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This paper presents a pair of role-based access control models for workflow systems,

collectively known as the W-RBAC models. The first of these models, W0-RBAC is
based on a framework that couples a powerful RBAC-based permission service and a

workflow component with clear separation of concerns for ease of administration of au-

thorizations. The permission service is the focus of the work, providing an expressive
logic-based language for the selection of users authorized to perform workflow tasks,

with preference ranking. W1-RBAC extends the basic model by incorporating exception

handling capabilities through controlled and systematic overriding of constraints.

Keywords: workflow management, access control, RBAC, constraints

1. Introduction

1.1. Workflow management systems

Workflow management systems, or workflow systems for short, allow for the def-
inition and enactment of business procedures. A workflow system stores definitions
of procedures in terms of their tasks, definitions of users that should perform the
tasks (usually as roles), and a partial ordering of tasks that establishes constraints
on task execution. More formally, we will define a workflow procedure W to be a
tuple (T ,P≺), where T is a set of tasks and P≺ is a partial order relation on T .
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Figure 1: Ordering of tasks in a reimbursement process.

Example 1 Take for instance a typical process for reimbursement of operational
costs, W = ({request , auditing , approval1 , approval2 , refund , rejection},P≺), with
P≺ defined as shown in Figure 1. A reimbursement process is started by a request
task in which an employee requesting reimbursement inputs information. The re-
quest is then analyzed in an auditing task, followed by two approvals. Depending
on the results of the approval tasks, either a rejection task is initiated to format
the reasons for denial and inform the requester, or a refund is issued. The partial
ordering of tasks establishes constraints on task execution, so that, e.g. request,
auditing and the two rounds of approval may be required to be executed strictly
sequentially, and rejection or refund (which are mutually exclusive), can be started
as soon as the second round of approvals has been completed.

Typically, workflows have a mix of automatic tasks and tasks that require perfor-
mance by humans. In the reimbursement process, for instance, most tasks require
human intervention, and perhaps rejection and refund might be automatic, either
generating an email to be sent to the requester, or sending out an electronic order
for the payment, respectively.

Once a workflow procedure W such as the one just described is defined, a work-
flow system automates (or enacts) it by creating instances (also known as cases
in the workflow literature). At any time, zero or more instances of a workflow
procedure might be being enacted. Each instance is a forward-recoverable long
transaction that has a private state that is isolated from potentially other instances
of the same process, e.g., “Anna’s request for travel expenses reimbursement for her
trip to Cairo.” We will define C as the set of all cases of W . ci ∈ C represent an
instance (or single case) of W .

Each case ci might potentially be executing a different set of tasks at each
moment. Instances of tasks are created as their preconditions are met (e.g. as
the previous tasks they depend upon are completed), followed by a user selection
phase for those tasks that require human intervention. Once a specific user is
selected, a workflow system makes available for her the data and applications that
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are required for performance of the task. Once a user declares a task completed,
the workflow system updates its state and looks for other tasks that might have
become enabled for execution, and the instantiation and user selection process is
repeated. Execution state is stored in persistent logs, allowing forward recovery in
the presence of execution disruptions.

The focus of the present paper is on the selection of users to perform workflow
tasks. Besides timely instantiation of tasks (control flow aspect), one of the main
duties of a workflow system is to determine who among the users are the most
appropriate to execute each task, as well as determining an order of preference if
more than one user fits the requirements for execution (resource allocation aspect).
While any employee can, in principle, fill out a reimbursement request, only certain
users should perform various other tasks. Auditing, for example, should only be
performed by auditors. The same applies to the remaining approval tasks. Clearly,
it is necessary to select users who have enough authority to grant the approval. At
the same time, it is necessary to avoid situations in which, for instance, an employee
gets to audit or approve his own requests.

Conventional workflow systems rely on simple mechanisms that are usually based
on assigning users to roles and roles to tasks, so that only those users that can play
a role that is associated with a task will be able to perform it. In other words, in
these systems, a task T ∈ T is defined as a tuple (D,R), where D is some sort of
description and R ∈ R is one element from a set of roles R (of course a task may
include information on other aspects as well, but here we restrict the discussion to
the elements that are related to user selection). Users are in turn associated to one
or more roles they can play. The usual way such systems select users to execute
a task is to ’offer’ new tasks to all employees that can play the associated role R,
by inserting a new item in their electronic ’in baskets’. Once one of the potentially
many users starts executing the item, it is retracted from other users’ in baskets
and this user becomes the assigned executor of the task instance. This mechanism,
while flexible, does not take into consideration authorization constraints on the
roles, such as binding and separation of duties. Separation of duties is a traditional
business technique that tries to minimize fraud by spreading the responsibility and
authority for an action or task over multiple users, thereby decreasing the risk
involved in committing a fraudulent act by requiring the involvement of more than
one individual1. Binding of duties, on the other hand, refers to having the same
user that performed a task be responsible for one or more other related tasks, e.g.
because of the exogenous knowledge that the user acquires while performing the first
task, or to simplify the interaction with a client. The conventional user selection
mechanism employed by workflow systems does not allow for such a fine grained
specification of a user selection criterion.

Example 2 In real world scenarios, one would wish to specify execution require-
ments for example 1 above such as:

1. The request task can be performed by any employee.
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2. The auditing task can be executed by anyone that can play the role of auditor
(2.1), provided this user is not the requester herself (2.2). Furthermore, it is
preferred that both the requester and the auditor be members of the same
organizational unit (2.3).

3. The first approval task should be executed by a head of the organizational unit
from which the employee is requesting reimbursement (3.1), and she cannot
be the requester herself (3.2). Lets call this user Approver1.

4. The second approval needs to be performed by somebody at the same or at a
superior hierarchical level of Approver1 (4.1). It cannot be the requester(4.2)
or Approver1 (4.3).

where the number in parenthesis is a reference to the (sub) requirement. It is
important to notice that not only categorical requirements are needed, for example
2.1 and 2.2, but also preference requirements such as 2.3.

It is clear that the simple role assignment used by conventional workflow sys-
tems is not expressive enough to handle even simple requirements as the ones just
enunciated. There is therefore a clear need for enhancements to the user selection
mechanisms, both in terms of security and expressiveness.

1.2. Role-based access control model

The Role-Based Access Control model (RBAC) (for example Sandhu et al.17)
is receiving attention as a systematic way of implementing the security policy of
an organization. It groups individual users into roles and assigns permissions to
various roles according to their stature in the organization. Roles are organized
in a hierarchy or lattice; other additional structures, such as groups and privilege
hierarchy offer additional expressive power (e.g. Nyanchama and Osborn14). RBAC
offers therefore an interesting and well understood paradigm that extends the simple
use of roles employed in conventional workflow systems, yet shares the notion of
employing roles as the semantic construct that is at the center of authorization.

Formally an RBAC model is described by 1) entities: users U , roles R, priv-
ileges P, 2) relationships between these entities, and 3) constraints over these
relationships. A meta-model is displayed in Figure 2.

User PrivilegeRole
Can-Play Hold

Is-a Imply

Figure 2: Meta model.
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• a user u ∈ U represents individual users.

• a privilege p ∈ P represents classes of rights to perform operations, tasks,
access data, and so on, possibly with explicit attributes. For example, travel-
approval(US$500) represents the right to execute the task of approving travel
expenses up to US$500.

• a role r ∈ R describes meaningful groupings of privileges or abilities that can
be assigned to users, e.g., the roles of manager,auditor, and so on.

RBAC defines the following relations:

• can-play(u, r), u ∈ U , r ∈ R, states that user u can play the role r. can-

play(mary, manager) says that Mary can play the role of manager.

• is-a(r1, r2), r1, r2 ∈ R, states that role r1 is a kind of (and thus inherits all
privileges) role r2. is-a(c-programmer,programmer) states that c-programmers
are a kind of programmer, and thus a c-programmer has all the rights that a
programmer has, and possibly more.

If is-a(r1, r2) is true, we will say that r1 is larger than r2, and conversely that
r2 is smaller than r1. These are not standard RBAC names, but we feel that
they are neutral enough not to convey any ordering of importance between
the roles. r1 is larger than r2 because it hold all the privileges that r2 does,
and more.

• hold(r, p), r ∈ R, p ∈ P, states that role r holds the privilege p.

• imply(p1, p2), p1, p2 ∈ P, state that privilege p1 is stronger, or supersedes, or
includes p2. For example the right to approve travel expenses up to US$1000
implies (is stronger than) the right to approve travel expenses up to US$500.

If imply(p1, p2) is true we will say that p1 is stronger than p2

There are some implicit inheritance structures in RBAC. The first one is defined
by the is-a relation among roles, that follows the RBAC model: if is-a(r1, r2) then
for all p such that hold(r2, p), it is also the case that hold(r1, p).

The second inheritance structure is defined by the imply relation: if imply(p1, p2)
then in every situation in which p2 is the appropriate right to accomplish something,
p1 can also be used to accomplish that.

The RBAC meta model also includes the concept of constraints that can restrict
the co-occurrence of different relations. For example one may restrict the number
of different roles that any user can play to at most five. This constraint would not
allow the co-occurrence of more than five instances of the can-play relation for any
user.
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The RBAC meta-model contains another entity called session, which represent
the (temporarily bounded) exercise of a role by a user. In the RBAC model con-
straints that refer to session entities are called dynamic constraints, and constraints
that do not refer to sessions, are called static.

1.3. Goals and contributions of this paper

Workflow systems have a clear notion of history (through the persistent logs
employed for recovery, among other uses), which matches quite well the notions of
binding of duties and dynamic separation of duties, usually handled in the RBAC
literature through the association of sessions (e.g. in Goh and Baldwin1, Ferraiolo
et al.7). During a session, users are associated with a (sub)set of roles the user
can play. While users are not prevented from holding roles that conflict (because
they hold incompatible privileges such as request and audit, for instance), they are
dynamically prevented from playing these conflicting roles in the context of the same
session. Sessions are not so clearly useful in the context of business processes, which
have typically longer life spans than single user initiated session. There is therefore a
clear advantage in combining the complementary strengths of workflow systems and
RBAC. This is essentially what is described in the present work. The present paper
is therefore related to similar efforts, e.g. Bertino, Ferrari, and Atluri4,3, Castano
et al.6 and others (see the Related Work section for details and a comparison of
approaches).

We start by defining a basic model - W0-RBAC, a framework which employs
a workflow component and an enhanced RBAC-based permission service. While
the workflow component is responsible for process enactment (as defined in the
first paragraphs of this introduction), the permission service handles the selection
of authorized, most appropriate users to execute each task, based on an organiza-
tional and authorization model. W0-RBAC defines a protocol that regulates the
interaction between these two components, so that the enactment and permission
concerns are clearly separated, i.e., permissions are encapsulated in the permission
service, that is solely responsible for all authorization related information, thus
making easier the administration of authorization data.

The permission service is based on the RBAC model with extensions and is built
upon an expressive meta-model that includes users, hierarchies of organizational
units, roles, and privileges. The latter is taken in the present work to represent
the privilege to execute a task. Users are prevented from exercising incompatible
privileges through the specification of static and dynamic constraints expressed in
a logic-based language. The use of logic as a specification mechanism has a long
history, including its use for specifying workflows, e.g. Wainer20, representing au-
thorization, e.g. Li et al.12, and permission constraints in workflow systems, e.g.
Bertino et al.4.

A powerful user selection language allows a fine-grained specification of executors
for each task. An “on-the-fly” ordering can be imposed to rank users according to
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an arbitrary preference criteria.
W1-RBAC extends W0-RBAC to include a mechanism for controlled overriding

of constraints. It is well-known that workflow enactment is subject to deviations
or unanticipated situations, known in the workflow literature as exceptions. W1-
RBAC incorporates systematic and controlled exception handling capabilities by
supporting the assignment of levels of priority for each constraint, and by defining
a privilege to override constraints up to a particular level. In presence of exceptions
users can override constraints up to their authorized levels, allowing the work to flow
forward despite exceptions. Finally W1-RBAC is able to deal with the potentially
contradictory set of facts and constraints that are created when constraints are
overridden.
In summary, contributions of this work are:

• A framework that couples a powerful permission service and a workflow com-
ponent with clear separation of concerns for ease of administration of autho-
rizations.

• The framework allows for the definition of preferences in the selection of users
to perform tasks.

• Controlled and systematic overriding of constraints for exception handling.

• A prototype implementation of the system.

• The discussion of the complexity of the solution and possible optimizations.

1.4. Organization of the paper

This paper is organized as follows. Section 2 discusses related works. Section 3
describes the basic extensions we propose to the RBAC model, which include organi-
zational units and cases. Section 4 gives an architecture for a permission service and
shows how it will interface with a workflow model. Section 5 describes our approach
for controlled overriding of constraints. In Section 6 we discuss implementation of
our proposal. Section 7 discusses future work.

2. Related Work

The pioneering work of Sandhu18 introduced separation of duties in the context
of multi-step transactions through the notion of transaction control expressions. In
this work, Sandhu associates transactions steps to roles. Each user executing a step
in a transaction had to be different. To enforce this, the history of the execution of
each transaction sequence had to be maintained. This early model can be related
to simple role-based workflows with the strong restriction that users could execute
only a single task for each case.

Ferraiolo et al.7 has a similar concept of operational separation of duties, that
requires that, for all the operations associated with a particular business function
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(equivalent to a procedure in a workflow), no single user can be allowed to perform
all of these operations. This permission mechanism is not expressive enough to
allow implementation of the detailed assignments that arise in real-world business
processes like the one presented in Example 2 above.

Bertino, Ferrari, and Atluri4,3 propose an interesting and powerful constraint
based security model also based on logic predicates, that allows for somewhat dif-
ferent expressivity than the one presented here. Predicates in constraint expressions
include predicates over a role graph and predicates over history (user and role that
executed some task), task activation and task outcome (success, abort).

Because the language we propose includes the concept of case (workflow in-
stance), we are able to express inter-case constraints, for example reciprocal sepa-
ration of duties: if in a case, Amanda approved Beth’s travel reimbursement, then
Beth cannot be the approver of Amanda’s request (section 3.5). This is clearly a
desirable constraint in a real-world application, which cannot be handled by Bertino
et al.’s model, because it can only express constraints within workflow instances,
and not across them as required here.

We also include in our ontology the concept of organizational units, which is an
extension of groups proposed in Nyanchama and Osborn’s14, thus allowing one to
refer to the power hierarchy in the organization. Operations on the role hierarchy
such as the ones provided by Bertino et al.4 are not enough to represent real world
constraints (please see discussion in section 3.2).

A large section of Bertino et al.4 describes optimizations of the basic constraint
verification mechanism. We believe that at this point in time there is not enough
experience in this domain to further evaluate which method or combination of meth-
ods would reduce the overall cost of authorization related predicates, or even if any
of those optimizations are necessary for the “average case.” The present work dis-
cusses, nonetheless, possible alternatives for such optimization, should they prove
to be necessary (section 6.1).

Bertino et al.4 orders users according to a single criteria, based on the default
assumption that if a role ri is larger than role rj in the role partial order, then rj

should be given higher priority over ri when assigning a role to a task. We discuss
the need for alternative orderings and propose a flexible solution to implement them
(section 4.2).

Also the cited work uses an uncommon early definition of the executors of an
activity: at the start of the case the mapping between activity and its executors
is defined. We followed a more standard approach of delaying this binding to the
moment the activity becomes enabled. Finally, that work does not include any form
of overriding constraints, which is essential for exception handling, and, despite the
name, exceptions are actually very common in workflow enactment.

Castano et al.6 propose an active-rule based workflow security model which is
implemented on top of the Wide workflow system16. ECA (event-condition-action)
rules are employed to specify instance, history and event constraints. Selection of
agents to which tasks are assigned is discussed, e.g., first trying to assign tasks
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to authorized users placed in lower positions of the role/level hierarchies. Actual
support for policies is not presented in their paper. Castano et al. also include
the notion of temporal constraints. Each of the relations of the meta-model can
be annotated with a time specifier so that the validity of a relation, say can-play,
between user and role, only holds during the specified time period. Such constraints
could be easily incorporated in our model, but we consider that the usefulness of
such constraints would be to express revocation of rights, which is a much broader
issue on its own, and dealt with elsewhere21.

Hung and Karlapalem9,10 present the security features of the CapBasED-AMS
workflow system and discuss the trade-off between security and risk of a system
and present a metric to evaluate such trade-off. The risk factor is equated to the
number of tasks any user executes in a given instance (case). The rationale is
that users that perform more tasks are more knowledgeable about the task being
performed and thus pose a higher security risk. Failure resilience, the ability to
complete a task, on the other hand, would depend on more than one user being
able to execute each task. A greedy algorithm is proposed, that determines task
assignments that would achieve high failure resilience and low security risk factor
according to these definitions. Under this perspective, our ordering mechanism,
coupled with controlled overriding of constraints, would provide dynamic failure
resilience, by broadening the choices of users who are able to execute each task.
Overriding of constraints is not considered by Hung and Karlapalem, and neither
is the flexible selection and ordering of users that we propose here.

The need for overriding a workflow security system is also discussed in Miller
et al.13, in the context of a health care workflow application. The mechanism,
implemented as part of the METEOR workflow system, is called “Break-Glass
Procedure,” and allows certain authenticated users to temporarily assume greater
privileges or higher roles. System response in this case is to employ maximal audit-
ing/tracking and inform a workflow administrator. Our approach allows overriding
to be controlled in a progressive way, allowing therefore for a more controlled, grace-
ful degradation than the all-or-nothing approach proposed there.

A few commercial workflow systems offer some functionality related to role au-
thorization constraints. We borrow our description from Castano et al.6:

• IBM WebSphere MQ (formerly MQSeries workflow) - allows the definition of
binding of duties constraints [www-3.ibm.com/software/ts/mqseries/].

• Staffware2000 - allows static definition of binding of duties, with some restric-
tions - the definition holds for all instances and cannot be used in tasks that
join flows from multiple tasks. Authorizations that are valid for a restricted
period of time are also supported [www.staffware.com].

• InConcert - allows the definition of external applications that are invoked at
user selection time to determine the role to which the task should be assigned.
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• Cosa - allows the definition of role hierarchies, in which authorizations can
be inherited along the hierarchy. Binding, separation of duties and time-
restricted authorizations can be defined by using a language [http://www.ley.de/cosa]

The user selection languages employed by these commercial systems are not so
expressive as the ones discussed in the present work. Mechanisms for overriding
constraints such as the ones discussed here are also not offered by any of these
commercial workflow systems.

3. W0-RBAC Model: The Extended RBAC model

The W0-RBAC model adds to the RBAC meta-model (section 1.2) the new
entities: case C and organizational unit OU . W0-RBAC also adds the relations:
include, member, head, and doer.

As for privileges, in this paper we are interested in just a single form of privilege:
the right to execute a task. An important set of rights that will not be discussed in
this paper are the administrative rights, that is the right to add new users, roles,
constraints, and so on. In fact, all aspects of administration of the system are
outside the scope of this paper.

3.1. Case and doer relation

The limitations of static constraints are well known in the security literature. A
static constraint may forbid a user from holding the roles of pilot and navigator of a
plane, but that is not exactly what is needed. A pilot can be a navigator if needed;
what one would like to forbid is for the same person to be both the pilot and the
navigator in the same flight. This particular constraint can be captured in RBAC
by making use of sessions, that is, the binding between user and roles fixed in some
time interval. In this case one might forbid a session in which a user is bound to
both pilot and navigator.

In workflow applications the concept of a session is less clear because the tem-
poral bound is less well defined. For example one would like to forbid the situation
in which the same user executes the tasks of request and approve for the same re-
imbursement request process, or in terms of roles, one would like to avoid that the
same user should play both the requester and approver roles, for the same reim-
bursement request. But of course Beth may be the approver for Carol’s request, and
may herself be the requester of a different reimbursement process, which must be
approved by her boss Amanda. The concept of session is unclear here because Beth
may be at the same time requesting her reimbursement and approving Carol’s, and
that is acceptable provided these roles are being played in different reimbursement
instances.

To be able to refer to an instance of a process we add to our model a new class
case, as described in Figure 3 (recall that case is one of the standard ways instances
of a procedure are referred to in workflow systems). We also define a new ternary
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relation doer(u, p, c), u ∈ U , p ∈ P, c ∈ C, which means that a user (u) exercised a
particular privilege (p) on a particular case (c). Alternatively, given the association
between privileges and rights to perform a tasks, doer(u, t, c) states that user u

executed the task t for a particular case c. In particular we feel that there is no
need to extend the doer relation into a 4-tuple, which would involve the role the
user u was playing when he exercised the privilege p on instance c.

3.2. Organizational units

Within organizations, and thus in workflow applications, the concept of a hi-
erarchy of people/roles is prevalent. People are placed in one or more units such
as departments, divisions, or groups, and they have different bosses, at different
hierarchical levels. Thus it is very common in a business process that a reimburse-
ment request made by an employee must be approved by the head of the unit that
employee is statically assigned to, or by the head of the project the employee is
dynamically assigned to and on behalf of which the expense was made, and so on.

While workflow systems as a rule include some form of organizational modeling
capabilities, RBAC by itself does not have such an hierarchy modeled. The closest
concept is that of a group presented in extended models such as Nyanchama and
Osborn’s14 and Osborn and Guo’s15. To that we add an explicit notion of who the
head of the group is to allow us to model a power relation within the permission
component. This power hierarchy allows us to express security constraints and
ordering preferences that are based on it (see examples below).

It is important to discuss the differences between the proposed organizational
unit hierarchy and the one that is based on RBAC’s role hierarchy, that is more
commonly used (e.g. by Bertino et al.4,3). The is-a relation among roles is an in-
heritance relation, useful for administrative purposes, which must not be confused
with a power relation. is-a(c-programmer,programmer) states that a c-programmer
has all privileges of a programmer, not that a c-programmer is the boss of a pro-
grammer. In some particular examples the is-a relation may be overloaded into a
power relation, but that is only possible in very small examples where higher levels
in the organization accumulate the privileges of those under their control. In any
non-trivial organization, the president of the company, although the boss of the
database administrator, does not have the privileges of that role. Similarly, the
head of the hospital, although the boss of every physician, does not have the right
to operate on a patient.

There have been other research that proposed extensions to the RBAC role and
to the user concepts as presented in the core RBAC model, in order to facilitate
the use of RBAC in real life situations, e.g. Kappel et al.8 and Osborn and Guo15.
The proposal of organizational units should be viewed with this perspective. In
order to model requirements such as the ones in example 2, a boss hierarchy must
be modeled, and that can be accomplished using the organizational units. Further-
more, organizational units seem to deal with both the static assignment of users
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to groups, departments, divisions, etc, as well as matrix like organizations, where
users are dynamically assigned to one or more projects.

We define the following relations:

• include(d1, d2), d1, d2 ∈ OU , states that the organizational unit d1 includes
the organizational unit d2. For example, include( engineering dept, project 12
team) states that the project 12 team is a part of the engineering department.

• member(u, d), u ∈ U , d ∈ OU , states that user u is a member of the organiza-
tional unit d.

• head(u, d), u ∈ U , states that user u is the head, or the responsible party for
the organizational unit d.

The W0-RBAC meta model is shown in figure 3.

PrivilegeRole

Imply
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Figure 3: W0-RBAC meta model.

Example 3 Some of the requirements in example 2 are defined using the basic
tools of W0-RBAC (or plain RBAC). For example, requirement 1 is modeled by
defining a least role employee so that all other roles inherit from it, and ensure that
hold(employee,request) is true.

Requirement 2.1 is modeled by defining an auditor role and asserting hold(auditor,auditing).

3.3. Constraints
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In W0-RBAC, constraints are expressed as a standard logic program clause Cn,
that is false, represented by the predicate ⊥. Thus,

⊥ ← Cn

states that the situation described in Cn is invalid, that is, it violates the constraint.
The clause Cn is expressed in standard logic program form, that is

⊥ ← A1, A2, . . . Ak, not B1, not B2, . . . not Bl

where either k or l may be zero, but not both. Ai and Bj are atomic terms of the
form p(t1, t2, . . . , tm) where p, called a predicate, is either one of the relations defined
in the W0-RBAC meta model, or a relation recursively defined based on those
relations. m is the arity of the predicate p, and ti called terms, are either variables,
taken to be existentially quantified, or constants that represent the instances of the
concepts described above (users, roles, organizational units, or privileges). Variables
are represented in italics, such as x and c, and constants are represented in normal
font, like “approve”.

Example 4 The constraint that the requester and the executor of the first approval
task cannot be the same person (requirement 3.2 in Example 2) is represented as:

⊥ ← doer(x, request, c), doer(y, approve1, c), x = y

The formula above should be read as “the following situation is invalid: the executor
of task request for case c is x and the executor of task approve1 for case c is y and
x and y are the same.”

Also, auxiliary predicates can be defined. A particularly useful one is boss(u1, u2)
which is true if u1 is the head of one of the organizational units of which u2 is a
member:

include*(x, y) ← include(x, y)

include*(x, y) ← include(x, z), include*(z, y)

and

boss(x, y) ← head(x, ou),member(y, ou), not x = y

boss(x, y) ← head(x, ou),member(y, ou′), include*(ou, ou′), not x = y

Another useful auxiliary predicate verifies whether two users have the same
hierarchical level, which is modeled as having a common boss, and the same number
of intermediary bosses between the common boss and the users.

include2*(x, y, 0)← include(x, y)

include2*(x, y, level)← include(x, z), include2*(z, y, sublevel), level = s(sublevel)
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boss2(x, y, 0)← head(x, ou),member(y, ou), not x = y

boss2(x, y, level)← head(x, ou),member(y, ou′), include2*(ou, ou′, level), not x = y

same-level(x, y)← boss2(z, x, l1), boss2(z, y, l2), l1 = l2, not x = y

In this predicate, numbers are represented using the constant 0 and the successor
function “s”, so 1 is represented as “s(0)” and so on.

Constraints can be established over any of the relationships of the meta-model
and can be broadly classified into static and dynamic. A constraint is dynamic if
any of the predicates in the clause is doer, because doer is the only predicate that
makes reference to a running case.

3.4. Static Constraints

Static constraints forbid the introduction of ill-formed relationships between
users, roles, organizational units, and privileges, by specifying conditions under
which such relationships should not be allowed. The name static comes from the
fact that these constraints do not depend on the execution of tasks. They control
the structure of the security model independently of any dynamic behavior.

Example 5 For example, the static constraint that no user can have both the
privileges of request and approve, which is not what is required in example 2, is
represented as:

⊥ ← can-play(u, r1), can-play(u, r2),

hold(r1, request), hold(r2, approve),

that is, it is inconsistent to have a user u who can play both the roles r1 and r2 (not
necessarily distinct), and where r1 holds the privilege request and r2 holds approve.

Static constraints are enforced when tuples are added or removed. After a trans-
action that inserts new users, roles, and the tuples that represent new instances of
the relations, the static constraints must be checked. Using the constraint described
in the paper, the result of checking the static constraints would be just the existence
or absence of violations. Of course, a practical implementation of the constraint
above should not only verify that a violation exists, but also determine which in-
stantiation(s) of the variables u, r1, and r2 above cause the violation.

3.5. Dynamic Constraints

In section 3.1, we discussed that the concept of an instance of a process (a
case) is necessary to fully describe dynamic constraints in the context of a business
process.

Dynamic constraints may either block users and roles from performing some
actions, or require them to perform specific actions on a case, depending upon their
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previous actions over that case:

• Dynamic separation of duties can prevent the user who executed an action
from performing another mutually exclusive one as well, for instance, an ap-
proval, if he or she performed a request. For example, one can define a con-
straint such that T2 and T4 cannot be done by the same person:

⊥ ← doer(u, T2, c), doer(u, T4, c)

• Binding of duties is just the opposite - a user who performed some action
is bound to execute other related actions in the future, for the same case.
The rationale is that by performing the first action, the user has acquired
knowledge that will be required or useful while performing the related ones.
For example if T2 and T3 must be performed by the same person, one can
express this constraint as:

⊥ ← doer(u, T2, c), doer(u′,T3, c), not u′ = u (3.1)

• Inter-case constraints allows constraints to refer to different case, for example,
to refer to the number of times an activity was performed by someone. If the
CEO can appoint any two of her three executive officers, but not all three,
then the business rule must be modeled as a constraint that relates different
cases:

⊥ ← can-play(u, CEO), doer(u, appoint-exec-off, c1),

doer(u, appoint-exec-off, c2), doer(u, appoint-exec-off, c3),

not c1 = c2, not c1 = c3, not c2 = c3

• Reciprocal separation of duties (a special case of inter-case constraints) can
prevent coalitions across cases, for example, if in a case Amanda approved
Beth’s travel reimbursement, then Beth cannot be the approver of Amanda’s
request. The constraint is represented as:

⊥ ← doer(u, request, c1), doer(v, approve, c1),

doer(v, request, c2), doer(u, approve, c2), not c1 = c2

Example 6 Some of the requirements of Example 2 are represented as dynamic
constraints. The number in parentheses before the expression refers to the require-
ments in Example 2.

(2.2) ⊥ ← doer(x, request, c), doer(y, audit, c), x = y

(3.1) ⊥ ← doer(x, request, c), doer(y, approve1, c), not boss(y, x)
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(3.2) ⊥ ← doer(x, request, c), doer(y, approve1, c), x = y

(4.1) ⊥ ← doer(x, approve1, c), doer(y, approve2, c), lower-level(y, x)

(4.2) ⊥ ← doer(x, request, c), doer(y, approve2, c), x = y

(4.3) ⊥ ← doer(x, approve1, c), doer(y, approve2, c), x = y

boss is an auxiliary predicate defined in section 3.3. lower-level is an auxiliary
predicate that is true when the user in the place of the first argument is at a lower
hierarchical level than the user in the place of the second argument. lower-level can
be implemented in a similar fashion to the same-level predicate in section 3.3.

4. An access control system integrated with a WFMS

Our basic framework consists of an access control service or permission system
attached to a workflow engine. The workflow system contains the knowledge about
the processes, the ordering of tasks, deadlines, and so on. The permission service
knows about the organizational structures, roles, permissions, etc. Figure 4 shows
a diagram of the interchanges between the workflow engine, the permission service
and users.

Workflow systems that address the issues of security4,6,9,13 combine access con-
trol with workflow functionality in different ways. Our approach emphasizes a clear
separation of duties between these two complementary functionalities.

workflow doer

process

knowledge

work assignment

done

who?

process
definitions constraints

organizational

service

permission

engine

user

updates

Figure 4: Interaction between the system components and users.

The workflow system communicates with the permission system through two
channels. The first channel is used to inform the permission system of the history
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of the process instances. The workflow provide facts of the form:

• doer(u, t, c), u ∈ U , t ∈ T , c ∈ C, which states that user u has done the task t

for the process instance c.

• done(c), c ∈ C which states that the instance c has terminated.

The second channel is used by the workflow system to query the permission
system. A basic query asks which users can perform a particular task for a particular
instance. The workflow system sends the query who?(O, t, c), that is, who are the
users that can perform the task t for instance c. The workflow receives back an
ordered list of groups of users that satisfy all constraints, ordered according to the
ordering scheme O, to be explained shortly.

The permission system stores the W0-RBAC tuples and the doer tuples sent by
the workflow system in a data base (or knowledge base), which we will abbreviate
as KB.

Recall that instances of new tasks are created as their preconditions are met (e.g.
as previous tasks they depend upon are completed), followed by a user selection
phase, for those tasks that require human intervention. The user selection in W0-
RBAC is initiated by a query sent from the workflow component to the permission
service, asking who are the users that can perform that task. The permission
service computes a response based on the current KB, and returns an ordered list
of groups of users, such that, users in each group are equally preferred (according
to the specified ordering criteria). The workflow decides who among the users in
the list will perform the next task, sends that information to the user’s work list.
When the user informs the workflow that she accepts the task, the workflow informs
the permission service by sending the doer tuple. When the last task of a process
instance is finished, the workflow sends the done information to the permission
service.

4.1. Answering the queries from the workflow system

With the concepts presented so far, we can define what is the appropriate answer
to the query who?(O, t, c) posed by the workflow. The permission system should
return all users u, such that there exists a role r and can-play(u, r) and hold(r, t),
and, further, doer(u, t, c) does not violate any integrity constraint. Furthermore,
the permission system should order the users according to the two-place predicate
O. Formally:
Definition 1. The permission system’s answer to the workflow query who?(O, t, c)
is the ordered list of groups of users 〈g1, g2, g3, . . . gn〉, where g1 = {u1,1, u1,2, . . . u1,n1}
and g2 = {u2,1, u2,2, . . . u2,n2} and so on, such that

• for each u ∈ {g1 ∪ g2 ∪ . . . ∪ un}, can-do(u, t) is true

• for each u, adding doer(u, t, c) does not violate any constraints
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• for all ua, ub ∈ gi both O(ua, ub) and O(ub, ua) are true (ua and ub are equally
preferred by O).

• and for all ua ∈ gi and ub ∈ gj O(ua, ub) is true for i < j.

Example 7 When Dana finishes the request task, the workflow system is in-
formed and determines that audit is the next task to be performed for this case
(which we assume has the identity c120 ). The workflow queries the permission
system with who?(O1,audit,c120 ), where O1 is a two place predicate defined by the
user who defined the workflow, which models the preference ordering for the ex-
ecutors of the task audit. The permission system returns an ordered list of groups
of users (ordered according to O1) that can perform verify for c120. The work-
flow will select the executor, say Eric, and inform the permission system using
doer(eric,audit,c120 ). When this task is over, the workflow will query the permis-
sion system with who?(O2,approval1,c120 ), and so on.

4.2. Ordering the answers

An important feature of our permission system is that it ranks the users who can
perform a task based on their suitability and the knowledge stored in the permission
system. For example, it may happen that a large set of users can execute a task t

for a case c. How to order this set of users, so the workflow is informed of which
user is the most appropriate to perform the task?

A standard practice in RBAC-based workflow systems4,3,6 is to state that the
“least specific” role that holds a privilege is the most appropriate one to execute
that privilege. Thus if compile is the privilege that is needed, one must choose
the smallest role that holds that privilege, say a programmer role, instead of larger
roles, such as a C-programmer role.

But in the business domain the most specific role rule does not translate itself
into a unique answer to the problem of ordering users. Let us suppose that Falco,
the head of the quality project team can play the role of programmer, and Gail,
a member of the team, can play the roles of a C-programmer and programmer.
Should Falco or Gail be the most preferred as the possible performer of the task
compile?

There are many possible definitions of what it means for a user to be preferred
than other users. In particular, our model suggests three implicit or explicit order-
ings: the smaller/larger ordering between roles (the user that plays the smaller role
is preferred), the stronger/weaker ordering between privileges (the user that can
exercise the weaker privilege is preferred), and the boss relation between users (the
subordinate user is preferred), and there may be no correspondence among those
three orderings.

Example 8 Figures 5 and 6 (based on Nyanchama and Osborn14) show graph-
ically an example of the use of a power structure as described above. Figure 5



W-RBAC

describes an example of one organizational unit m, two users a and b, two roles r

and s, two privileges x and y, and the relations among them. The relation between
organizational unit and user is member, the relation between user and role, can-play,
and the one between role and privilege is hold. The directed line in the privilege set
represents the imply relation, that is, a line from x to y states that x implies y, or
in other words, that x is stronger than y. In figure 6, a line from r to q states that
r is smaller than q.

role

b

a r

s

m

privilege

head

user
unit
org

x

y

Figure 5: Hierarchies for example 8 (an arrow from x to y in the privilege hierarchy
states that x is stronger than y)

For the relations shown in Figure 5, let us suppose that the workflow wants to
find out the users that posses privilege y.

• under a role-centered preference scheme, there is no difference between a and
b because to exercise y, a must play the role r and b must play s, which have
no is-a relation between them.

• under a privilege-centered preference scheme, b is preferred to a because the
privilege that b will hold is weaker than the one held by a.

• under a boss-centered preference scheme, a is preferred to b because in orga-
nizational unit m, b is the boss of a

• if we add is-a(r,s) (see figure 6 which only adds to the database the fact that
now r also holds y because of the definition of is-a), then under a role-centered
preference, b is preferred because the role a plays to exercise y is larger to the
one b plays.

• finally, if we further add the tuples role(q), can-play(b,q), is-a(q,r) (see figure 6)
which would imply that q can hold both x and y, then there is a role-centered
argument that would prefer a to b: to exercise y, b could have played the role
q which is larger than the largest role a could have played (which is r).
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Figure 6: Further hierarchies for example 7 (an arrow from s to r in the role
hierarchy states that s is smaller than r).

Since there is no single reasonable ordering, it is left to the workflow to define
which is the best ordering for that particular query. The workflow defines O, a
two place predicate, that is a preference relation among users, that is, O must be
reflective, transitive, and complete (that is, for each pair of users u and v, either
O(u, v) or O(v, u) must be true). O(u, v) state that u is at least as preferred as v

(according to some criteria). If both O(u, v) and O(v, u) then u and v are indifferent
or equivalent regarding the preference relation O. The permission system must order
the users in groups of equivalent users, and each group decreasing order of O.

4.3. Some preference relations

Now, we shall formally define the orders illustrated above, which represent some
standard orderings. As we will see later, the workflow (or the user that defined the
workflow) may define any ordering, which may or may not use the orders defined
in this section.

For roles r and s, we will say that r ≺ s if s is larger than r, that is s includes all
privileges that r does, and more. For privileges x and y, we will say that x ≺ y if y

is stronger than x. To illustrate the definition, we will use the diagram in figure 7.
We assume that user a can-play all the roles in the diagram.

The set of maximal roles a user can play is defined as: r ∈ MAXROLE(u) iff
can-play(u, r) and there is no other r′ such that can-play(u, r′) and r ≺ r′. Intu-
itively, the maximal roles are the largest roles that user u can play. In Figure 7, if we
assume that a user u can play all the roles p, q, r, s, t, then MAXROLE(u) = {p, t, r}

The set of maximal roles with respect to privilege x is defined as: r ∈
MAXROLEP(u, x) iff can-play(u, r), and hold(r, x), and there is no other r′ such
that can-play(u, r′) and hold(r′, x) and r ≺ r′. Intuitively, a maximal role w.r.t.
x is the largest role that user u can play that holds privilege x. In Figure 7,
MAXROLEP(u, x) = {r}.

The maximal privilege with respect to privilege x a user can hold is
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Figure 7: Example of role/privilege hierarchies.

defined as: y = MAXPRI(u, x) iff implies(y, x), and there exists a role r such that
can-play(u, r) and hold(r, y), and there is no privilege y′ and role r′, such that can-

play(u, r′) and hold(r′, y′) and y ≺ y′. Intuitively, the maximal privilege w.r.t. x is
the strongest privilege that implies x, which the user may hold using any role she
can play. In Figure 7, MAXPRI(u, x) = w.

The hierarchical level of a user u is defined as: HLEV(u) = 0 if there is no
user x 6= u such that member(u, k) and head(x, k); or HLEV(u) = n′ + 1 where
n′ is the smallest hierarchical level of all x such that member(u, k) and head(x, k).
Intuitively, the hierarchical level is the shortest sequence of immediate bosses a user
has until the sequence reaches someone that has no boss herself.

Given the definitions above one can create different preference orderings. For
example to order the users in decreasing order of their MAXPRI w.r.t the privilege x

one would define OMAXPRI(x)(u, v) to be true if imply(MAXPRI(v, x),MAXPRI(u, x))
or MAXPRI(v, x) = MAXPRI(u, x).

One can define composite preference orders, for example which would prefer
users with higher hierarchical levels, and among two users with the same hierarchical
level, prefer the one with smaller MAXROLEP with respect to a privilege x. Let us
call this order Onew. Thus Onew(u, v) is true if HLEV(u) > HLEV(v) or if HLEV(u) =
HLEV(v) and there exists a pair ru ∈ MAXROLEP(u, x) and rv ∈ MAXROLEP(v, x),
such that ru is smaller than rv, and there is no other pair su ∈ MAXROLEP(u, x)
and sv ∈ MAXROLEP(v, x) such that su is larger than sv. Finally, it is possible
for the workflow to define completely ad hoc orderings to solve particularities of
different tasks in the process.

For example, to represent the preference of both requester and auditor being
from the same organizational unit in requirement 2.3 of Example 2, one would de-
fine an ad hoc ordering O31,c for the auditing task as: O31,c(u, v) is true if there
exists a organizational unit o such that doer(w, request, c) and member(w, o) and
member(u, o) and not member(v, o). Unfortunately this preference ordering is very
coarse: it orders the potential users into two groups, the ones that are members
of the requester’s (w) organizational unit and the ones that are not, with no or-
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dering among them. One can create a new ordering O32,c which will further order
by hierarchical level, for example. Thus O32,c(u, v) is true when there exists a or-
ganizational unit o such that doer(w, request, c) memberw, o) and a) member(u, o)
and not member(v, o) or b) member(u, o) and member(v, o) HLEV(u) ≥ HLEV(v) or
c) not member(u, o) and not member(v, o) HLEV(u) ≥ HLEV(v). Of course, more
complex orderings can be defined.

5. W1-RBAC: Controlled overriding of constraints

In previous sections we discussed constraints at length. Clearly, some constraints
are more important than others. In certain situations it may be acceptable to
override the less important constraints.

The workflow literature acknowledges that in real situations it is often the case
that the specifications of a process as implemented in a workflow must be violated
in order to get things done. This is usually referred to as exception handling. If,
for example, the client on behalf of whom the process is being executed is a very
important client, and is in a hurry, certain tasks may be skipped from the process,
the order in which others are performed may be changed, or different people, who
are available, may be assigned to tasks that they would usually not be allowed
to perform. Among different forms of exception handling actions, the one that is
relevant to the permission system is the assignment of tasks to users who are not
usually allowed to perform them.

W-RBAC, as most workflow systems, only decides who will execute a task when
the task becomes enabled. Such late binding of executers and tasks is the standard
in workflow applications because relevant information such as availability and work
load of users can be brought to bear in this decision. But such late binding may
lead to “dead ends.” An “unfortunate” choice of executor in an earlier task may
cause that a later task not to have any potential executors because of separation
or binding of duties. Here again, there will be the need to override some of the
constraints that created the “dead end” situation so the case can move forward.

Example 9 For example, an organization policy might require that the tasks of
receiving a client query and answering it should be performed by the same person,
thus giving the client a feeling of personal touch. For example, Jose received a
technical query from Kensington Corp., which is an important client. The process
of constructing the answer proceeded normally but Jose was out on vacation when
the answer was ready to be returned to the client. In this case, it may be more
important to answer the query promptly than to wait for Jose to return and give the
answer personally. And thus, it may be decided that Ling Mai should contact the
client, violating the binding of duties constraint between these two tasks (receiving
and responding a client’s query). It would have been less likely that the need to
expedite an answer would allow one to violate a separation of duties constraint,
say the hiring of an external specialist, which must be approved by someone else in
addition to the person that decided on the hiring.
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It is clear that some constraints are more important than others, and different
situations may allow different degrees of violation. The constraint described above
reflects more of a preference, rather than a requirement. But when the binding
constraint is based on legal or security reasons, it would be more important to
enforce it. In other words, the model allows priorities to be assigned to constraints,
according to how important they are.

5.1. Levels of priority on constraints

We will extend the formalism discussed above to include the idea of levels of
priority or importance of rules and constraints. The idea is to associate with each
integrity constraint rule

⊥ ← Cn

a numeric label that expresses how important the rule is. The higher the label the
more important the rule is. Thus, if the integrity constraint above has importance
7, we will label it with that integer:

⊥ ← Cn priority 7

We can collect all constraints with label i in a set Ci. We will assume that the labels
are non-zero, positive integers.

With this labeling, we are able to define what is the level of compliance of a
formula in relation to the constraints.
Definition 2. (Initial version). Let us define KB as the set of tuples in the
database. If N is a formula to be added to the database, then i is the level of
compliance of N , if i is the largest integer such that

for each j > i KB ∧N ∧ Cj 6|= ⊥
KB ∧N ∧ Ci |= ⊥

The formulas state that KB and N do not contradict any of the constraints labeled
with j > i, but they do contradict at least one constraint labeled i. If N does
not violate any constraint, we will say that its level of compliance is 0, i.e. full
compliance.

We will discuss below that certain users may have the right to override some
constraint, and thus, to add to the knowledge base a statement that contradicts
some constraint. But in standard logic, the inclusion of an inconsistent statement
would render the whole knowledge base worthless, since nothing could be inferred
from it. To control the effects of adding inconsistent statements to the knowledge
base, we partition it into different sets of statements, indexed by their level of
compliance. Thus Ki is the set of statements with compliance level i, that is
statements that override some constraint of level i. Or in other words, we stratify
the KB based on the compliance level. Intuitively K0 contains the “normal” facts
(or tuples), the ones that do not violate any constraint. Ki, for a high i, contains
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very “exceptional” facts, the ones that violate an important constraint (with priority
i).

Thus the level of compliance i of a new statement N , is defined as:
Definition 2. (Final version) If Kj is the set of tuples with compliance level j

in the data base, and N is a formula to be added to the data base, then i is the
level of compliance of N , if i is the largest integer such that

for each j > i (
⋃

m<j

Km) ∧N ∧ Cj 6|= ⊥

(
⋃

m<i

Km) ∧N ∧ Ci |= ⊥

If there is no such number, then the compliance level is 0.
The formula states that some constraint in Ci will be violated if N is included with
the facts that are known not to violate any constraint of priority i or higher.

For example, let us assume that the set of constraint is:

⊥ ← b, d priority 1

⊥ ← a, b priority 2

⊥ ← b, c priority 3

Let us also assume that the data base is empty, that is, Ki = ∅, for all i. In this
case, the fact a has compliance level 0, since it does not contradict any constraint.
Now suppose that a is added, thus K0 = {a}. Now, the fact b has compliance level
2, since it violates a constraint of priority 2. Adding b one would obtain K2 = {b}.
Now, c has compliance level 3, and once added, d would have compliance level 0 (it
does not have level 1, because ⊥ ← b, d is not contradictory with the facts in K0,
nor has it level 2 or above because the relevant constraint is assigned level 1).

5.2. Right to override

Which are the constraints that can be overridden, and who can override them?
We assume that this is itself a privilege that can be attributed to roles, and indirectly
to users. Roles are attributed privileges of the form override(n), which allows the
user to override the constraints with priority equal or smaller than n.

The intuition, as we mentioned above, is that more important constraints are
tagged with higher priorities levels. On the other hand, more responsible or powerful
roles can hold higher override privileges. Of course, there should be constraints that
cannot be overridden, or, in our model, whose priority levels are high enough so
that no role has the right to override them.
Definition 3. The max override level of a user u is the highest n such that the
user can hold the privilege override(N). That is, there exists r such that can-play(u, r)
and hold(r,override(n)) and for all r′ 6= r if can-play(u, r′) and hold(r′,override(n′))
then n′ ≤ n.
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5.3. Interaction with the permission system

The need to override constraints may appear when there is no one that can
perform an activity, that is, when the query who?(O,T,C) returns an empty list
(section 4.1). In this case, someone with responsibility over the process and the
appropriate authorization would forcibly assign an executor to the activity. The
assigned executor must necessarily be a user with the privilege to perform the
activity but was eliminated from consideration by the permission system because
of constraints such as binding or separation of duties. It is important to notice that
the forced assignment does not violate the basic RBAC authorization mechanism.
For this one would need to extend RBAC to include delegation or transfer of rights
(e.g. Goh and Baldwin8, Kumar11, Barka and Sandhu2, Wainer et al.21, among
others).

To allow users to perform this forced assignment, the basic interaction model of
the workflow with the permission system (in section 4) was extended with a new
query/command assign?(u1, u2, t, c), sent by the workflow which states that user u1

wants to forcibly assign user u2 as the executor of task t for case c.
If user u1’s max override level is lower than the compliance level (Definition 2)

of doer(u2, t, c), then the command returns false, and no update is performed. If,
on the other hand, user u1 does have enough permission to override the constraints
that are violated by doer(u2, t, c), then the command asserts into the knowledge
base doer(u2, t, c) and returns its compliance level to the workflow system.

The assign? operation can also be used to transfer an activity, which was already
assigned to a user, to another one. If a task t has already been assigned to Maria,
and she is taken ill, a manager of the process, or a manager of the client’s account
on whose behalf the process is being executed, may have to remove the task from
Maria’s inbox and assign it to someone else, say Ngome. Again, assigning t to
Ngome may violate some constraint which is overridden by the manager’s override
privileges. In this example, there is also the need to remove doer(maria, t, c) from
the data base.

6. Prototype Implementation

The definitions stated in this paper are straightforwardly implemented in Prolog.
In fact, a proof-of-concept prototype of the system was implemented.

As an example of how straightforward the implementation is, below is the
code for the definition of the answer to the workflow query (definition 1). The
who?(O,T,C) query is implemented as a Prolog query with a fourth argument, which
will contain the permission system’s answer to the query. A constraint ⊥ ← X is
represented by a clause violation(C) :- X, where C is the case identification.

%

% Answer to the workflow system (definition 1)

’who?’(O,T,C,U) :-
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findall(X,can-do(X,T),L), % find all users that can perform

% task T

filter(L,T,C,Lout), % filter out those who cannot perform

% T for case C because of dynamic constraints

preference_sort(O,Lout,U). % order the result by ordering scheme O

% selects from a set of users those that can perform the task for the case

filter([],_,_,[]).

filter([A|RA],T,C,B) :-

( consistent(C, doer(A,T,C))

-> B = [A|RB],filter(RA,T,C,RB)

; filter(Ra,T,C,B)).

% verify if a formula does not violate any constraint

consistent(Case, Formula) :-

assert(Formula),

( violation(Case)

-> retract(Formula),!,fail

; retract(Formula)).

% verify if a user can perform a task

can_do(U,T) :-

can_play(U,R),

hold(R,T).

The translation of the formulas of W1-RBAC would have to include an extra
argument which represents the compliance level of the fact. The algorithms would
have to take that information into consideration. For example, if the binding of
duties constraint in expression 3.1 (section 3.5) is defined as having priority 3, such
constraint would be represented as:
violation(C,3) :-

doer(U1,t2,C,L1), L1 < 3,

doer(U2,t3,C,L2), L2 < 3,

U1 \= U2.

where doer(U,T,C,L) is used to represent that doer(U,T,C) was asserted with
compliance level L.

Space limitations do no allow us to list all definitions as Prolog predicates, but
one can see that the implementation follows in a straightforward way from the
formal definitions given in the paper.

6.1. Complexity, running time, and optimizations
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As a general introduction to the complexity of a logic program based implemen-
tation one should realize that for a clause such as:

C ← A1, A2, . . . Ak, not B1, not B2, . . . not Bl

the worst case running time is the one in which the “last solution” generated by the
predicates A1 to Ak is the only one that also satisfies not B1 to not Bl. That is
also the worst case running time to disprove the clause – all possible solutions are
generated and not even the “last one” is satisfied. Lets assume that each predicate
Ai can generate NAi

different solutions for its free variables, and takes, in the worst
case, TAi

units of time to compute each of these solutions. Lets also assume that
each of the Bi predicates takes, in the worst case, TBi

units of time to compute
not Bi. Thus the worst case running time to compute C in this clause is:

NA1TA1+
NA1NA2TA2+
. . .
NA1NA2 . . . NAk

TAk
+

NA1NA2 . . . NAk
TB1+

NA1NA2 . . . NAk
TB2+

. . .
NA1NA2 . . . NAk

TBl

Let us analyze the complexity of a who?(O, t, c) query in W0-RBAC. The query
is implemented as:

1. find all users that satisfy can-do the task t

2. remove from that set all users u for which doer(u, t, c) leads to a contradiction,
that is, proves violation.

3. order the remaining users according to the relation O.

The first step above can be implemented as a database query. The Prolog
implementation of such a query (using findall) is not as efficient as running a
database query, but if we assume that there are U users, the query can compute its
answer in T1 = U × T (cd), where T (cd) is the average time to compute the truth
of the query can-do for any user.

The second step is more costly. For each user u returned by the first step, one
needs to verify if adding doer(u, t, c) violates any constraint, that is, if it does not
prove violation(c).

If we consider a violation(c) clause, it has the form:

⊥ ← doer1, doer2, . . . doerk, other1, . . . otherl

not doerk+1, . . . not doerk+x, not otherl+1, . . . not otherl+y

It is important to notice that the doer predicates will in almost all situations
have at most one free variable, the one representing the user. Both the case and the
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task are bounded when the violation predicate is queried. Since there is at most
one user that is the executor of a given task for a given case, the doer predicate is
deterministic, that is, it generates only a solution and to prove it (or disprove it),
it takes only one access to the Prolog fact base. If we take the time to access the
Prolog fact base as T , the worst case time to compute the violation clause is:

kT+
Nother1Tother1+
Nother1Nother2Tother2+
. . .
xNother1Nother2 . . . Notherl

T
Nother1Nother2 . . . Notherl

(Totherl+1 + . . . Totherl+y
)

That is, complexity of computing the violation clause (α) is dominated by:

Nother1Nother2 . . . Notherl
(Totherl+1 + . . . Totherl+y

+ constant)

Therefore, only the predicates that do not refer to the dynamic component of the
model are the ones responsible for the complexity of the query. The dynamic compo-
nent of the model contributes with at most an additive constant to that complexity.
Thus, if the constraint rule requires a very complex computation regarding the
organizational structure (roles, users, organizational units), that computation will
dominate the complexity of the violation clause.

If there are C constraints, then there are C violation clauses and in order to
verify that a user does not violate any constraint, all violation clauses must be
tested. This test must be performed for all users that satisfy the previous query;
thus, the worst case total running time for this step is bounded by U × C × α.

The third step is a sort, where the basic comparison predicate O may not take a
constant time to compute. The upper bound for that step is T3 = U×log(U)×T (O).

Now, the total time to compute the query who?(O,T,C) is bounded by

U × T (cd) + U × C × α + U × log(U)× T (O)

where the dominating term is likely to be U × C × α.
For the W1-RBAC model the total time to compute the query is the same as

the above. The W1-RBAC will verify the violation clauses in decreasing order of
priority, but in the worst case, where there is no violation, all the C violation clauses
will be checked.

Unfortunately, we do not have enough examples of constraints to even approxi-
mate the value of α in the formulas above, but as mentioned, this complexity will
be derived from the number of different solutions of the static predicates of the
constraint rule.

There are possible optimizations that may be attempted if such computation is
too expensive, all of which are standard techniques for optimizing a logic programs.
Among them:
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• off-line computation. Since these predicates refer to the static component
of the rules, they do not change as new tasks or cases are executed, unless
there is a change in the role, privilege, organizational units, or user hierarchies.
Since such changes might occur infrequently, it may be convenient to compute
these predicates off-line. In the worst case, that will not change the number
of different solutions for these predicates, but will change the time to compute
each solution, which will require an access to the Prolog fact base, and thus
reduce the computation time by a constant factor. But more likely, not all
solutions generated by one of these predicates will be accepted by another.
For example, if boss(u, v), can-play(v,auditor) is a clause of a violation rule,
and we consider each predicate in isolation, the first will generate at most
U2 pairs of users, and the second, at most U users, but taken together, by
defining a boss-of-auditor(u, v) predicate, it may result in much fewer than U2

pairs of users. Such reduction in the number of solutions may be significant
enough to warrant the off-line computation.

• memoization. While it may not be worthwhile to pre-compute all possible
values for the static predicates that appear in the rule, it may be worthwhile
to store the results of this computation, so that, if the same computation
is needed (for a different case), the results can be retrieved instead of being
recomputed.

• partial evaluation. Once enough of the tasks of a case have already terminated,
the violation clauses may be automatically transformed into new clauses, by
partial evaluation, since some of its internal variables are already bounded.
For example, for the clause:

violation(C) :- doer(U1,task1,C), same_unit(U1,U2),doer(U1,task3,C)

represent the constraint that task1 and task3 cannot be performed by users
that belong to the same unit. If we know that task1 has already been finished,
for case c456, it may be worth while to partially evaluate violation(c456),
which depending on how smart the partial evaluator is, could result in the
(automatic) creation of the rule

violation(c456) :- doer(U1,task3,c456),

member(U1,[alice,bob,carol,david]).

That is, the partial evaluation of a violation clause, at the correct moment,
would generate a particular rule for that case in which the computation of
the same-unit predicate is performed in advance, so that when needed, the
execution of the clause becomes just a membership check.

Unfortunately we believe that there is not enough experience in this domain to
further evaluate which method, or combination of methods, would reduce the overall



W-RBAC

cost of computing the who? query, or even if any of those optimizations are necessary
for the “average case.”

7. Extensions, Discussion and Conclusions

A simple extension of W-RBAC is to include the concept of different activations
of the same activity within the same case. It happens frequently that workflows have
cycles of do-test activities, in which something is done, and in a different activity
(usually with separation of duties constraints between them) the results are tested.
If they fail the tests, a new activation of the do activity is performed, followed by
a new activation of the the test activity, etc. It is possible that one would like to
place constraints on the different activations of an activity (of a case).

We added a fourth argument to the doer relation doer(u, t, c, n) to indicate that
user u performed the n-th activation of the task t for case c. With this extension,
one can represent the constraint that the programming and the subsequent testing
of the program cannot be performed by the same person, but there is no constraint
on who can do the programming, if it fails the tests.

⊥ ← doer(u, programming, c, n), doer(u, testing, c, n).

Similarly one could represent the constraint that the same user cannot be the pro-
grammer of two subsequent activation of programming activity.

A possible future work within the W-RBAC framework is the verification of the
satisfiability of constraints. It is possible for the specification of the constraints
and of the potential users of certain tasks to lead to inconsistencies. A typical one
arises from the requirement that the immediate boss of the employee who wants a
reimbursement should approve the request. However some users may not have an
immediate boss, either because they are not assigned to any organizational unit,
or because the user is the president of the organization. A more subtle problem
may arise because users higher up in the boss hierarchy should not play the role of
approver because one would not want to bother them with such task.

It is very important that the system should verify at constraint definition time
that such definition of potential executors of the approve task will not create a
situation in which the reimbursement requests of some user cannot be approved.
Similarly, but now regarding constraints, if the organization has only one auditor,
and there is a constraint that who performs the auditing cannot be the requester,
then this auditor will not be able to make any reimbursement request in the orga-
nization.

We acknowledge that placing constraints in a linear order (using the priority
concept), and defining a privilege of overriding constraints on this linear order
(the max override level) is limiting. For instance, the chief medical officer of a
hospital may be allowed to override high priority medical constraints, and the chief
accounting officer may be allowed to override high priority accounting constraints,
but one cannot override the constraints of the “other domain.” Still it is unclear
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at the moment how changes in the definition of right to override may impact the
determination of when a fact violates a constraint or not (see definition 2).

Finally, to summarize, the main contributions of this paper are:

• We defined a framework that mixes concepts of RBAC and Workflow with a
different expressive power than previous models, which allow simpler specifi-
cation of real life business processes.

• The framework also allows for a cleaner separation of concerns between the
permission aspects and the workflow aspects of the system.

• The framework allows for the definition of preferences in the selection of users
to perform tasks.

• We extended the basic framework to deal with controlled overriding of con-
straints, which give us a partial solution to some problems of exception han-
dling in workflows.

• We developed a prototype implementation of the system, discussed the com-
plexity of the solution, and pointed out possible optimizations that may be
used.

• We extended the framework to deal with multiple activations of tasks.
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