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Abstract 

My initial tasks in this paper are, first, to delimit the boundaries of artificial intelligence, 
then, to justify calling it a science: is AI science, or is it engineering, or some combination 
of these? After arguing that it is (at least) a science, I will consider how it is best pursued: 
in particular, the respective roles for experiment and theory in developing AI. 

I will rely more on history than on speculation, for our actual experience in advancing 
the field has much to tell us about how we can continue and accelerate that advance. Many 
of my examples will be drawn from work with which I have been associated, for I can 
speak with greater confidence about what motivated that work and its methods (and about 
its defects) than I can about the work of others. My goal, however, is not to give you a trip 
through history, but to make definite proposals for our future priorities, using history, 
where relevant, as evidence for my views. 

1. Artificial intelligence as science 

AI deals with some of the phenomena surrounding computers, hence is a part 
of computer science [27]. It is also a part of psychology and cognitive science. It 
deals, in particular, with the phenomena that appear when computers perform 
tasks that, if performed by people, would be regarded as requiring intelligence- 
thinking. 

Artificial intelligence began in the 1950s as an inquiry into the nature of 
intelligence. It used computers as a revolutionary tool to simulate, indeed exhibit, 
intelligence, thereby providing a means for examining it in utmost detail. “B.C.“, 
before computers, the only observable examples of intelligence were the minds of 
living organisms, especially human beings. Now the family of intelligent systems 
had been joined by a new genus, intelligent computer programs. 
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1.1. The multiple goals of AI 

As the papers reprinted in Feigenbaum and Feldman’s classic, Computers and 
Thought, reveal, the AI thrust, from its very beginnings, was at least three- 
pronged. One goal was to construct computer programs (e.g., the Logic Theorist) 
capable of exhibiting intelligence, and thereby, to begin building a theory of 
intelligent systems. (The original Carnegie-Rand name for the endeavor was 
“complex information processing”; our group later accepted the alternative 
“artificial intelligence”, which had become the established usage among both 
friends and foes of the activity.) 

A second goal was to construct programs (e.g., GPS) that exhibited intelligence 
by using processes like those used by humans in the same tasks. Here the aim was 
to achieve a theory of how the human mind can behave intelligently. The third 
goal was to construct intelligent programs (e.g., Tonge’s assembly line balancing 
program) that could supplement or complement human intelligence in performing 
some of the world’s work. (In the body of this paper, I will refer to systems in this 
third category as “expert systems”, enlarging somewhat the usual denotation of 
that name.) The systems described in Sections 2 and 3 of Part 1 of Computers and 
Thought focus upon the first of these three objectives; those described in Part 2, 
upon the second; and those in Sections 4-6 of Part 1 upon the third. 

Almost from its very birth, then, AI was a multicelled organism. Its foundation 
was the capability for building systems that exhibited intelligence, either as pure 
explorations into the nature of intelligence, explorations of the theory of human 
intelligence, or explorations of the systems that could perform practical tasks 
requiring intelligence. Surrounding these operative AI systems there gradually 
grew up corresponding bodies of theory. But we should not think of the programs 
as isolated from the theories. Quite the contrary. For example, the Logic Theorist 
embodies a theory: the theory that achievement of intelligence in solving 
problems requires a physical symbol system capable of heuristic search. likewise, 
GPS embodies the theory that means-ends analysis is a powerful heuristic 
commonly employed by people for problem-solving search. 

We can extract from such programs verbal statements of the theoretical 
principles, as Allen Newell and I did in our 1975 Turing Award address, but the 
programs provide the basic operational definitions of what the principles mean. 
The theory is no more separable from the program than classical mechanics is 
from the mathematics of the laws of motion. Different implementations of the 
verbal statements are different theories, which exhibit different properties when 
the programs are run. I will have more to say later about the relation of programs 
to theories and how runs of programs are used to test theories. For the moment, I 
will simply remind you that: 

The moment of truth is a running program. 

1.2. Social fragmentation of AZ 

Side by side with the growth of programs aimed at the triple objectives of 
understanding intelligence, understanding the human mind and building and 
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understanding expert systems, there have grown up communities of researchers 
concerned with these objectives. Some of the researchers are interested in more 
than one of the three goals, a few with all three; but social structures have formed 
that emphasize and enforce the separateness of the three endeavors rather than 
their common concerns. 

I will not describe these social structures in detail, except to mention that, in 
fact, there are four, not three, principal groups; for at least two rather distinct 
groups of researchers focus upon the “pure” theory of intelligence. One 
subgroup, found mainly in computer science departments, is often associated with 
colleagues who are interested in program verification and/or computational 
complexity. Another subgroup identifies with “cognitive science”; some of its 
members are to be found in psychology, some within AI groups in computer 
science, some in philosophy, some in linguistics, some in anthropology and 
miscellaneous other areas. 

Over the years, the distance separating all four AI groups has gradually 
increased. They attend different professional meetings, ranging from the Ameri- 
can Psychological Society, through the Cognitive Science Society, the AAAI, to 
ACM and engineering societies like IEEE. They limit their reading and citations 
more and more to the journals published by their groups. They receive their 
training in different academic disciplines and subdisciplines, each passing on to 
the next generation its own specialized version of the enterprise. 

In assigning a broad definition to AI, covering all of these groups, I reveal my 
belief that, in spite of diversity of goals, there is a common core that makes 
continuing communication among them highly desirable. I believe that each one 
of these groups can get substantial help in advancing its goals by drawing on the 
work of the others, and that the advantages of interaction (and the serious 
disadvantages of fragmentation) have been frequently demonstrated over the 
whole history of AI. I believe that AAAI and the Cognitive Science Society share 
primary responsibility for opposing and turning back the forces of dissociation. 

My reasons for believing in complementarity of the several goals will emerge as 
I proceed. I would just like to state two of the reasons now, in a preliminary way. 

First, the way in which humans achieve intelligence (I will call it “heuristic 
search”) is quite different from the way in which computers performing numerical 
analysis and similar tasks typically do it. (We might call the latter method, “brute 
force disciplined by mathematics.“) The distinction is not black and white, but 
obvious none the less. The human methods, I believe, are absolutely essential for 
intelligent response to relatively ill-structured problems, hence we must under- 
stand them regardless of whether our aim is to understand the human mind or 
intelligence in general. 

Programs for solving linear programming problems, inverting matrices or 
solving partial differential equations depend heavily on the size and speed of 
computers, but use algorithms based on the known, and usually rich, mathemati- 
cal structures of their problem spaces to reduce the amount of search required. 
These search reduction principles do not always optimize search, but almost 
always preserve the property of completeness-they are guaranteed to find the 
solution to any desired degree of approximation. Because of the mathematical 
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regularity of the spaces searched, it is often possible to prove theorems about the 
sufficiency and sometimes the efficiency, of algorithms. 

Human problem solving seldom shares any of these properties. Nevertheless, 
humans, whose computational abilities are puny compared with those of modern 
super-computers or even PCs. are sometimes able to solve, with little computa- 
tion, problems that are very difficult even by computer standards-problems 
having ill-defined goals, poorly characterized and bounded problem spaces, lack 
of strong and regular mathematical structure. People solve such problems by the 
shrewd use of heuristics and at the expense of giving up guaranteed completeness 
of search and optimality of the solutions attained. 

What I am calling “disciplined brute force” had its origins in numerical analysis 
and its successor, the theory of computation, which has had some extension from 
numerical to symbolic systems. Many of us do not believe that the methods of 
disciplined brute force can achieve the same range of application and flexibility 
that humans attain. Unless and until it is demonstrated that they can, we have 
every reason to explore vigorously the human heuristic search techniques as a 

source of ideas for intelligent systems, and equal reason to understand the 
underlying mechanisms that give these techniques their power in situations where 
brute force, even disciplined brute force, fails. These concerns are central both to 
understanding how intelligence, human or not, can be applied to ill-structured 
problems, and to constructing expert systems for solving such problems. 

Artificial intelligence has always had a special interest in this important 
“residual” area, where programs rely on heuristic search, without guarantees of 
completeness, and often use satisficing criteria of success. Given this interest, they 
have every reason to keep in close touch with the progress of research in human 
intelligence, which is gradually demystifying the nature of human “shrewdness”, 
“intuition” and even “creativity”. 

A second reason for close communication among all of the sub-strands of AI is 
that the principal means of progress in our field is to find tasks requiring 
intelligence for their performance, and then to see what kinds of processes are 
sufficient to perform these tasks. Over the years, exploration of a steadily 
widening domain of tasks has disclosed a continually richer array of mechanisms 
for intelligent behavior. And as the great diversity of existing computer programs 
that play chess illustrates, even for a single task there may be many ways to skin 
the cat. Comparison of alternative programs can cast much light on the underlying 
principles of intelligence. Human behavior provides a valuable range of difficult 
ill-structured tasks where the peculiar characteristics of human intelligence are 
regularly exhibited. 

2. Artificial and natural objects 

Artificial objects, including computer programs, are what they are because they 
were designed to be that way. This fact has led some to claim that there can be no 
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science of artificial objects, but only an engineering technology. Those who hold 
the most extreme form of this view look to the discovery and proof of 
mathematical theorems about intelligent systems as the only genuine route to a 
science of AI, and denigrate the role of system building and experiment as “only 
engineering”. 

But the claim that artificial objects are divorced from empirical science, and 
that they do not lend themselves to natural-science methods of research is 
fallacious. An artificial object is as fully bound by the laws of nature as any 
natural object. Automobiles are as subject to the law of gravity and the 
conservation of energy as glaciers are. Scientific laws limit the set of possible 
objects, natural or artificial. No object, artificial or natural, that does not obey 
these laws-satisfy these constraint-an exist [36, Chapter 11. 

2.1. Znternal constraints 

The natural laws that determine the structure and behavior of an object, 
natural or artificial, are its internal constraints. An artificial system, like a natural 
one, produces empirical phenomena that can be studied by the methods of 
observation and experiment common to all science. 

It might be objected that a system designed deliberately to behave in a desired 
way can produce no surprise or new information. This objection shrugs off our 
enormous ignorance of natural law and of the effects produced by natural laws 
operating on complex systems. The world of artificial (and natural) objects is full 
of unanticipated consequences, because of the limits both of empirical knowledge 
and of computational power. The case, in AI, for studying many different kinds 
of systems empirically is essentially identical to the case, in biology, for studying 
many species of organisms. In neither case can we capture more than a miniscule 
portion of the richness and complexity of the real world by attempting to deduce 
it from first principles. 

Often the most efficient way to predict and understand the behavior of a novel 
complex system is to construct the system and observe it. Because AI programs 
are also computational models, we can use the programs themselves as their own 
models, an advantage for the field of AI that is unique in science. In AI, the 
theory not only models but simultaneously exhibits the behavior of the phenom- 
ena under study. 

The “natural” sciences also depend, for their progress, on building artificial 
systems and studying their behavior, for this is the essence of the experimental 
method. The natural scientist constructs a system in which the operation of 
certain natural laws is thought to be prominent; then observes the phenomena 
produced by the system, and especially how these phenomena change with 
changes in the system parameters. So Galileo rolls balls down inclined planes or 
over the edges of tables, and measures the time of the roll or the length of the 
flight as a function of the angle of the plane. 

To experiment is to use the artificial to study the natural. To design an AI 
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system and observe how its behavior changes with changes in the design is to 
perform an experiment. Most of what we know about artificial intelligence has 
been learned by carrying out experiments of this kind, thereby making AI a 
thoroughly experimental science. 

2.2. External constraints 

A system, artificial or natural, must conform not only to the internal constraints 
imposed by natural law, but to two sets of external constraints as well. The system 
can only come into existence under conditions that are defined by natural law; 
and it can only survive and operate effectively in suitable environments. These 
initial and boundary conditions are the system’s external constraints. Synthetic 
chemistry-like AI, a science of design-is devoted to determining (by actual 
synthesis) the external constraints that operate upon chemical molecules. 

By manipulating the external constraints, we can often determine what 
functions a system must perform in order to survive, and how its various 
components carry out these functions. Nature, according to Darwin, generates 
systems or modifies existing ones; then tests their ability to survive in the ambient 
environment. The artificer does exactly the same thing, except that the generator 
(the design process) is more purposeful, and the tests (the purposes the designer 
has in mind) may go beyond biological fitness. 

As the functional requirements imposed by the environment introduce a 
teleological component into all systems in the same way that the designer’s 
purposes do, the difference between the natural and the artificial fades and then 
vanishes. The constraints imposed by nature on living organisms derive from the 
same natural laws as those that face design. 

2.3. Science and engineering 

We see that, far from striving to separate science from engineering, we need 
not distinguish them at all. But if we insist upon a distinction, we can think of 
engineering as science for people who are impatient. The Darwinian processes of 
biology depend on the chance of mutations and crossover to produce new designs. 
Although there is also a large element of chance in human design processes, 
chance is moderated by heuristics that use prior knowledge, what is already 
known about the systems of interest, to generate and combine elements in a very 
selective way, greatly increasing the odds that the product will be functional. 

While the scientist is interested specifically in creating new knowledge, the 
engineer is interested also in creating systems that achieve desired goals. Apart 
from this difference in motives, there is no need to distinguish between computer 
scientists and computer engineers, or AI scientists and engineers. We can stop 
debating whether AI is science or engineering; it is both. 
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3. Research by system synthesis 

It is time to relate these generalities to the discipline of artificial intelligence. 
Regardless of our reasons for pursuing AI, its main research method is to build 
and study systems that exhibit intelligence. The basic paradigm is to: 

Select a task incorporating a feature of intelligence that is of substantial 
practical importance or that exhibits features and complexities that have not 
yet been simulated by AI systems. Build a system exhibiting this feature of 
intelligence. Examine the behavior of the system in different task environ- 
ments and with different initial conditions. 

The Logic Theorist incorporated some simple methods of heuristic search, 
which were tested on the task of discovering proofs for theorems. GPS incorpo- 
rated means-ends analysis, which was tested in a variety of simple problem- 
solving domains. SHRDLU [41] had means for processing natural language 
strings and extracting their semantic meanings, which were tested in a blocks 
world. EPAM [ll] has mechanisms for recognizing, remembering and learning to 
discriminate, which were tested in a range of experimental settings drawn from 
the research literature on verbal learning. NAVLAB [30] has mechanisms for 
determining the position of a vehicle and steering it, which are tested by driving it 
on roads. In what sense are these kinds of design projects experiments? 

3.1. System design as experimentation 

An experiment manipulates the independent and dependent variables of a 
particular system. What are the independent and dependent variables in an AI 
system? The dependent variables clearly are measures of the performance of the 
system: how intelligently it behaves both in terms of the range of tasks it can 
handle and its skill and efficiency in handling them. 

Defining the independent variables takes a little more care. Suppose that we 
are studying a particular version of GPS. First, there is the core of the system: in 
the case of GPS, principally its basic symbol-processing capabilities and its 
mechanism for means-ends analysis. A little more peripherally, it also contains 
strategies for heuristic search; it may incorporate best-first search, for example, or 
depth-first search. Still more peripherally, it contains information about particular 
task domains, including productions that notice differences between situations 
(current situation and goal situation) and productions that select move operators 
relevant to reducing the differences that are noticed. 

Changes in any or all of these components can be regarded as changes in the 
internal constraints on GPS. Or, we can think of the symbol-processing capa- 
bilities and the means-ends mechanism as internal constraints, and the remaining 
components as initial conditions. Both internal constraints and initial conditions 
can be treated as independent variables for experimental purposes. In addition, 
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the task environments with which we confront GPS define the external constraints 
on its behavior, constituting another set of independent variables. 

In the earliest experiments in AI, with systems like LT, GPS, STUDENT and 
the others that are reported in Computers and Thought, task domain and domain 
knowledge were held constant, while the principal independent variables were the 
core of the system itself, and often its strategies. The question to be answered 
was: “What basic symbolic capabilities and heuristics will enable a system to 
exhibit intelligence in a task domain that is difficult for humans?” 

Procedures for evaluating outcomes were not elaborate. Did the system solve 
the problems with moderate computing effort? Did it behave selectively, in 
comparison with a brute-force search? At what level of problem difficulty could it 
operate (as compared, say, with human skills)? 

Today, when an artificial intelligence project is aimed at extending AI to a new 
class of task domains, matters remain much the same. The BACON system [21] 
for scientific discovery takes a set of data from an experiment. BACON contains 
basic symbol-manipulating capabilities and a small set of heuristics for inducing 
laws from data and inventing new theoretical concepts. Experimentation consists 
in exploring the range of tasks over which it can and can’t discover the regularities 
in data, the reasons for its successes and failures (i.e., the relation between its 
capabilities and the characteristics of the corresponding task environments), and 
the degree of selectivity of its search. 

In such a line of experimentation, whether with GPS or BACON, initially, the 
principal independent variable is the core of the system itself and its strategies. 
What changes in the system will improve its performance in a task, and what 
changes are required to handle new tasks ? As system performance improves, 
emphasis may shift from manipulating the characteristics of the system to testing a 
fixed system over a range of task environments. How flexible and general is the 
system? 

In research within the so-called expert-novice paradigm, on the other hand, the 
initial conditions, that is, the system’s domain knowledge, is the central in- 
dependent variable. The main interest is in learning how much knowledge, 
organized how in memory, is needed for expert performance. In research on 
generality, the task domain is the central independent variable. Is there a small 
core of mechanisms that can carry the main part of the load over all the tasks? 

Extendability 
Two themes are visible in much AI experimentation. One is extendability; the 

other is generality over tasks. New ideas in AL are often tried out on “toy 
tasks”-tasks that are better structured and less difficult than the real-life tasks we 
would like to handle. The Tower of Hanoi is a toy task; medical diagnosis is a 
real-life task. 

Learning a language is a real-life task; but we may build an AI system, for 
example, Siklossy’s ZBIE [34], that, while demonstrating its ability to acquire 
simple syntax and semantics, for one reason or another is not yet ready to handle 
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the full scope of a natural language. We illuminate a real-life task by simulating a 
toy subtask. 

We may wish to consider ZBIE a candidate theory of language learning, but 
our confidence in its veridicality will depend on the prospect of extending its 
capabilities to acquiring a complete natural language. If ZBIE’s limits appear to 
be due to the short time it has had for learning or to physical limits on memory 
size, we will be more sanguine about its extendability than if we can see that 
additional or different mechanisms will be needed for the extension. Of course 
the final test of its strength as a theory will be the actual attempt to extend it. 

We should remember that most theories in physics are only tested in relatively 
simple laboratory situations, and in fact, many important phenomena can only be 
observed clearly under highly controlled conditions. So we must be careful not to 
impose in AI requirements for theory verification much stronger than those 
imposed in other sciences. That would surely guarantee that we would never 
reach beliefs about anything significant. 

One sound reason for caution about the upward scalability of programs that 
handle toy subtasks successfully is that in AI we are always faced with the specter 
of combinatorial explosion of search. But as we have gained confidence in our 
ability to build and use large knowledge bases to increase selectivity in programs 
like DENDRAL [23] and INTERNIST [31], and as we have succeeded in building 
increasing numbers of systems that operate at (human) professional levels of 
performance, the specter becomes less menacing. And as I will discuss later, such 
warnings as NP-completeness do not threaten combinatorial explosion for most of 
the problems we actually seek to solve. 

Generality over tasks 
AI is most interested, as it should be, in discovering those mechanisms of 

intelligence that apply to a wide range of tasks. GPS was designed to separate the 
task-independent from the task-dependent components of the program, and Ernst 
and Newell [8] undertook an extensive research activity to demonstrate that it 
could solve problems in a dozen or more environments without alteration of the 
task-independent component of the program. The theory of problem solving that 
GPS represents is that component of the program. 

Similarly, the EPAM program [ll] contains a core of mechanisms for recogni- 
tion, memory and learning. To perform any task within its capabilities, it must 
acquire (or be given) an appropriate body of knowledge, stored as initial 
conditions in its memory, as well as strategies derived from the task instructions. 
It is primarily the core mechanisms that we regard as the EPAM theory; and it is 
these mechanisms that should remain invariant as EPAM is extended to new 
tasks. 

However, it should not be supposed that the theoretical content of programs is 
limited to their cores. Knowing how much knowledge, and what kind of 
knowledge, is required by a program to extend it to real-life tasks is also an 
important part of AI theory. It would be of enormous interest today to know 
what knowledge, how organized, would be required for a chess program to play at 
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grandmaster level without needing to search more (100 branches?) than a human 
grandmaster. 

Research within the expert-novice paradigm has focused specifically on 
determining the knowledge bases required for high level performance. Artificial 
intelligence is concerned with understanding both those general heuristic pro- 
cesses (and other bases for intelligence) that are applicable to many domains and 
those more specialized processes that permit high levels of performance to be 
reached in particular domains. 

3.2. The physical symbol system hypothesis 

The first task of AI research was to determine whether intelligent behavior 
could be obtained at all with symbolic list-processing systems. The repeated 
successes that the field achieved in a variety of task domains led Al Newell and 
me, in our 1976 Turing Lecture, to offer a hypothesis to explain this strong 
common foundation of the whole gamut of intelligent devices and programs. We 
called it The Physical Symbol System Hypothesis: 

A physical symbol system (PSS) has the necessary and sufficient means for 
general intelligent action. 

As the hypothesis is a familiar one, I need not recount in detail the defining 
characteristics of a physical symbol system. A PSS is simply a system capable of 
storing symbols (patterns with denotations), and inputting, outputting, organizing 
and reorganizing such symbols and symbol structures, comparing them for 
identity or difference, and acting conditionally on the outcomes of the tests of 
identity. Digital computers are demonstrably PSSs, and a solid body of evidence 
has accumulated that brains are also. The physical materials of which PSSs are 
made, and the physical laws governing these materials are irrelevant as long as 
they support symbolic storage and rapid execution of the symbolic processes 
mentioned above. 

The PSS Hypothesis asserts that the external constraints imposed by any task 
requiring intelligence can be satisfied by, and only by, a PSS. Since different tasks 
impose quite different constraints, the claim that being a PSS is necessary and 
sufficient for intelligence may seem surprising. Its truth depends essentially on the 
generality and adaptability of PSSs like computers and brains. Of course we are 
speaking here not of mathematical truth (e.g., Turing computability) but of the 
empirical fact that computers and brains, appropriately instructed, can exhibit 
intelligence over a wide range of tasks, employing only acceptable amounts of 
computation to do so. 

There is some dispute today about the Physical Symbol System Hypothesis, 
hinging on the definition of the term “symbol”. If we define “symbol” narrowly, 
so that the basic components in connectionist systems or robots of the sort 
advocated by Brooks are not regarded as symbols, then the hypothesis is clearly 
wrong, for systems of these sorts exhibit intelligence. If we define symbols (as I 
have, above) as patterns that denote, then connectionist systems and Brooks’ [2] 
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robots qualify as physical symbol systems. In any case, the hypothesis is an 
empirical one, whose fate will continue to be decided by empirical evidence about 
the mechanisms employed by systems that exhibit intelligence, regardless of 
where we draw the definitional boundary of “symbol”. 

4. Theories of intelligence 

Putting aside now the design task of developing specific intelligent systems, we 
turn to the task of developing the theories of those systems together with theories 
of the design process. I must preface what I am going to say with a discussion of 
what the term “theory” means, or should mean. 

4.1. What is a theory? 

There is an unfortunate confusion, encouraged by the similarity between the 
words “theory” and “theorem”, between theories in an empirical science, on the 
one hand, and formal deductive theories, on the other. This confusion probably 
originated with, and certainly has been encouraged by, the great success of 
Newtonian mechanics in getting much from little. From a few basic premises, in 
particular the three laws of motion, all sorts of important consequences are 
derived mathematically about how matter behaves in the real world. 

In many minds, this success has created the illusion that physics is nearly a 
branch of mathematics (recall the innumerable textbooks on Rational Mechanics); 
and has created strong urges in the other sciences to emulate this royal road to 
empirical truth by reasoning. Economics provides perhaps the most flagrant 
examples of the use of logic unfettered by observation to reach unwarranted 
conclusions about the real world, but examples are not absent from the other 
sciences, including computer science. 

Very little of the physics of complex systems (the atmosphere, the ocean, 
condensed matter) has this highly deductive flavor. Mathematics there is, in 
generous portions, but it is surrounded by boundary conditions and initial 
conditions that are grounded in empirical observation. It is sometimes forgotten 
that special relativity theory was motivated by anomalies of observation-espe- 
cially the incompatibility between the Galilean invariance of the laws of mech- 
anics and the Lorentz invariance of Maxwell’s laws. Similarly, Planck’s law of 
black-body radiation was motivated by the failure of Wien’s law to explain the 
intensities of spectral lines in the face of new observations of infra-red radiation 
obtained when bolometers were extended into that spectral range. Carefully 
observed phenomena are still the starting point for theory in physics. 

When we turn from physics to sciences like biology and geology, and even 
chemistry, the priority of observed phenomena over conclusions reached via long 
chains of inference from general axioms becomes even more evident. Not only do 
most of the known regularities in these sciences derive from extensive observation 
and experimentation, but many of the regularities, especially the most important, 
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are not quantitative, but qualitative. In our Turing Address, Al Newell and I 
called such generalizations laws of qualitative structure (QS laws). The germ 
theory of disease, we observed, is such a qualitative and inexact law, as is the cell 
theory, and for that matter. the theory of evolution by natural selection. If there 

are any equations in “The Origin of Species”, they are exceedingly inconspicuous. 
The germ theory of disease says something like: “If you diagnose a disease, 

look for a microorganism (of course, you won’t always find one).” The cell theory 
says something like: “Most organisms are made up of one or more (perhaps many 
more!) membrane-bounded structures called ‘cells’ that are remarkably similar 

across species in basic structure, for example, all having nuclei (actually, of 
course, only eukarytes have them).” Both theories are qualitative, approximate, 
even vague. These central theories soon become surrounded by crowds of 
particulars, of vary degrees of precision and generality, describing laws of 

organization and process. Most of these are QS laws; relatively few are 
quantitative. 

When we are dealing with complex systems, whatever the science, theories 
almost all have this kind of complexity and messiness. To some extent they can 
still be modelled mathematically-or portions of them can if their application is 
limited to simple cases. For even smaller, simpler subsystems, the mathematical 
formulations can sometimes be solved in closed form. More often, the behavior of 
complex systems has to be studied by computer modelling and simulation, with 

little or no help from theorems. Even in the more theoretical portions of physics 
today, problems are seldom solved in closed symbolic form; more often they are 
solved numerically with many hours of computing; and physicists are the world’s 

largest users of supercomputers. 
Because of these properties of complex systems, a term that describes 

essentially all the Al systems of interest, we find that in Al the principal theories 
take two forms, which at first view seem diametrically opposed: there are precise 
theories in the form of computer programs, and fuzzier theories of the form that 
Allen Newell and I dubbed “laws of qualitative structure”. Let us examine each 
of these in their application to Al. 

4.2. Computer programs as theories in Al 

In the physical sciences, systems of differential equations provide the major tool 
for expressing precise theories of system behavior. For predictions in any given 
situation, the differential equations must be supplemented by empirical estimates 
of system parameters and initial and boundary conditions. 

In cognitive science, computer programs, which from a formal standpoint are 
simply systems of difference equations, perform exactly the same role as systems 
of differential equations do in physics. The only distinction between differential 
and difference equations is that the former treat time as a continuous variable 
while the latter treat it as a discrete variable-the system changes state with each 
computation cycle. Since the basic time interval represented by the system can be 
set to any value, this is a distinction without an important difference. (In fact, 
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when we make numerical computations on differential equation systems, we 
routinely approximate continuous by discrete time.) 

Simple systems of differential and difference equations in real or complex 
numbers can be solved in closed form to yield general theorems of system 
behavior for any values of the parameters. As we have seen, when matters get a 
little more complex, or when the symbols in the equations are not numerical, 
solutions in closed form can no longer be obtained, and the system is studied by 
carrying out simulations for various values of the parameters. As the results apply 
only to the particular parameter values used in the simulations, we return again to 
the kinds of qualitative generalizations that characterize all complex systems. 

In interpreting programs as theories, we must take care to define what 
characteristics of the programs represent the theory, what characteristics are to be 
regarded as irrelevant “notation”, and what parts constitute boundary conditions 
and initial conditions for a particular application of the theory. These same 
questions arise in natural science theories, but perhaps take a particular form in 
AI that is worth examining. 

In the earlier discussion of experimentation, we saw that a running AI program 
contains a definition of the goal and knowledge about the task domain as well as 
problem-solving processes. It also contains strategies, some of which may be 
task-specific. When we say that GPS is a theory of problem solving, we are 
speaking of the core program, including at least some of the more general, and 
task-independent strategies. 

For example, the EPAM program is a theory of human perceptual and memory 
processes [ll]. To test its predictions in any given task situation, it must be given 
the stimuli plus relevant knowledge assumed to be in memory already at the time 
the task is performed and the strategies used by the subject to perform the task. 
How this information got into memory and why and how particular strategies 
were adopted are also appropriate targets of scientific inquiry, but they are not 
part of the core EPAM theory. 

If we strip all of the domain-specific content from EPAM, or a medical 
diagnosis program or a chess-playing program, what remains is usually a small set 
of fairly simple mechanisms. Likewise, BACON [21], which is capable of 
discovering scientific laws and new theoretical concepts for a wide range of 
physical and chemical phenomena, consists of a half dozen domain-independent 
heuristics for generating hypotheses for consideration, and a simple search-control 
heuristic. 

Theory versus programming details 
In the natural sciences, there is usually relatively little confusion between the 

theory and the notation in which it is expressed. Maxwell’s equations can be 
written in old-fashioned coordinate notation or in more modern vector notation. 
Everyone agrees that in either form it is the same theory. Even in a more complex 
and subtle case, everyone agrees that Heisenberg’s matrices, Schrbdinger’s wave 
equations, and Dirac’s abstract algebraic formulation all represent the same 
theory: quantum mechanics. 
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In theories implemented by running programs, there is still some ambiguity as 
to how far down in the hierarchy of programming formalisms the theory extends. 
Pretty clearly, the fact that a program is written in Common Lisp is not part of the 
theory it expresses. But how about the fact that it is written in some form of Lisp? 
Or that it is written in a list-processing language and not an algebraic language? 
Since speed of execution is not an irrelevant consideration in judging the degree 
of intelligence in a performance, the theory in an AI program is not wholly 
independent of its programming implementation. Surely it is not irrelevant that 
most AI programs are written in list-processing languages of some kind, and that 
the processes in most of them are implemented as productions. 

One way in which we can make clearer the substantive content of our programs 
is to indicate as definitely as we can the domain primitives, which can then be 
distinguished from the primitives of the programming language. However, this 
distinction is not always easily made. 

Beyond the pragmatic sentiments I have just expressed, the relations between 
intelligence, on the one hand, and list processing and productions, on the other, 
have perhaps not been adequately elucidated. One might even want to strengthen 
the definition of a physical symbol system to include a requirement of list- 
processing capabilities, especially the ability to form associations and labelled 
associations (descriptions), as well as the ability to act on recognition (pro- 
ductions). Almost all intelligent programs make essential use of these abilities. 

In describing intelligent programs and those of their components that are of 
theoretical interest, we are usually able to characterize these components in a 
qualitative, if inexact, fashion. This brings us back to laws of qualitative structure 
in AI. Much of our communication about our theories takes this shorthand form, 
preferably backed up by the harder currency of running programs. The shorthand 
allows us to ignore program details that are irrelevant to the theory; it does not 
provide guarantees that the informally described system will perform as adver- 
tised . 

I will have more to say later about methods for describing and evaluating 
programs. But before we go into questions of interpretation and evaluation, let us 
turn to the other principal form of theory: laws of qualitative structure. 

4.3. Laws of qualitative structure in AI 

As we seek to develop theory in computer science, and specifically in AI, we 
should be looking for laws of qualitative structure and regularities of organization 
and process that characterize them. Our search for them will of necessity be 
primarily empirical and experimental. In the case of AI the search will be carried 
out by designing complex systems that embody these laws (quantified with 
particular parameter values, of course) and operating them under a wide range of 
conditions, using a variety of observations and measurements to characterize their 
behavior. 

In our Turing Address, Newell and I proposed, in addition to the Physical 
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Symbol System Hypothesis, a second QS law, the Heuristic Search Hypothesis 
(HS): 

Problems are solved (when intelligence is required for solution) by searching 
selectively (heuristically) through a problem space (i.e., a problem repre- 
sentation). 

The Heuristic Search Hypothesis 
The HS Hypothesis is nearly as broad as the PSS Hypothesis, and equally 

qualitative. It is nevertheless quite powerful in what it excludes. It denies that 
problems are generally solved by exhaustive search through large problem spaces, 
or without the help of knowledge of the structure of the problem space. This 
knowledge is used by converting it into search control heuristics. 

The HS Hypothesis is augmented by a number of more specific QS laws that 
characterize some relatively general and useful search heuristics, and by some 
principles of effective search control. With respect to search heuristics, we have 
learned that such processes as hill climbing and means-ends analysis provide 
powerful bases for selectivity in many task domains, and we know a good deal 
about the conditions under which heuristics like these are or aren’t effective. 
Sometimes (e.g., [9]), we are even able to characterize these conditions formally. 

For example, hill climbing is a reliable method only when local maxima are also 
global maxima, and hill climbing must be supplemented by other criteria when 
this condition is not met; means-ends analysis works only if the problem space is 
factorable in a certain sense (when operators can be ordered so that differences 
removed by operators of high priority are not reinstated by those of low priority 
[7,191). 

With respect to search control, special-purpose heuristics have been devised for 
particular classes of task domains: for example, alpha-beta search for game 
environments. The contrasts in performance among depth-first, breadth-first, and 
best-first strategies are fairly well understood. Most of this knowledge also takes 
the form of QS laws, although a few mathematical theorems are scattered through 
the literature (e.g., theorems about the efficiency of the A* search algorithm, 
measured by length of solution path; about efficiency, measured by expected 
computing effort, about criteria for optimal best-first search [38]). 

Twenty or more years of research on expert systems has produced a third very 
general QS law, problem solution by recognition (REC): 

Expert systems solve frequently occurring problems largely by the process of 
recognition. 

That is to say, an expert system (computer or human) possesses a set of 
productions capable of noticing cues in everyday problems and thereupon evoking 
the knowledge stored in memory that is relevant for dealing with the situations 
marked by the cues. Recognition plays a central role, for example, in medical 
diagnosis, whether human or automated, and in the early expert system, 
DENDRAL, which interprets mass spectrograph data in order to elucidate 
chemical structure [23]. 
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Recognition processes are implemented, for example, in the discrimination net 
of EPAM and the Rete nets of production system languages. Using recognition 
processes enables the expert to draw upon large bodies of data, suggesting 
another closely related QS law, the Knowledge Principle: 

A system exhibits intelligent understanding and action at a high level of 
competence primarily because of the specific knowledge that it can bring to 
bear: the concepts, facts, representations, methods, models, metaphors, and 
heuristics about its domain of endeavor. (Lenat and Feigenbaum [22]) 

These examples, and especially the QS laws, PSS, HS and REC, show in what 
large measure our general knowledge about problem solving in AI is embedded in 
laws of qualitative structure which have been induced from specific expert systems 
modelled as computer programs. All of these programs are PSSs, and their 
components that implement HS and REC heuristics are easily identified. In 
comparison with the QS laws, the mathematical theorems that the field has 
created to date fade into insignificance. 

The same picture emerges when we turn to other subdisciplines within AI: 
learning, for example. A number of systems have been constructed that learn 
from their own problem-solving efforts, or from the successful problem-solving 
efforts of others in the form of worked-out examples of problem solutions. The 
adaptive production systems of Waterman, Neves and others [24,40], belong to 
this line of work, as do the explanation-based learning systems of Mitchell, and 
the chunking procedures of Soar [25]. What we have learned about learning from 
the construction of such systems is perhaps best summed up by the QS law of 
Learning from Examples (LE): 

If a production system is provided with detailed examples of problem 
solutions, showing the intermediate steps, then means-end analysis or some 
related method of causal attribution can be used to create automatically new 
productions capable of solving problems of the same general kind. 

In yet another AI domain, more than three decades of experience in building 
systems for automatic translation of natural language has produced a substantial 
body of knowledge about the requisites of such systems, including the QS law: 

Satisfactory translation of natural language requires not only knowledge of a 
lexicon and syntax, but also a substantial body of semantic knowledge to 
provide context for resolving ambiguities. 

Similar examples of QS laws can be extracted from other domains within AI. In 
this respect AI resembles most other scientific disciplines. In biology, for 
example, empirical knowledge is typically embodied in descriptions of the 
structures and processes of specific species of organisms, combined with more 
general QS laws describing general mechanisms (e.g., metabolism, processes 
connecting DNA with proteins, immune reactions). Increasingly, these mecha- 
nisms are being modelled symbolically with computer programs; and computer 
simulations are being compared with the findings of experimental manipulations. 
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4.4. Dealing with complexity 

Currently, the topic of complexity attracts a great deal of interest, but there 
remains a question of what can be said meaningfully about complexity in full 
generality. There is more promise for theories that deal with particular aspects or 
forms of complexity. The mathematical theory of chaos treats the complexity of 
nonlinear dynamic systems whose long-term behavior is unpredictable. The 
theory of systems that possess many interacting components deals with another 
form of complexity. Theories of computational complexity deal with a third form. 

Thus, while bare “complexity” may be a category too broad to support theories 
with any considerable content (as “general systems” proved to be), one can be 
optimistic about the possibility of building theories and discovering QS structure 
that characterize various kinds of complex systems. Let me illustrate these 
possibilities for just two rather closely related aspects of complexity: the 
hierarchical structure of many-component systems; and seriality and parallelism in 
complex systems. 

Hierarchy 
It has been observed empirically for a long time that most many-component 

systems-both those observed in nature and those devised by man-have a 
hierarchical architecture [36]. That is to say, viewed from the top down, they can 
be divided into subsystems that are divided in turn into subsubsystems, and so on, 
until we reach a level of primitives which we do not wish to, or cannot, 
decompose further. The First Commandment of structured programming is to 
respect this hierarchy by working from the top to the bottom. The Second 
Commandment is to minimize the interaction between different substructures (No 
GOTOs!). The Third Commandment is to make each level of the hierarchy 
insensitive to the structure of the levels below, so that adjoining levels interact 
only through inputs and outputs. 

It would seem that structured programming was already invented many eons 
ago by Nature, for these commandments are observed pretty well in a vast 
majority of natural systems. Organisms are made of systems (digestive, respirato- 
ry, circulatory and so on); systems are made of organs, organs of tissues, tissues 
of cells, cells of organelles, organelles of proteins, proteins of amino acids, amino 
acids of atoms and so on. At a still more minute scale, we run all the way down 
through atomic nuclei to elementary particles, quarks, and possibly strings. At the 
other end of the scale, the universe contains galaxies, which contain stars, which 
may have planetary systems. 

Hierarchy yields several laws of qualitative structure, and even some precise 
mathematical generalizations. An example of the former is a QS law that 
hierarchical systems will evolve more rapidly than non-hierarchical ones, and a 
law that the long-run dynamics of such systems depends (approximately) only on 
higher level structure, while the short-run, high frequency, dynamics is de- 
termined nearly independently within each subsystem. 

One of the mathematical generalizations is a formalization of the latter QS law, 
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and provides algorithms for the computations [S, 361. These laws, both qualitative 
and quantitative, are closely related to the commandments of structured program- 

ming mentioned above. 
Hierarchy may be viewed as a powerful antidote to computational complexity. 

The amount of computation required to determine the (approximate) behavior of 
a hierarchical system can be expected to increase only linearly with the number of 
primitives; and if the subsystems at any given level are and remain identical (e.g., 
identical cells in tissues of an organism), to increase only logarithmically. 

Since the possibilities for parallel computation in a system are inversely related 
to the number and strength of precedence constraints, and the latter are related to 
the intensity and frequency of interaction of parts, we would expect that 
hierarchical organization would be conducive to parallelism, provided that the 
lines of hierarchy were used to guide the boundaries of the parallel subsystems. 
That is to say, we would expect to gain from a capability for parallelism between 
components that do not have high-frequency interaction. 

These claims would have to be made much more precise before they could be 
taken literally, but they illustrate one way in which one might approach the design 
of parallel systems. It is interesting that principles like these are instantiated in 
most human organizations, which are almost always hierarchical (I am referring 

not to hierarchy of authority but to boxes-within-boxes departmental arrange- 
ments), and with the hierarchy arranged so that larger units have relatively 
infrequent occasion to interact with each other. 

As with the other topics we have discussed, we see that empirical research has 
to play a major role in the study of complexity, but that there is also room for 
mathematical theory that will at least handle simplified models of the complex 
real phenomena and give guidance to the conduct and interpretation of experi- 
ments. To a major extent, we will reach an understanding of complex systems 
through building and testing them. 

4.5. The role of formal theory 

I have already made a number of comments about the role of formal theories in 
artificial intelligence, observing that precise mathematical theorems have played 
only a modest role in AI, and are unlikely to play a central role in the foreseeable 
future. As in most other empirical sciences, the theories of greatest import and 
impact have been laws of qualitative structure, supported by detailed experiments 

and simulations. 
On the other side of the matter, “precise mathematical theorems” is not 

synonymous with “formal theories”. Computer programs meet the same stan- 

dards of precision as do the symbolic expressions of other parts of mathematics. 
What distinguishes them from some mathematics that has been applied to the 
simpler problems in the physical sciences is that they do not usually admit 
solutions in closed form (i.e., theorems). Consequently, as we have seen, the 
principal technique for drawing inferences from them is to run them in appro- 
priate task environments and evaluate their behavior. 
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If we think of theorems and simulation simply as two kinds of formal treatment, 
we obtain the former when we simplify and abstract the real world to fit the 
mathematical tools we have available. We obtain the latter when we take into 
account more of the world’s complexity. In computer science in general, and in 
AI in particular, we are usually operating in areas of greater complexity than 
those in which theorems can be proved. This is not a virtue; it is simply a fact of 
life. We should treasure the occasions when theorems of some generality, power 
and relevance can be proved. 

Initial and boundary conditions in programs 
Some feel uncomfortable because programs seem so much more complex than 

Newton’s laws of motion, or Maxwell’s equations, or even the laws of quantum 
mechanics. Some comfort can be gained from the point made earlier, that a 
substantial part of this complexity in AI programs arises because they incorporate 
not only basic general mechanisms for performing their tasks, but also a great 
deal of knowledge pertaining to particular task domains, and strategies and 
heuristics specific to those domains. The domain-specific knowledge and strategies 
correspond to the initial and boundary conditions of theories in other sciences. 

Theory primitives versus programming details 
I have also observed that even the computer code representing this kernel does 

not signal where the AI theory leaves off and pure programming convenience 
takes over. Where that boundary lies is a substantive, i.e., experimental, 
question. 

Specification languages for theories 
A different way to clarify the theoretical claims embedded in programs is to 

define relatively formal languages that are not as precisely implemented as 
programming languages, but that describe the theory in a form that allows anyone 
skilled in the art to program it. Examples of this method of generalizing while 
retaining a good deal of precision will be found in the languages used in our book, 
Scientific Discovery, to describe the BACON program and the other discovery 
programs discussed there; and in several formalisms used in Human Problem 
Solving to describe GPS and other problem-solving programs. 

Some efforts are now under way [4] to define standard specification languages 
that could be used to define theories in a formal way, short of full implementa- 
tion; but it remains to be seen whether a single language can do the job or 
whether a variety of languages will be needed to accommodate radically different 
representations used in handling different cognitive tasks, or the same tasks with 
different strategies. 

And, finally, the mechanisms that programs incorporate can usually be stated 
even more succinctly, if less precisely, as laws of qualitative structure. 
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5. Evaluating intelligent systems 

Evaluating the success of an artificial intelligence research effort can be 
relatively simple or it can be complex. When the Logic Theorist (LT) demon- 
strated that a rather primitive heuristic search, with a modest capability for 
selectivity, could find proofs for many theorems in Principia, a basic work on 
logic, that fact alone told us a great deal about intelligence. The significance of 
the result depended on the task being nontrivial for humans. It depended also on 
the fact that the program required modest amounts of computation (almost trivial 
amounts by today’s standards), but amounts comparable to what we might think a 
human brain could provide. It depended on the fact that LT’s heuristics, though 
simple, made its search highly selective as compared with brute-force search. 

Similar statements can be made about molecule identification systems like 
DENDRAL, Winograd’s SHRDLU, medical diagnosis systems like MYCIN and 
INTERNIST, or scientific discovery systems like AM and BACON. What makes 
these systems centrally interesting for AI is that they perform tasks that, in 
humans, require professional levels of intelligence and knowledge, and in doing 
so, exhibit a combination of knowledge base, computing power and heuristics 
sufficient for the task. We can echo Samuel Johnson’s statement about the dancing 
dog: “The marvel is not that it dances well; the marvel is that it dances at all.” 
Demonstrating the range of tasks requiring intelligence that can be programmed 

for computers and describing the nature of these programs are major goals of the 
AI enterprise. When we speak of evaluating such programs, our main focus 
should be on understanding them. 

5.1. The purposes of evaluation 

How complex and difficult a matter it is to evaluate a system will depend upon 

our goals. As we have just seen, if our purpose is to advance the pure theory of 
intelligence, our first aim will be to construct systems that exemplify intelligence 
of different forms in different task environments. Evaluating whether they do 
what we expected them to do may be relatively simple. But there are other 
occasions when evaluation must be more elaborate and principled. 

Simulating human intelligence 

When our interest lies in understanding human mental processes, showing that 
the programs can do tasks that human professionals are capable of is only the first 
step. If we wish to claim that BACON teaches us something about how human 
scientists make discoveries, then we must also compare BACON’s processes with 
data, from field or history or laboratory, describing the processes actually used by 
scientists. 

Designing expert systems 
When the interest lies in creating expert systems, like DENDRAL or MYCIN, 

that can complement, supplement or replace activities of human experts, the 
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mechanisms employed and the measures of success change again. In building 
expert systems the processes used by our systems will not be limited to human 
processes; but we will need to compare the quality of the programs’ performances 
with human performance, and with the performances of other expert systems in 
the same domain, along all dimensions of concern: e.g., quality of solutions, error 
rate, cost, user-friendliness, and so on. 

Extending theory 
In both cases just mentioned there is more to system synthesis than merely 

designing and evaluating specific systems for particular uses. There is an interest 
in improving designs (or simulations). The research includes determining what 
characteristics systems must have and what general principles they must embody 
to enable them to perform their tasks and perform them effectively. 

Thus, in the domain of artificial intelligence, we need theories of the charac- 
teristics and underlying principles of systems capable of holding information in 
memory and retrieving it when needed, and theories of problem-solving systems, 
systems for inducing concepts, systems for learning, systems for navigating and 
operating in the external world (robots), systems for understanding human speech 
so on. The more powerful these theories, the more we can anticipate what 
properties systems in these domains must possess to exhibit intelligence 
(humanoid or other), and the better the systems we can design. 

Improving the design process 
In addition, research may aim at improving the efficiency of the design and 

evaluation processes themselves. As design and evaluation are intelligent pro- 
cesses, hence come within the scope of artificial intelligence and the PSS 
Hypothesis, this kind of research is not distinct from the research previously 
mentioned. Indeed the theory of designing can best be regarded as a special part 
of the theory of solving problems. It can be studied by creating and studying 
systems for automatic design. 

5.2. Evaluating expert system designs 

In the case of expert systems, evaluation of a particular design is often very 
pragmatic: Does the new system perform better and/or more efficiently than 
systems already available? The greater the superiority, the more easily it can be 
demonstrated. Analogously, although statistics were reported about how rapidly 
the early computers of the 1940s performed certain computations, the most 
important news was that they performed them. This was enough information to 
support their continued development. So it has been with steam engines, 
automobiles, airplanes, radios and all other major engineering innovations. 

This is not to argue that evaluation is unimportant for the advancement of 
technology; but it b to argue that at the frontiers of a new technology, very crude 
qualitative evaluation may be enough to point the way. The design process, with 
its constant modification of the emerging system to meet difficulties and failures in 
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performance, incorporates in itself a severe regime of evaluation. Moreover, 
considerations of extendability, visible to the designers who are familiar with the 
design details, but not revealed in the performance of early designs, may be more 
important in pointing toward fruitful directions for R&D than statistics of 
performance. 

We are faced with the celebrated recipe for rabbit stew, which begins: “First 
catch the rabbit.” First design a system that has the desired general capability, at 
least at a minimal level. Having accomplished that, improvement of the design 
and final evaluation may be very difficult, but at least it has a foundation on which 
to proceed. 

The immediate research goal is sometimes to build a system that will be of 
practical use. More often, the goal is to use design and evaluation as a basis for 
building AI theories of the kinds suggested in the previous sections. The tasks are 
selected for feasibility and for the light they can throw on the general principles of 
organization and operation of intelligent systems, paving the way for construction 
at a later date of systems having real-world utility. 

In the beginning, tasks were selected that were relatively simple and well 
structured, and that called for little real-world knowledge. Standard environments 
like chess, the Tower of Hanoi and the Blocks World provided us with situations 
within which we could experiment and reach understanding of the properties and 
operation of fundamental problem-solving mechanisms. 

With growing success in designing such systems (and growing size and speed of 
the computers available for simulation), the research gradually extended to tasks 
calling for large amounts of real-world knowledge and tasks where the initial goals 
and constraints were less well defined: interpreting mass spectrograms, diagnosing 
disease. They have taught us, among other things, how knowledge must be 
organized in memory and processed in order to permit intelligent response to 
knowledge-rich task environments. 

Robotics tasks, that is, tasks in which a system must deal with an actual 
real-world environment, are of growing importance to AI research, for they 
compel attention to kinds and levels of complexity and uncertainty that can be 
finessed in laboratory test beds. (What I am calling “robotics” is not limited to 
tasks calling for sensing and physical response; a scheduling system that handles 
an actual flow of factory orders and responds to genuine information about 
completion, machine down-times, cancellations, data errors, etcetera, is also a 
“robot” for these purposes.) 

By now, a very wide range of tasks has been explored, including many that, 
when performed by human beings, call for professional-level expertise, for 
learning, and even for those qualities we call “intuition”, “insight” or “creativi- 
ty”. 

Which of these kinds of benchmark tasks and test beds offer the greatest 
promise for future AI research? I can only answer, “All of the above”. A recent 
article in the AZ Magazine [15] provides a thoughtful discussion of the issues, and, 
especially as the authors reveal their disagreements along with their points of 
agreement, illustrates vividly the complementarity of different sorts of test beds 
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for the AI enterprise. If I had to express a preference, I would generally endorse 
Steve Hanks’ remarks about “the dangers of experimentation in the small”, not 
because I think such experimentation is unnecessary, but because its manageabili- 
ty and cleanliness sometimes seduces us into neglecting domains of real-world 
complexity, and refusing to face squarely the issues of extendability. 

What is a success, and what a failure, in expert system design? Three kinds of 
criteria have been evoked: comparison with human performance, measurement of 
performance on a standard set of tasks from the domain of interest, and 
comparison with a theoretically determined upper bound of performance. But 
before we take up these possible solutions to the evaluation problem, we need to 
say something about what we mean by a “good” or “effective” expert system. 

Dimensions of effectiveness 
Three dimensions of effectiveness come immediately to mind: quality of 

performance, range and flexibility, and computational efficiency. We can judge a 
chess program, for example, along the first and third dimensions by its strength of 
play and by the time it takes to make a move. Of course there will often be a 
trade-off between these two criteria. With respect to range and flexibility, a 
program to play chess is of no use for other tasks, whereas the General Problem 
Solver can attempt any task for which a suitable representation and table of 
connections between operators and differences can be devised. “Quality of 
performance” is itself a multi-dimensional criterion, which may include such 
components as reliability, graceful degradation, user-friendliness and others. 

Comparisons with human performance 
As soon as it was shown that one can invert a large matrix more rapidly with a 

digital computer than wit a desk calculator, people began to do just that. Within a 
very short time the computer was so much more powerful than the calculator, 
even in economic terms, that sophisticated evaluation was not required to 
demonstrate the superiority. The same may be said, in general, about expert 
systems having more of an AI flavor than those used for matrix inversion. 

Levels of human performance provide useful benchmarks for measuring the 
quality of expert systems, as long as system performance lies within the human 
range. Human performance not only provides a metric through that range, but 
also calibrates the breadth and flexibility of system performance over diverse 
tasks. Such measures can be used whether or not the expert system imitates 
human processes. 

Comparison on standard tasks 
It is convenient to have available a set of benchmark standard tasks sampled in 

some way from a domain’s population of tasks [12,33]. Standard tasks can be 
used to evaluate a system at various stages of its development, and especially to 
compare the power of competing systems. The difficulty lies in defining an 
appropriate standard. 

Suppose we wish to evaluate a medical diagnosis system. (For an excellent 
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recent example, see an evaluation of the QMR system by N.B. Giuse, et al. [13].) 
We might be able to list the diseases for which we want the system to work. But 
the symptoms that signal the presence of these diseases are highly variable. Our 
sample of tasks needs to be a sample not only over diseases, but over patterns of 
symptoms, including patterns where several ailments are present simultaneously. 
Should we weight our sample by frequencies of symptom patterns in the human 

population? Should we weight it by the seriousness of the diseases that the 
symptoms signal? Some of these questions might be answered, at least in 
principle, by using a decision-theoretic approach to the sampling problem. 

But perhaps we are making the problem more difficult than it really is. For 
many practical purposes we can assume that any relatively broad sample will rank 

different expert systems in roughly the same order as any other broad sample. At 
best, this will only be approximately true and is helpful only if our main interest is 

in arriving at such a ranking. If we wish to use the test tasks as a guide to system 
improvement, then their inclusiveness, and the possibility of relating their 
components to specific system components may be more important than their 

representativeness. 
With all of these qualifications, standard sets of tasks can generally provide 

useful benchmarks for evaluating the performance of expert systems and for 
comparing different systems. A good example is the set of tests that ARPA set on 
several occasions for the evaluation of speech recognition systems [26]. Different 
systems were tested on the same corpus of speech, and evaluated with respect to 

both speed and accuracy. Such tests can be designed to evaluate over specified 
ranges of vocabulary and subject matter. 

Similarly, chess programs are routinely evaluated by competition between 

programs and with human players, and their strength specified by EL0 ratings, 
using the same scale that is used to rate human chess players. 

Objections have sometimes been raised to this kind of “horse racing” as 

diverting attention from underlying scientific principles to mere ways of “win- 
ning”. But the objections lack force. for to win means to demonstrate a powerful 
system, and the tests of effectiveness provide rich information not only about who 
is stronger, but also about the specific strengths and weaknesses of the designs, 

the very kinds of empirical information that lead to understanding. These 
competitions discourage projects from searching under street lamps where it is 
easier to find things-however irrelevant the discoveries may be to the goal. 

Theoretical bounds on performance 
Theories of computational complexity have given us some theoretically-moti- 

vated bounds on system performance. One disadvantage of the existing theories is 
that most of them have focused on criteria that facilitate proving mathematical 
theorems about complexity, and these may not be the criteria we would be using 
to evaluate our systems. Another case of the street lamp. 

The criterion about which it has been easiest to prove theorems is worst-case 
performance in the limit, as some measure of problem size, N, grows indefinitely 
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large. By this criterion, a system whose expected worst-case computation time 
grows exponentially with N is inferior to one whose time grows only polynomially 
with N. Moreover, any system that does not guarantee completeness (reaching a 
solution for every problem in finite time) automatically fails the worst-case test. 

Surely we would prefer to measure quality by expected computation times 
rather than worst-case times, but to determine the former, we have to define a 
probability measure over the population of problems. For this, and other reasons 
of mathematical feasibility, it has seldom proved possible to estimate expected 
computation times, and most of the existing theorems use a worst-case criterion. 

One of the pioneers in complexity theory, Michael Rabin, as early as 1974 [32] 
described the dilemma I have just presented, expressed his dissatisfaction with the 
limits of existing theory, and offered some remedial suggestions (including 
defining algorithms of limited applicability and allowing computation with 
occasional errors). What he did not suggest, and what I would offer as solution for 
the dilemma, is the idea of using empirical criteria, based on actual computing 
experience, of “what works”, in those usual cases where theorems of the desired 
kind are unavailable. That is, in fact, what both AI and numerical computation 
have done from the beginning. 

For many purposes, we will prefer to use computational systems that, though 
sometimes failing to solve problems, usually solve them in a short time and solve 
a large fraction of the problems presented in an acceptable (if not always short) 
time. Fig. 1 illustrates hypothetically some of the alternative ways in which we 
might want to evaluate systems. System A in the figure solves 60 per cent of the 
problems presented to it in 1 minute, but appears to reach asymptote after an 

Fig. 1. Problem solving power of three algorithms. 
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hour with only 7.5 per cent of the total solved. System B reaches 60 per cent only 
after 30 minutes, but solves 75 per cent with an hour, and appears to reach 
asymptote above 90 per cent. System C is guaranteed to solve all of the problems 
sooner or later, but solves only 10 per cent in 30 minutes, and 20 per cent in two 
hours. 

It is not evident which of these systems is to be preferred, and preference will 
depend on computing costs and on how serious the consequences are of failing to 
solve a problem within a given computing time. When the problems to be solved 
are very large compared with our computing resources, we will seldom want to 
rank alternative systems according to how long it will take them to solve every 
problem. 

Because of the relatively poor match between the mathematical tractability of 
criteria for evaluating programs, on the one hand, and the practical significance of 
the criteria, on the other hand, mathematical theories have not taken us very far 
in system evaluation, and we have to rely principally on empirical evaluation 
methods to guide design. 

Closely related to issues of computational complexity is the question of the 
scalability of a design. Designs that work well in a small scale do not always scale 
up well. Here, because algorithms that are exponential in problem size explode 
rapidly, the standard measures of computational complexity may be of some 
value. However, the practical question is not how systems scale in the limit, but 
what computation they require when used on problems of the sizes that occur in 
practice. It is not particularly interesting to know whether a program for natural 
language processing could handle a vocabulary of ten billion words; it is usually 
much more interesting to know whether it can handle a vocabulary of one 
hundred thousand words (or, for some applications, even 100 words). 

Systems can also be evaluated for goodness of solution. In operations research 
(linear programming, integer programming, etcetera) there is a tradition of 
evaluating the efficiency of a program by the times it requires to reach optimal 
solutions, but in many situations we might prefer a system that would usually 
reach a very good (not necessarily optimal) solution in a short time to one that 
would find the optimum, but only after much computation. In systems that have 
to respond in real time, for instance, computation ordinarily returns the solution 
that is “best so far” when the time limit is reached, or a “satisfactory” solution as 
soon as one is obtained. It may be either impossible, or simply wasteful, to wring 
out the last drop of approximation to the optimum solution. 

There has also been a tradition (e.g., in relation to the A* search algorithm) of 
seeking to minimize the number of steps to solution; whereas in many domains, 
the number of steps to solution is of little interest; what is wanted is to conserve 
on computation time required for finding the solution [38]. If we are proving 
difficult theorems, we more often set the goal of finding a proof than of finding 
the shortest proof. Shortest path to solution and shortest expected computation 
time to solution are completely different criteria, and it is usually the latter, not 
the former, that is relevant. 
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5.3. Use of statistical tests in evolution 

The AI literature has made rather little use of standard statistical methods for 
testing hypotheses. One can argue both sides of the question of whether this is 
unfortunate or fortunate. I must confess to some rather strong attitudes on the 
matter formed in the course of long experience with hypothesis testing theory, as 
a user and observer of typical usage and, at times, as a contributor to the theory. I 
can only provide these views in brief summary here, with some pointers to the 
published literature. 

Tests of statistical significance are widely used in psychology and biology, very 
little in physics. (The classical “probable errors” of physics are usually estimates 
of the accuracy of instruments, not tests of the probability that an observed 
phenomenon could have occurred by chance.) Tests of significance are legitimate- 
ly used to test whether a variable produces any effect (as compared with the null 
hypothesis that the observed “effect” was produced by chance). The presence or 
absence of statistical significance says nothing whatsoever of whether the effect is 
important in magnitude: significance and importance are unrelated quantities. 

As mathematical statisticians agree unanimously, tests of statistical significance 
cannot be used to test whether a model fits data. (For a brief explanation of why 
they can’t, see [14] or [35] and the references cited there.) One appropriate 
alternative to reporting such tests is to report percentage of variance explained 
(R*). In addition, regression coefficients (not correlation coefficients), showing 
how much a dependent variable changes with change in an independent one, 
provide measures of the importance of the independent variable. Even the latter 
statement holds only if the equations being analyzed are structural equations, 
reflecting the underlying causal structure of the phenomena [17]. 

As AI is primarily concerned with evaluating systems (i.e., models), statistical 
hypothesis testing is unlikely to play a very useful role in the enterprise, although 
a greater attention to measuring the magnitude, hence importance, of the effects 
produced by changes in systems operating in particular kinds of environments 
would be very desirable. 

6. Theories of human intelligence 

Throughout this paper I have emphasized the direction of AI research that is 
concerned with the general theory of intelligence, and have not had much to say 
about models of human cognitive processes: psychological models. 

In spite of the shared method of research, the design and evaluation of systems, 
there is no immediately obvious reason why there should be any close connection 
between research directed at designing intelligent systems and simulating human 
cognition, or between the corresponding theories of intelligence. It could be that, 
because of the radical differences between electronic devices and brains, pro- 
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grams designed to bc efficient expert systems would be totally different in 
architecture and process from systems designed to simulate human thinking. 

To some extent, this is the case. The strongest chess-playing programs 
(designed specifically as expert systems) do not play chess in the same way as 
human grandmasters. Their problem-solving searches are far more extensive and 
far less selective than the searches of human chessmasters [39]. However, a few 
chess programs of a different kind have been written (e.g., the NSS program, 
MATER, PARADISE) with the aim of understanding human play by imitating it. 

As of 1993. the most powerful of the programs designed as expert systems play 
chess at a formidable grandmaster level: the most powerful of the programs 
designed as cognitive simulations are modest amateurs. The programs designed as 

expert systems conduct enormous searches. well beyond human capabilities, 
before making their moves, and generally make use of only a moderate store of 
chess knowledge. The cognitive simulations explore only a few (perhaps hun- 
dreds, but not millions) of the branches of the game tree and make use of 
heuristic chess knowledge to select the branches to be explored. 

But there is another side to the matter. While expert systems and cognitive 
simulations are subject to quite different internal constraints (the physics of 
computers versus the biology of brains). when they are performing the same tasks 
they are subject to the same external constraints- the same task demands. To the 
extent that the task requirements are numerous and heavy, these requirements 
may reveal themselves in fundamental similarities between the programs that 
perform them, however dissimilar the means of implementation at the lowest 

hardware level-the inner constraints. 
Programs constructed to simulate human behavior are evaluated differently 

from programs constructed simply to perform efficiently tasks requiring in- 
telligence. The former are tested by comparing their behavior with the behavior 
of human beings in the same task environments-exactly as any theories are 
tested whose function is to describe and explain empirical phenomena in some 
domain. 

There is nothing about the methodology that distinguishes it at a general level 
from the methodology in any empirical science. The general paradigm is to use 
the theory to predict the empirical phenomena, observe the phenomena, compare 
the predictions with the observations and revise the theory to bring about better 
agreement of theory with data. As there is a large substantive literature on 
symbolic models of cognition (e.g., [ 1.281) ’ ns well as a literature on methodology 
(e.g., [6,25]). 1 will not discuss the topic further here. 

7. The future of artificial intelligence 

At the outset of my remarks, 1 said that I was going to prescribe for the future 
of AI on the basis of what the past has taught us. A number of important lessons 
of the past should now be reasonably plain, and I need summarize them only 
briefly. 
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7.1. The fundamental strategy: pushing the frontier 

Our main task in AI continues to be to explore a wider and wider range of 
activities for whose performance intelligence is essential. We need to identify 
aspects of intelligence that we have not yet succeeded in handling, and attack 
each in turn as soon as we have any ideas about how to proceed. The attack must 
consist, as in the past, of building systems that actually perform the tasks and 
produce the phenomena associated with them. We need to evaluate our programs 
for their efficiency, and for scope and scalability. 

It is not hard to identify some task domains that should be high on the priority 
list, although no claims can be made for the completeness of such a list. My own 
candidates would be two that are already receiving considerable attention, and 
another that is still pretty much on the frontier. These three candidates are: 
machine learning, robotics and representation (including change of representa- 
tion). 

Machine learning 
Machine learning is in a vigorous state of activity with its own journal and 

specialists within AI. We might better say “specialists, alas”, for there is danger 
that the specialization will delay the impact of new discoveries about learning 
mechanisms on mainstream AI. Both serial and connectionist learning techniques 
are being explored, a healthy competition that will teach us in which domains 
each is effective. 

There have been some achievements in theory-notably theorems about the 
convergence of learning algorithms-but what I have said about theorems and 
theories in the body of my paper is as applicable to learning as to other topics in 
AI. Running programs and their evaluation, and QS laws are the key to progress. 
Pat Langley (personal communication) believes that there is today a reasonable 
balance between empirical work and theory in machine learning. A count of 
papers presented at a recent machine learning conference showed that of 44 
papers, 39 contained experimental evaluations of specific programs with explicit 
measures of performance. On the other hand, the conferences on computational 
learning theory, probably populated more by computer scientists from theory 
than by specialists in artificial intelligence, present mainly theoretical papers. 

Robotics 
Robotics is also a vigorous field, and also in danger of being too far separated 

from mainstream AI. I viewed with mixed feelings the establishment of a separate 
graduate program in robotics in my own university. One of the common criticisms 
of much mainstream AI research is that no distinction is made, in modelling 
problem situations, between the actual, real-world, situation and the model of the 
situation stored in computer memory. As robotics cannot afford this luxury of 
confusing the model with external reality, it must incorporate in its systems 
feedback channels that can correct the models periodically to reflect reality more 
accurately. Of course, this distinction can be attained in AI modelling, by keeping 
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in memory both an abstracted model and a simulated “real world”, but the virtue 
of robotics is that it makes the distinction a necessity instead of an option, and 
continually reminds the system builder of the complexity of the real real world- 
the one outside the computer. 

Representation 
It is still typically the case that before a computer can exhibit intelligence in 

handling any task it must be provided with a representation of the task domain: a 
problem space that specifies the kinds of objects and phenomena in the problem 
states, and the kinds of operators that are available for changing one problem 
state into another. Some work has been done. but only a modest amount, to show 
how problem representations can be generated from external information. 

The UNDERSTAND program [16] for example, can generate problem repre- 
sentations suitable as inputs to the General Problem Solver from verbal descrip- 
tions of problems (simple puzzles). The ISAAC program [29] can generate 
representations for specific physics problems from natural language descriptions in 
textbooks. The Soar program of Newell, Laird and Rosenbloom [25], has some 
capability for modifying its representations as it moves to new problem spaces. 
Korf [19] specified some procedures for representation change in a restricted class 

of abstract problems. Kaplan and Simon [18] have proposed a method that would 
produce the critical change in representation needed to solve the Mutilated 
Checkerboard problem. 

This sample of what has been done reminds us of how much remains to be 
done. What would a program be like that could invent the calculus, or even one 
that could select the calculus as the appropriate representation for dealing with a 
particular problem? Through what sequence of steps was Heisenberg’s matrix 
representation for quantum mechanics obtained, or Schrodinger’s wave repre- 
sentation? 

At the most general level, the topic of representation leads us to consider the 
differences between reasoning in words or in formal linguistic representations 
(logic, mathematics) and reasoning from pictures or diagrams. Understanding the 
properties of these representations is a basic issue not only within AI, but also in 
the whole domain of human-computer interaction. 

7.2. Methodology 

In arguing that the past progress in Al came largely from constructing ever 
more sophisticated and complex intelligent programs to perform increasingly 
difficult and ill-structured tasks, I should not like to leave the impression that the 
methodology we have used has been faultless and that there is not room for great 
improvement in it. Wherever theory can be extracted from our models and the 
phenomena they produce, we should extract it-just as is done in other empirical 
sciences. But perhaps the greatest opportunity for improvement in method is to 
make our experiments cumulative by (1) attending more systematically and 
carefully to system evaluation, and (2) paying a great deal more attention to 
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comparison between systems as a basis for understanding the mechanisms, and 
their interactions, that account for outcomes. Again, in discussing these matters, I 
will address mainly the expert system side of AI and not comment on the 
psychological side, where methodology has perhaps reached a somewhat higher 
level of sophistication. 

Standard tasks for evaluation 
To evaluate systems in various task domains, we need standard sets of tasks 

that will be used repeatedly by many investigators studying different systems. I 
mentioned earlier the standards that DARPA has used to evaluate progress in 
speech understanding. It could be a very appropriate activity for our professional 
association to establish, through committees, such standards for a range of areas. 
Not only would this create a consensus on benchmarks for investigators, but it 
would also lead to a valuable dialogue on what constitutes good performance: 
how the criteria depend on the presence or absence of real-time constraints on 
computation, the relation between performance standards and theories of 
computational complexity, and so on. 

Extraction of general mechanisms and principles 
The aim in evaluating systems is not simply to establish which is better at any 

given moment, however interesting such contests (as among chess computers) 
may be. Because we name, and thereby trademark, our systems, what we usually 
report in the literature are comparisons between large complex systems, each 
consisting of a substantial number of interacting mechanisms. After we have 
learned that one system has solved more problems than another, or solved them 
faster, we do not yet know the reasons for the superiority. We do not even know 
in what respects they use quite similar or quite different mechanisms to 
accomplish their results. 

The comparison of systems does not end when we have determined which 
performs better on particular kinds of tasks. That is just the beginning of a 
comparison of the mechanisms that each system employs and the contributions of 
these mechanisms to system performance on different kinds of tasks. What we are 
seeking, as always, are QS laws that can guide the design of the next system, and 
that can advance the general theory of intelligence and intelligent systems. 

If, in my account of the past and future of AI research, I have emphasized 
empirical methods over formal theory, it is because I have sensed, in our meetings 
and in the pages of our journals in recent years, a kind of theory envy that 
sometimes sacrifices attention to complex but real problems in favor of attention 
to over-simple problems that are amenable to exact mathematical treatment. 
Some distinguished members of our profession have even challenged and 
demeaned the very concept of experimental computer science. 

My own scientific record is strewn with examples of mathematical work, some 
of it relevant to real problems, some of it perhaps not. The issue is not whether to 
replace mathematics with experiments, or vice versa; it is to secure and maintain a 
tolerance throughout our discipline for a plurality of approaches to our deep 



126 H. A Simon I Artificiul Intelligence 77 (199.5) 95-127 

scientific problems; and a dedication to improving each of these approaches in its 

own terms. 
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