of interest to ESP

support module
� Send events and case data of running instances to

the ESP support module
� Receive meta activities from the MWF support

module and run them according to the correct

semantics (see Section 2).

4.2. Expressive power of ESP

The meta activities were carefully chosen in an

effort to strike a balance between usefulness of these

primitives and giving users unconstrained power that

may throw the workflow out of control. For example,

there is no meta activity for raising an event. Thus,

there is no way for a meta workflow to activate a

new rule and start a new meta workflow. Because of

this limitation the situation in which there is an

infinite loop of event capture and event generation

is impossible.

More important is the fact that it is not possible to

start any activity of the base workflow, one can only

suspend and possibly resume a suspended activity.

This limitation is necessary in order to guarantee that

some of the ‘‘good’’ properties of the base workflow

are transferred to the resulting workflow. One such

good property is termination—one would like a

workflow to terminate correctly in all execution

situations, instead of entering into a deadlocked state.

Of course, if the situation requires that the workflow

should not terminate, as in a cancellation example,

one could use a meta activity of terminate(base

workflow) which will stop the base workflow. But if

only a temporary suspension of activities is needed,

and if the ESP rules and meta workflows follow some

simple guidelines, the temporary suspension will not

cause the base workflow to go into a deadlock when

resumed. The core of the guideline is that for each

suspend(wf,A) or wait and suspend(wf,A) meta oper-

ation, a corresponding resume(wf,A) or resu-

me(wf,A+) operation is executed in the meta

workflow.

The proof is intuitive: if a suspend(wf,A) is always

followed eventually by a resume(wf,A) then from the
base workflow’s point of view, it is equivalent to

activity A taking a longer time to execute. But since

by the assumption that the base workflow has been

verified, and will not go into a deadlock state in any

execution trace, it follows that in this execution as

well in which A takes longer, it will also terminate

correctly. The same argument is also valid for a wait

and suspend(wf,A) and resume(A+) sequence.

The guidelines for designing meta workflows can

be summarized as:

1. Verify the correctness of each base workflow. As

we argued above, each base workflow is usually

‘‘simple,’’ and for the simpler ones their correct-

ness can be verified by inspection. A complex

workflow can be checked using verification

techniques (see Refs. [20,16,21]).

2. Given a set of meta workflows, verify that each

suspend(wf,A) or wait and suspend(wf,A) meta

activity is followed eventually by a corresponding

resume(wf,A) or resume(wf,A+) meta activity. This

verification may in fact be complex because

typically each corresponding meta activity will be

in a different meta workflow (see example 3.3),

which will be started by different ESP rules.

3. Optionally, a suspend(wf1) may be eventually

followed by a terminate(wf1). This is a standard

primitive for controlled termination of a work-

flow—first, all activities are suspended and then

the workflow is terminated.

5. Discussion and related work

Recently, there has been growing interest in repre-

senting workflows in XML syntax for inter-operabil-

ity. Some examples of this approach are XRL [19] and

BPEL4WS [22]. The workflows and meta workflows

described in this paper can easily be expressed in

XML syntax. We have given an XML Schema de-

scription for the workflows and meta workflows in

Appendices A and B. The XML Schema in Appendix

A can be used to create XML workflows like the ones

used in the examples in this paper. The main elements

in this XML Schema are sequence, parallel, choice

and while_do. XML is a structured language and it

can be used to represent structured workflows like the

ones in our earlier examples using matching start and

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105100
end tags. Thus, start-parallel and end-parallel con-

structs shown in Fig. 1 would be represented by

hParalleli and h/Paralleli tags, respectively. The

ESP rules and meta workflows can be expressed using

the XML Schema description of Appendix B.

5.1. Related research on exceptions and events

Support for events plays an important role in

modeling of inter-organizational workflows because

events offer a convenient mechanism for coordina-

tion. The need for such support has been noted

elsewhere also (see Ref. [8] for an example). This

paper has proposed to integrate events with meta

workflows to create a powerful coordination and

control mechanism. The usefulness of this approach

was illustrated through various examples. Coordina-

tion requirements can be quite complex in inter-

organizational workflows [19,6,7]. Our approach can

have considerable value in the context of Web serv-

ices [17] and supply chain applications [3]. In Web

services, meta workflows can be used to facilitate

inter-operation between multiple related services (e.g.,

airlines, hotel and car rental reservations) that must be

integrated. In supply chain applications, exceptions

like missed deliveries, stock-outs, etc. arise quite

often. Here our framework can assist in reacting to

such new events in a systematic manner and improv-

ing the level of collaborative information sharing

between partners.

A prototype event engine, called EVE, for imple-

menting event-driven execution of distributed work-

flows has been presented in [5]. However, the most

relevant related work to ours is the event-based inter-

process communication in the context of OPERA [8].

The mechanism described in Ref. [8] allows processes

to communicate by means of event based control

connectors (ECCs). An ECC is associated with an

event and, upon occurrence of the event, if a condition

is true then another process or an activity can be

invoked. Our approach is similar in spirit to this work;

however, we make a clear distinction between work-

flows and meta workflows, which is lacking in [8].

This separation allows for a more systematic and

flexible methodology for process design, and nicer

semantics. Thus, meta workflows serve as a useful

modeling construct for controlling multiple work-

flows and dealing with various kinds of special
(exception) situations that often arise, including fail-

ure handling, recovery, etc.

Research on exceptions in workflows is still

limited. In Ref. [18], Strong and Miller define

exceptions as ‘‘cases that computer systems cannot

correctly process without manual intervention.’’

Based on a field study they make several recommen-

dations, such as the need for more efficient exception

handling routines and better support for people who

have to fix exceptions. Murata and Borgida [15]

describe exceptions as violations of constraints and

apply ideas from exception handling in programming

languages. They treat an exception as an object

belonging to a class that can have attributes. Their

class structure is similar to a taxonomy. Another

taxonomy-based approach to handling exceptions by

Klein and Dellarocas is presented in [11]. They

define an exception as ‘‘any departure from a process

that achieves the process goals completely and with

maximum efficiency.’’ The authors propose to create

a taxonomy based on the type of exception and have

corresponding strategies to be applied once an ex-

ception can be classified. The approach in Ref. [4] is

based on ECA style rules. These rules are bound to

the workflow for exception handling at different

levels of scope.

As noted in [8] also, the event-based framework

has some similarities with the ECA style rules [14].

Clearly, both approaches are based on rules and

events. However, the application environments and

semantics are different. ECA rules are used in active

databases in the context of changing data. ECA has

also been proposed in the WIDE and EVE prototype

workflow systems [1,5] as a means to describe the

coordination requirements in a workflow itself and to

handle simple exceptions. The major difference is that

an action in ECA corresponds to a sub-transaction

(such as updates to the database). In workflows,

instead of the action a special process called a meta

workflow is executed resulting in vastly different

semantics. Therefore, an attempt to implement this

framework in a database that supports ECA rules is

likely to be impractical and awkward.

Recently there has also been interest in adaptive

workflows [9,10]. Adaptability and extensibility are

important features of our framework. Since all excep-

tions cannot be anticipated in advance, it is possible to

add additional secondary base workflows and

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 101
corresponding meta workflows to react to new sit-

uations. Moreover, workflow modules developed for

one application may be reused in another application.

In the next subsection we briefly discuss how our

work relates to web services and in particular to

BPEL4WS.

5.2. Web services and BPEL4WS

There has been considerable interest in recent years

in the design and implementation of Web services.

Business Process Execution Language for Web Serv-

ices (BPEL4WS) has emerged as a new standard for

describing web services [22]. BPEL4WS gives a

syntax for describing formal specification of business

processes and business interaction protocols in XML.

By doing so, it extends the Web Services interaction

model and enables it to support business transactions.

BPEL4WS defines an interoperable integration model

that should facilitate the expansion of automated

process integration in both the intra-corporate and

the business-to-business spaces. Naturally, a web

service that spans multiple organizations, or even

departments, should have a way for describing the

workflow associated with it. Hence, workflows are

integral to web services.

BPEL4WS provides a variety of constructs for

describing a workflow, the complex coordination

arrangements between various activities involved in

it and also the flow of data between the activities. The

present discussion of BPEL4WS is primarily limited

to features that are relevant to support of exception

handling and meta-level control. BPEL4WS has a

double concept of faults and events, which would

roughly correspond to our events. Faults are events

that represent ‘‘errors’’ and thus have a standard

solution: undo what has been done. To each activity

and to segments of activities (each segment can be

described as a scope) one can associate a compensat-

ing activity, so that in the case of a fault, if the activity

is terminated, the system will call the compensating

activity to undo it. This default behavior would be

replicated in our framework by creating an appropriate

meta workflow to call the corresponding compensat-

ing activities. However, the ESP framework takes a

broader view of events than BPEL4WS in that events

are not in general ‘‘errors,’’ but situations where

complex reasoning is required.
Events in BPEL4WS are asynchronous notifica-

tions that need complex activities to be dealt with.

One can define event handlers that are associated

with a scope of the workflow: if an event happens

during the execution of any activity in its scope, the

execution of the associated handler starts in parallel

with the already executing activities in the scope. The

event handler can execute any (standard) activity, can

terminate activities in progress and can generate new

events and faults. Thus, by generating a fault an

event handler can cause the effect of an activity

within its scope that has already terminated to be

compensated.

ESP has a somewhat similar semantics, that is,

event handlers (in our case the meta workflows) run in

parallel with the standard workflow. However, our

meta workflows have more complex meta activities

available to them: BPEL4WS only allows for start of

new activities and the termination (unconditional, not

compensable) of all activities within the current scope,

and indirectly, through generation of a fault, the

compensation of activities already terminated; ESP

allows also for suspension and resumption of activi-

ties, and waiting for them to terminate.

Another feature that adds to the expressive power

of ESP is the state description language. In

BPEL4WS, an event handler is started if any of the

activities within the current scope is still running. In

terms of the ESP state description language, this

means that BPEL4WS only allows for state descrip-

tions that are a disjunction of expressions of the form

activityiaexecuting, where activityi is in the current

scope. Thus, in BPEL4WS it is not possible to write

exception handling workflows that depend on the case

data or on complex conditions regarding the state of

the base workflow, especially if the base workflow

has concurrently running branches.

Table 4 summarizes and compares the terminolo-

gy and features of the two approaches. We perceive

the main advantages of the ESP framework as being:

(1) performing various actions based on the state of

the workflow; and (2) the ability to exercise meta

control on the base workflows. The strengths of

BPEL4WS lie in formal notions of different types

of handlers for events, compensation and faults. ESP

does not make such a distinction and treats all

handlers in the same way. A more detailed compar-

ison between these two approaches through actual

Table 4

Comparison of main features of BPEL4WS and ESP framework

Issue BPEL4WS ESP Framework

Basic mechanism Events, faults Events

How are errors

generated?

By activities—No

logic for checking

state

From combination of

event occurrences and

case data

How are

exceptions

handled?

Compensation

handlers, fault

handlers

Meta workflow+

base workflow

Control of

business

process

No way to control

running activities

other than terminate

suspend, resume,

wait and suspend

meta activities allow

fine control

Method for

maintaining

state

Correlation set Case id

Scope of handlers Handlers act based on

their hierarchical

scopes

No explicit notion

of scope

Rethrowing of

events

Can Rethrow events

to a higher scope

Meta workflows

do not raise events

Purpose Handling faults and

exceptions

Handing exceptions

and also as a

methodology

Other Complex,

heavy-weight

mechanism

Simpler, light-weight

framework

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105102
implementation of, say, the same application using

the two approaches would be very useful, but is

beyond the scope of this work.

5.3. ESP as a methodology

ESP can also be seen as a methodology to

develop workflow models. The normal case is

developed as a base workflow, and as exceptional

cases are discovered they are added as other base

workflows, metaworkflows and ESP rules. In fact,

the example of workflow modification (see Section

3.2) in this paper is more of an example of

incremental development of a workflow than an

example of exception handling. When the ‘‘normal’’

case was thought out, the developer did not take

into consideration the ‘‘exception’’ case of laptops

costing more than $3000. As the workflow is put to

use, this new situation is discovered, and the appro-

priate incremental modification is added to the

system. The original workflow is kept unchanged,

and the modifications are added as new ESP rules,
meta- and base workflows. A major advantage is

that a working workflow does not need to be

modified with optional control structures which

may introduce new errors. Our approach allows

the workflow to evolve and the framework provides

flexibility and support for such evolution, leading to

adaptable workflows.
6. Conclusions

This paper described a framework and architecture

for support of exception handling in business work-

flows. It is based on detecting event-state combina-

tions that cause higher level processes called meta

workflows to be executed. A meta-process consists of

five meta activities for controlling and coordinating

base workflow processes. We demonstrated the use-

fulness of the approach and gave an architecture for

integrating this approach into a current workflow

system. The advantages of this framework are mod-

ularity, extensibility and adaptability.

We foresee further research along several lines.

First, we already have a prototype implementation of

XRL (eXchangeable Routing Language) technology

[19] and are planning to use this as an experimental

test bed for adding the functionality proposed in this

paper for meta workflows. Such a test bed would

allow us to evaluate the proposal from a performance

standpoint. Secondly, although we gave the semantics

for execution of meta workflows themselves, rule

conflicts were ignored since we assumed that the rules

are ordered by priority and the first applicable rule

fires. Future work could address this by developing

detailed rule execution semantics. Thirdly, support for

composite events would be a useful feature. At

present each event is processed as soon as it occurs,

and if no matching ESP rule is found it is discarded.

Support for composite events would allow for action

to be taken on multiple events that are related to one

another.
Acknowledgements

This research was supported in part by a grant from

the IBM Corporation through the Center for Supply

Chain Research at Penn State University.

Appendix A. XML schema definition of base workflow (WFlow.xsd)

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 103

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105104
Appendix B. XML schema definition of ESP rules

and meta workflows (MWFlow.xsd)

A. Kumar, J. Wainer / Decision Support Systems 40 (2005) 89–105 105
References

[1] F. Casati, S. Ceri, S. Paraboschi, S. Pozzi, Specification and

implementation of exceptions in workflow management sys-

tems, ACM Transactions on Database Systems 24 (3) (1999

Sept.) 405–451.

[2] V. Christophides, R. Hull, A. Kumar, Querying and splicing of

XML workflows, CoopIS, (2001) 386–402.

[3] T. Curran, A. Ladd, SAP R/3: Understanding Enterprise Sup-

ply Chain Management, Prentice-Hall, Upper Saddle River,

NJ, 2000.

[4] K.W.C. Dickson, Q. Li, K. Karlapalem, A meta modeling

approach to workflow management systems supporting excep-

tion handling, Information Systems 24 (2) (1999) 159–184.

[5] A. Geppert, D. Tombros, Event-based distributed workflow

execution with EVE, Technical Report 96.5, University of

Zurich, 1996.

[6] P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig, Crossflow:

cross-organizational workflow management in dynamic virtu-

al enterprises, International Journal of Computer Systems Sci-

ence and Engineering vol. 15 (5),CRL Publishing, London,

2000 (September), pp. 277–290.

[7] B. Gronemann, G. Joeris, S. Scheil, M. Steinfort, H. Wache,

Supporting cross-organizational engineering processes by dis-

tributed collaborative workflow management—The MOKAS-

SIN approach, Proc. of 2nd Symposium on Concurrent

Mulitdisciplinary Engineering (CME’99), Bremen, Germany,

1999.

[8] C. Hagen, G. Alonso, Exception handling in workflow man-

agement systems, IEEE Transactions on Software Engineering

26 (10) (2000) 943–958.

[9] Y. Han, A. Sheth, C. Bussler, A taxonomy of adaptive work-

flow management, Workshop on Adaptive Workflow Systems,

ACM Conference on Computer Supported Cooperative Work,

Seattle, Washington, USA, 1998.

[10] G. Joeris, O. Herzog, Managing evolving workflow specifica-

tions, 3rd IFCIS Intl. Conf. on Cooperative Information Sys-

tems (CoopIS’98), 1998, pp. 310–319.

[11] M. Klein, C. Dellarocas, A knowledge-based approach to han-

dling exceptions in workflow systems, Computer Supported

Cooperative Work (CSCW) 9 (3/4) (2000) 399–412.

[12] A. Lazcano, G. Alonso, H. Schuldt, C. Schuler, The WISE

approach to electronic commerce, Computer Systems Science

and Engineering 15 (5) (2000) 345–357.

[13] H. Lee, S. Whang, Information Sharing in Supply Chains,

Stanford Graduate School of Business, Research paper

(1998) 1549.

[14] D.R. McCarthy, U. Dayal, The architecture of an active data-
base system, Proc. ACM SIGMOD Conf. on Management of

Data, Portland, 1989, pp. 215–224.

[15] T. Murata, A. Borgida, Handling of irregularities in human

centered systems: a unified framework for data and processes,

IEEE Transactions on Software Engineering 26 (10) (2000

October) 959–977.

[16] W. Sadiq, M.E. Orlowska, Analyzing process models using

graph reduction techniques, Information Systems 25 (2) (2000

June) 117–134 (Elsevier).

[17] M. Sayal, F. Casati, U. Dayal, M. Shan, Integrating workflow

management systems with business-to-business interaction

standards, Proceedings of ICDE 2002, San Jose, California,

2002 (February).

[18] D. Strong, D. Miller, S. Miller, Exceptions and exception

handling in computerized information processes, ACM Trans-

actions on Information Systems 13 (2) (1995) 206–233.

[19] W.M.P. van der Aalst, A. Kumar, XML based schema defini-

tion for support of organizational workflow, Information Sys-

tems Research 14 (1) (2003 March) 23–46.

[20] W.M.P. van der Aalst, A.H.M. ter Hofstede, Verification of

workflow task structures: a Petri-net based approach, Informa-

tion Systems 25 (1) (2000) 43–69.

[21] H.M.W. Verbeek, T. Basten, W.M.P. van der Aalst, Diagnos-

ing workflow processes using Woflan, Computer Journal 44

(4) (2001) 46–279.

[22] Web Services, BPEL specification version 1.1, http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel.

Akhil Kumar is a professor of Information Systems at the Smeal

College of Business at Penn State University. He has a Ph.D. from

Berkeley and has published about 60 papers in the areas of database

systems and structures, data replication, machine learning and

workflow systems in leading academic journals, and international

conferences and workshops. He serves on the editorial boards for

three information technology academic journals. His current re-

search interests are in design, analysis and verification of workflow

processes, design and implementation of e-services, and web-based

technologies.

Jacques Wainer is an associate professor at the Institute of

Computing in the State University of Campinas (UNICAMP),

Brazil. His academic interests and publications are in the areas of

collaborative computing, artificial intelligence, and medical infor-

matics. He is also a visiting professor at the Department of Medical

Informatics at the Federal University of Sao Paulo (UNIFESP). Dr.

Wainer has consulted for many companies in the area of workflow

systems and artificial intelligence.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

	Meta workflows as a control and coordination mechanism for exception handling in workflow systems
	Introduction
	Formal description
	Workflow and workflow instances
	Activities and state of activities
	Events
	ESP framework
	Meta activities and meta workflows
	State representation in ESP framework

	Examples
	Example 1
	Example 2: workflow modification
	Example 3: workflow cancellation
	Example 4: change order-change an existing order
	Discussion

	Architecture and expressive power of ESP
	Architecture
	Expressive power of ESP

	Discussion and related work
	Related research on exceptions and events
	Web services and BPEL4WS
	ESP as a methodology

	Conclusions
	Acknowledgements
	XML schema definition of base workflow (WFlow.xsd)
	XML schema definition of ESP rules and meta workflows (MWFlow.xsd)
	References

