
ELSEVIER Artificial Intelligence 77 (1995) 95-127

Artificial
Intelligence

Artificial intelligence: an empirical science

Herbert A. Simon*

Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Received August 1993; revised May 1995

Abstract

My initial tasks in this paper are, first, to delimit the boundaries of artificial intelligence,
then, to justify calling it a science: is AI science, or is it engineering, or some combination
of these? After arguing that it is (at least) a science, I will consider how it is best pursued:
in particular, the respective roles for experiment and theory in developing AI.

I will rely more on history than on speculation, for our actual experience in advancing
the field has much to tell us about how we can continue and accelerate that advance. Many
of my examples will be drawn from work with which I have been associated, for I can
speak with greater confidence about what motivated that work and its methods (and about
its defects) than I can about the work of others. My goal, however, is not to give you a trip
through history, but to make definite proposals for our future priorities, using history,
where relevant, as evidence for my views.

1. Artificial intelligence as science

AI deals with some of the phenomena surrounding computers, hence is a part
of computer science [27]. It is also a part of psychology and cognitive science. It
deals, in particular, with the phenomena that appear when computers perform
tasks that, if performed by people, would be regarded as requiring intelligence-
thinking.

Artificial intelligence began in the 1950s as an inquiry into the nature of
intelligence. It used computers as a revolutionary tool to simulate, indeed exhibit,
intelligence, thereby providing a means for examining it in utmost detail. “B.C.“,
before computers, the only observable examples of intelligence were the minds of
living organisms, especially human beings. Now the family of intelligent systems
had been joined by a new genus, intelligent computer programs.

* E-mail: has@a.gp.cs.cmu.edu.

0004-3702/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDZ 0004-3702(95)00039-9

96 H.A. Simon I Artificial intelligence 77 (1995) 95-127

1.1. The multiple goals of AI

As the papers reprinted in Feigenbaum and Feldman’s classic, Computers and
Thought, reveal, the AI thrust, from its very beginnings, was at least three-
pronged. One goal was to construct computer programs (e.g., the Logic Theorist)
capable of exhibiting intelligence, and thereby, to begin building a theory of
intelligent systems. (The original Carnegie-Rand name for the endeavor was
“complex information processing”; our group later accepted the alternative
“artificial intelligence”, which had become the established usage among both
friends and foes of the activity.)

A second goal was to construct programs (e.g., GPS) that exhibited intelligence
by using processes like those used by humans in the same tasks. Here the aim was
to achieve a theory of how the human mind can behave intelligently. The third
goal was to construct intelligent programs (e.g., Tonge’s assembly line balancing
program) that could supplement or complement human intelligence in performing
some of the world’s work. (In the body of this paper, I will refer to systems in this
third category as “expert systems”, enlarging somewhat the usual denotation of
that name.) The systems described in Sections 2 and 3 of Part 1 of Computers and
Thought focus upon the first of these three objectives; those described in Part 2,
upon the second; and those in Sections 4-6 of Part 1 upon the third.

Almost from its very birth, then, AI was a multicelled organism. Its foundation
was the capability for building systems that exhibited intelligence, either as pure
explorations into the nature of intelligence, explorations of the theory of human
intelligence, or explorations of the systems that could perform practical tasks
requiring intelligence. Surrounding these operative AI systems there gradually
grew up corresponding bodies of theory. But we should not think of the programs
as isolated from the theories. Quite the contrary. For example, the Logic Theorist
embodies a theory: the theory that achievement of intelligence in solving
problems requires a physical symbol system capable of heuristic search. likewise,
GPS embodies the theory that means-ends analysis is a powerful heuristic
commonly employed by people for problem-solving search.

We can extract from such programs verbal statements of the theoretical
principles, as Allen Newell and I did in our 1975 Turing Award address, but the
programs provide the basic operational definitions of what the principles mean.
The theory is no more separable from the program than classical mechanics is
from the mathematics of the laws of motion. Different implementations of the
verbal statements are different theories, which exhibit different properties when
the programs are run. I will have more to say later about the relation of programs
to theories and how runs of programs are used to test theories. For the moment, I
will simply remind you that:

The moment of truth is a running program.

1.2. Social fragmentation of AZ

Side by side with the growth of programs aimed at the triple objectives of
understanding intelligence, understanding the human mind and building and

H.A. Simon ! Artificial Intelligence 77 (1995) 95-127 97

understanding expert systems, there have grown up communities of researchers
concerned with these objectives. Some of the researchers are interested in more
than one of the three goals, a few with all three; but social structures have formed
that emphasize and enforce the separateness of the three endeavors rather than
their common concerns.

I will not describe these social structures in detail, except to mention that, in
fact, there are four, not three, principal groups; for at least two rather distinct
groups of researchers focus upon the “pure” theory of intelligence. One
subgroup, found mainly in computer science departments, is often associated with
colleagues who are interested in program verification and/or computational
complexity. Another subgroup identifies with “cognitive science”; some of its
members are to be found in psychology, some within AI groups in computer
science, some in philosophy, some in linguistics, some in anthropology and
miscellaneous other areas.

Over the years, the distance separating all four AI groups has gradually
increased. They attend different professional meetings, ranging from the Ameri-
can Psychological Society, through the Cognitive Science Society, the AAAI, to
ACM and engineering societies like IEEE. They limit their reading and citations
more and more to the journals published by their groups. They receive their
training in different academic disciplines and subdisciplines, each passing on to
the next generation its own specialized version of the enterprise.

In assigning a broad definition to AI, covering all of these groups, I reveal my
belief that, in spite of diversity of goals, there is a common core that makes
continuing communication among them highly desirable. I believe that each one
of these groups can get substantial help in advancing its goals by drawing on the
work of the others, and that the advantages of interaction (and the serious
disadvantages of fragmentation) have been frequently demonstrated over the
whole history of AI. I believe that AAAI and the Cognitive Science Society share
primary responsibility for opposing and turning back the forces of dissociation.

My reasons for believing in complementarity of the several goals will emerge as
I proceed. I would just like to state two of the reasons now, in a preliminary way.

First, the way in which humans achieve intelligence (I will call it “heuristic
search”) is quite different from the way in which computers performing numerical
analysis and similar tasks typically do it. (We might call the latter method, “brute
force disciplined by mathematics.“) The distinction is not black and white, but
obvious none the less. The human methods, I believe, are absolutely essential for
intelligent response to relatively ill-structured problems, hence we must under-
stand them regardless of whether our aim is to understand the human mind or
intelligence in general.

Programs for solving linear programming problems, inverting matrices or
solving partial differential equations depend heavily on the size and speed of
computers, but use algorithms based on the known, and usually rich, mathemati-
cal structures of their problem spaces to reduce the amount of search required.
These search reduction principles do not always optimize search, but almost
always preserve the property of completeness-they are guaranteed to find the
solution to any desired degree of approximation. Because of the mathematical

9x H. A. Simor~ ” Artificiul Intelligence 77 (1995) 9.5-127

regularity of the spaces searched, it is often possible to prove theorems about the
sufficiency and sometimes the efficiency, of algorithms.

Human problem solving seldom shares any of these properties. Nevertheless,
humans, whose computational abilities are puny compared with those of modern
super-computers or even PCs. are sometimes able to solve, with little computa-
tion, problems that are very difficult even by computer standards-problems
having ill-defined goals, poorly characterized and bounded problem spaces, lack
of strong and regular mathematical structure. People solve such problems by the
shrewd use of heuristics and at the expense of giving up guaranteed completeness
of search and optimality of the solutions attained.

What I am calling “disciplined brute force” had its origins in numerical analysis
and its successor, the theory of computation, which has had some extension from
numerical to symbolic systems. Many of us do not believe that the methods of
disciplined brute force can achieve the same range of application and flexibility
that humans attain. Unless and until it is demonstrated that they can, we have
every reason to explore vigorously the human heuristic search techniques as a

source of ideas for intelligent systems, and equal reason to understand the
underlying mechanisms that give these techniques their power in situations where
brute force, even disciplined brute force, fails. These concerns are central both to
understanding how intelligence, human or not, can be applied to ill-structured
problems, and to constructing expert systems for solving such problems.

Artificial intelligence has always had a special interest in this important
“residual” area, where programs rely on heuristic search, without guarantees of
completeness, and often use satisficing criteria of success. Given this interest, they
have every reason to keep in close touch with the progress of research in human
intelligence, which is gradually demystifying the nature of human “shrewdness”,
“intuition” and even “creativity”.

A second reason for close communication among all of the sub-strands of AI is
that the principal means of progress in our field is to find tasks requiring
intelligence for their performance, and then to see what kinds of processes are
sufficient to perform these tasks. Over the years, exploration of a steadily
widening domain of tasks has disclosed a continually richer array of mechanisms
for intelligent behavior. And as the great diversity of existing computer programs
that play chess illustrates, even for a single task there may be many ways to skin
the cat. Comparison of alternative programs can cast much light on the underlying
principles of intelligence. Human behavior provides a valuable range of difficult
ill-structured tasks where the peculiar characteristics of human intelligence are
regularly exhibited.

2. Artificial and natural objects

Artificial objects, including computer programs, are what they are because they
were designed to be that way. This fact has led some to claim that there can be no

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 99

science of artificial objects, but only an engineering technology. Those who hold
the most extreme form of this view look to the discovery and proof of
mathematical theorems about intelligent systems as the only genuine route to a
science of AI, and denigrate the role of system building and experiment as “only
engineering”.

But the claim that artificial objects are divorced from empirical science, and
that they do not lend themselves to natural-science methods of research is
fallacious. An artificial object is as fully bound by the laws of nature as any
natural object. Automobiles are as subject to the law of gravity and the
conservation of energy as glaciers are. Scientific laws limit the set of possible
objects, natural or artificial. No object, artificial or natural, that does not obey
these laws-satisfy these constraint-an exist [36, Chapter 11.

2.1. Znternal constraints

The natural laws that determine the structure and behavior of an object,
natural or artificial, are its internal constraints. An artificial system, like a natural
one, produces empirical phenomena that can be studied by the methods of
observation and experiment common to all science.

It might be objected that a system designed deliberately to behave in a desired
way can produce no surprise or new information. This objection shrugs off our
enormous ignorance of natural law and of the effects produced by natural laws
operating on complex systems. The world of artificial (and natural) objects is full
of unanticipated consequences, because of the limits both of empirical knowledge
and of computational power. The case, in AI, for studying many different kinds
of systems empirically is essentially identical to the case, in biology, for studying
many species of organisms. In neither case can we capture more than a miniscule
portion of the richness and complexity of the real world by attempting to deduce
it from first principles.

Often the most efficient way to predict and understand the behavior of a novel
complex system is to construct the system and observe it. Because AI programs
are also computational models, we can use the programs themselves as their own
models, an advantage for the field of AI that is unique in science. In AI, the
theory not only models but simultaneously exhibits the behavior of the phenom-
ena under study.

The “natural” sciences also depend, for their progress, on building artificial
systems and studying their behavior, for this is the essence of the experimental
method. The natural scientist constructs a system in which the operation of
certain natural laws is thought to be prominent; then observes the phenomena
produced by the system, and especially how these phenomena change with
changes in the system parameters. So Galileo rolls balls down inclined planes or
over the edges of tables, and measures the time of the roll or the length of the
flight as a function of the angle of the plane.

To experiment is to use the artificial to study the natural. To design an AI

100 H.A. Simon I Artificial Intelligence 77 (1995) 95-127

system and observe how its behavior changes with changes in the design is to
perform an experiment. Most of what we know about artificial intelligence has
been learned by carrying out experiments of this kind, thereby making AI a
thoroughly experimental science.

2.2. External constraints

A system, artificial or natural, must conform not only to the internal constraints
imposed by natural law, but to two sets of external constraints as well. The system
can only come into existence under conditions that are defined by natural law;
and it can only survive and operate effectively in suitable environments. These
initial and boundary conditions are the system’s external constraints. Synthetic
chemistry-like AI, a science of design-is devoted to determining (by actual
synthesis) the external constraints that operate upon chemical molecules.

By manipulating the external constraints, we can often determine what
functions a system must perform in order to survive, and how its various
components carry out these functions. Nature, according to Darwin, generates
systems or modifies existing ones; then tests their ability to survive in the ambient
environment. The artificer does exactly the same thing, except that the generator
(the design process) is more purposeful, and the tests (the purposes the designer
has in mind) may go beyond biological fitness.

As the functional requirements imposed by the environment introduce a
teleological component into all systems in the same way that the designer’s
purposes do, the difference between the natural and the artificial fades and then
vanishes. The constraints imposed by nature on living organisms derive from the
same natural laws as those that face design.

2.3. Science and engineering

We see that, far from striving to separate science from engineering, we need
not distinguish them at all. But if we insist upon a distinction, we can think of
engineering as science for people who are impatient. The Darwinian processes of
biology depend on the chance of mutations and crossover to produce new designs.
Although there is also a large element of chance in human design processes,
chance is moderated by heuristics that use prior knowledge, what is already
known about the systems of interest, to generate and combine elements in a very
selective way, greatly increasing the odds that the product will be functional.

While the scientist is interested specifically in creating new knowledge, the
engineer is interested also in creating systems that achieve desired goals. Apart
from this difference in motives, there is no need to distinguish between computer
scientists and computer engineers, or AI scientists and engineers. We can stop
debating whether AI is science or engineering; it is both.

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 101

3. Research by system synthesis

It is time to relate these generalities to the discipline of artificial intelligence.
Regardless of our reasons for pursuing AI, its main research method is to build
and study systems that exhibit intelligence. The basic paradigm is to:

Select a task incorporating a feature of intelligence that is of substantial
practical importance or that exhibits features and complexities that have not
yet been simulated by AI systems. Build a system exhibiting this feature of
intelligence. Examine the behavior of the system in different task environ-
ments and with different initial conditions.

The Logic Theorist incorporated some simple methods of heuristic search,
which were tested on the task of discovering proofs for theorems. GPS incorpo-
rated means-ends analysis, which was tested in a variety of simple problem-
solving domains. SHRDLU [41] had means for processing natural language
strings and extracting their semantic meanings, which were tested in a blocks
world. EPAM [ll] has mechanisms for recognizing, remembering and learning to
discriminate, which were tested in a range of experimental settings drawn from
the research literature on verbal learning. NAVLAB [30] has mechanisms for
determining the position of a vehicle and steering it, which are tested by driving it
on roads. In what sense are these kinds of design projects experiments?

3.1. System design as experimentation

An experiment manipulates the independent and dependent variables of a
particular system. What are the independent and dependent variables in an AI
system? The dependent variables clearly are measures of the performance of the
system: how intelligently it behaves both in terms of the range of tasks it can
handle and its skill and efficiency in handling them.

Defining the independent variables takes a little more care. Suppose that we
are studying a particular version of GPS. First, there is the core of the system: in
the case of GPS, principally its basic symbol-processing capabilities and its
mechanism for means-ends analysis. A little more peripherally, it also contains
strategies for heuristic search; it may incorporate best-first search, for example, or
depth-first search. Still more peripherally, it contains information about particular
task domains, including productions that notice differences between situations
(current situation and goal situation) and productions that select move operators
relevant to reducing the differences that are noticed.

Changes in any or all of these components can be regarded as changes in the
internal constraints on GPS. Or, we can think of the symbol-processing capa-
bilities and the means-ends mechanism as internal constraints, and the remaining
components as initial conditions. Both internal constraints and initial conditions
can be treated as independent variables for experimental purposes. In addition,

102 H.A. Simon I Artificial Intelligence 77 (1995) 95-127

the task environments with which we confront GPS define the external constraints
on its behavior, constituting another set of independent variables.

In the earliest experiments in AI, with systems like LT, GPS, STUDENT and
the others that are reported in Computers and Thought, task domain and domain
knowledge were held constant, while the principal independent variables were the
core of the system itself, and often its strategies. The question to be answered
was: “What basic symbolic capabilities and heuristics will enable a system to
exhibit intelligence in a task domain that is difficult for humans?”

Procedures for evaluating outcomes were not elaborate. Did the system solve
the problems with moderate computing effort? Did it behave selectively, in
comparison with a brute-force search? At what level of problem difficulty could it
operate (as compared, say, with human skills)?

Today, when an artificial intelligence project is aimed at extending AI to a new
class of task domains, matters remain much the same. The BACON system [21]
for scientific discovery takes a set of data from an experiment. BACON contains
basic symbol-manipulating capabilities and a small set of heuristics for inducing
laws from data and inventing new theoretical concepts. Experimentation consists
in exploring the range of tasks over which it can and can’t discover the regularities
in data, the reasons for its successes and failures (i.e., the relation between its
capabilities and the characteristics of the corresponding task environments), and
the degree of selectivity of its search.

In such a line of experimentation, whether with GPS or BACON, initially, the
principal independent variable is the core of the system itself and its strategies.
What changes in the system will improve its performance in a task, and what
changes are required to handle new tasks ? As system performance improves,
emphasis may shift from manipulating the characteristics of the system to testing a
fixed system over a range of task environments. How flexible and general is the
system?

In research within the so-called expert-novice paradigm, on the other hand, the
initial conditions, that is, the system’s domain knowledge, is the central in-
dependent variable. The main interest is in learning how much knowledge,
organized how in memory, is needed for expert performance. In research on
generality, the task domain is the central independent variable. Is there a small
core of mechanisms that can carry the main part of the load over all the tasks?

Extendability
Two themes are visible in much AI experimentation. One is extendability; the

other is generality over tasks. New ideas in AL are often tried out on “toy
tasks”-tasks that are better structured and less difficult than the real-life tasks we
would like to handle. The Tower of Hanoi is a toy task; medical diagnosis is a
real-life task.

Learning a language is a real-life task; but we may build an AI system, for
example, Siklossy’s ZBIE [34], that, while demonstrating its ability to acquire
simple syntax and semantics, for one reason or another is not yet ready to handle

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 103

the full scope of a natural language. We illuminate a real-life task by simulating a
toy subtask.

We may wish to consider ZBIE a candidate theory of language learning, but
our confidence in its veridicality will depend on the prospect of extending its
capabilities to acquiring a complete natural language. If ZBIE’s limits appear to
be due to the short time it has had for learning or to physical limits on memory
size, we will be more sanguine about its extendability than if we can see that
additional or different mechanisms will be needed for the extension. Of course
the final test of its strength as a theory will be the actual attempt to extend it.

We should remember that most theories in physics are only tested in relatively
simple laboratory situations, and in fact, many important phenomena can only be
observed clearly under highly controlled conditions. So we must be careful not to
impose in AI requirements for theory verification much stronger than those
imposed in other sciences. That would surely guarantee that we would never
reach beliefs about anything significant.

One sound reason for caution about the upward scalability of programs that
handle toy subtasks successfully is that in AI we are always faced with the specter
of combinatorial explosion of search. But as we have gained confidence in our
ability to build and use large knowledge bases to increase selectivity in programs
like DENDRAL [23] and INTERNIST [31], and as we have succeeded in building
increasing numbers of systems that operate at (human) professional levels of
performance, the specter becomes less menacing. And as I will discuss later, such
warnings as NP-completeness do not threaten combinatorial explosion for most of
the problems we actually seek to solve.

Generality over tasks
AI is most interested, as it should be, in discovering those mechanisms of

intelligence that apply to a wide range of tasks. GPS was designed to separate the
task-independent from the task-dependent components of the program, and Ernst
and Newell [8] undertook an extensive research activity to demonstrate that it
could solve problems in a dozen or more environments without alteration of the
task-independent component of the program. The theory of problem solving that
GPS represents is that component of the program.

Similarly, the EPAM program [ll] contains a core of mechanisms for recogni-
tion, memory and learning. To perform any task within its capabilities, it must
acquire (or be given) an appropriate body of knowledge, stored as initial
conditions in its memory, as well as strategies derived from the task instructions.
It is primarily the core mechanisms that we regard as the EPAM theory; and it is
these mechanisms that should remain invariant as EPAM is extended to new
tasks.

However, it should not be supposed that the theoretical content of programs is
limited to their cores. Knowing how much knowledge, and what kind of
knowledge, is required by a program to extend it to real-life tasks is also an
important part of AI theory. It would be of enormous interest today to know
what knowledge, how organized, would be required for a chess program to play at

104 H.A. Simon 1 Artificial Intelligence 77 (1995) 95-127

grandmaster level without needing to search more (100 branches?) than a human
grandmaster.

Research within the expert-novice paradigm has focused specifically on
determining the knowledge bases required for high level performance. Artificial
intelligence is concerned with understanding both those general heuristic pro-
cesses (and other bases for intelligence) that are applicable to many domains and
those more specialized processes that permit high levels of performance to be
reached in particular domains.

3.2. The physical symbol system hypothesis

The first task of AI research was to determine whether intelligent behavior
could be obtained at all with symbolic list-processing systems. The repeated
successes that the field achieved in a variety of task domains led Al Newell and
me, in our 1976 Turing Lecture, to offer a hypothesis to explain this strong
common foundation of the whole gamut of intelligent devices and programs. We
called it The Physical Symbol System Hypothesis:

A physical symbol system (PSS) has the necessary and sufficient means for
general intelligent action.

As the hypothesis is a familiar one, I need not recount in detail the defining
characteristics of a physical symbol system. A PSS is simply a system capable of
storing symbols (patterns with denotations), and inputting, outputting, organizing
and reorganizing such symbols and symbol structures, comparing them for
identity or difference, and acting conditionally on the outcomes of the tests of
identity. Digital computers are demonstrably PSSs, and a solid body of evidence
has accumulated that brains are also. The physical materials of which PSSs are
made, and the physical laws governing these materials are irrelevant as long as
they support symbolic storage and rapid execution of the symbolic processes
mentioned above.

The PSS Hypothesis asserts that the external constraints imposed by any task
requiring intelligence can be satisfied by, and only by, a PSS. Since different tasks
impose quite different constraints, the claim that being a PSS is necessary and
sufficient for intelligence may seem surprising. Its truth depends essentially on the
generality and adaptability of PSSs like computers and brains. Of course we are
speaking here not of mathematical truth (e.g., Turing computability) but of the
empirical fact that computers and brains, appropriately instructed, can exhibit
intelligence over a wide range of tasks, employing only acceptable amounts of
computation to do so.

There is some dispute today about the Physical Symbol System Hypothesis,
hinging on the definition of the term “symbol”. If we define “symbol” narrowly,
so that the basic components in connectionist systems or robots of the sort
advocated by Brooks are not regarded as symbols, then the hypothesis is clearly
wrong, for systems of these sorts exhibit intelligence. If we define symbols (as I
have, above) as patterns that denote, then connectionist systems and Brooks’ [2]

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 105

robots qualify as physical symbol systems. In any case, the hypothesis is an
empirical one, whose fate will continue to be decided by empirical evidence about
the mechanisms employed by systems that exhibit intelligence, regardless of
where we draw the definitional boundary of “symbol”.

4. Theories of intelligence

Putting aside now the design task of developing specific intelligent systems, we
turn to the task of developing the theories of those systems together with theories
of the design process. I must preface what I am going to say with a discussion of
what the term “theory” means, or should mean.

4.1. What is a theory?

There is an unfortunate confusion, encouraged by the similarity between the
words “theory” and “theorem”, between theories in an empirical science, on the
one hand, and formal deductive theories, on the other. This confusion probably
originated with, and certainly has been encouraged by, the great success of
Newtonian mechanics in getting much from little. From a few basic premises, in
particular the three laws of motion, all sorts of important consequences are
derived mathematically about how matter behaves in the real world.

In many minds, this success has created the illusion that physics is nearly a
branch of mathematics (recall the innumerable textbooks on Rational Mechanics);
and has created strong urges in the other sciences to emulate this royal road to
empirical truth by reasoning. Economics provides perhaps the most flagrant
examples of the use of logic unfettered by observation to reach unwarranted
conclusions about the real world, but examples are not absent from the other
sciences, including computer science.

Very little of the physics of complex systems (the atmosphere, the ocean,
condensed matter) has this highly deductive flavor. Mathematics there is, in
generous portions, but it is surrounded by boundary conditions and initial
conditions that are grounded in empirical observation. It is sometimes forgotten
that special relativity theory was motivated by anomalies of observation-espe-
cially the incompatibility between the Galilean invariance of the laws of mech-
anics and the Lorentz invariance of Maxwell’s laws. Similarly, Planck’s law of
black-body radiation was motivated by the failure of Wien’s law to explain the
intensities of spectral lines in the face of new observations of infra-red radiation
obtained when bolometers were extended into that spectral range. Carefully
observed phenomena are still the starting point for theory in physics.

When we turn from physics to sciences like biology and geology, and even
chemistry, the priority of observed phenomena over conclusions reached via long
chains of inference from general axioms becomes even more evident. Not only do
most of the known regularities in these sciences derive from extensive observation
and experimentation, but many of the regularities, especially the most important,

106 H.A. Simon I Arrificial Intelligence 77 (1995) 95-127

are not quantitative, but qualitative. In our Turing Address, Al Newell and I
called such generalizations laws of qualitative structure (QS laws). The germ
theory of disease, we observed, is such a qualitative and inexact law, as is the cell
theory, and for that matter. the theory of evolution by natural selection. If there

are any equations in “The Origin of Species”, they are exceedingly inconspicuous.
The germ theory of disease says something like: “If you diagnose a disease,

look for a microorganism (of course, you won’t always find one).” The cell theory
says something like: “Most organisms are made up of one or more (perhaps many
more!) membrane-bounded structures called ‘cells’ that are remarkably similar

across species in basic structure, for example, all having nuclei (actually, of
course, only eukarytes have them).” Both theories are qualitative, approximate,
even vague. These central theories soon become surrounded by crowds of
particulars, of vary degrees of precision and generality, describing laws of

organization and process. Most of these are QS laws; relatively few are
quantitative.

When we are dealing with complex systems, whatever the science, theories
almost all have this kind of complexity and messiness. To some extent they can
still be modelled mathematically-or portions of them can if their application is
limited to simple cases. For even smaller, simpler subsystems, the mathematical
formulations can sometimes be solved in closed form. More often, the behavior of
complex systems has to be studied by computer modelling and simulation, with

little or no help from theorems. Even in the more theoretical portions of physics
today, problems are seldom solved in closed symbolic form; more often they are
solved numerically with many hours of computing; and physicists are the world’s

largest users of supercomputers.
Because of these properties of complex systems, a term that describes

essentially all the Al systems of interest, we find that in Al the principal theories
take two forms, which at first view seem diametrically opposed: there are precise
theories in the form of computer programs, and fuzzier theories of the form that
Allen Newell and I dubbed “laws of qualitative structure”. Let us examine each
of these in their application to Al.

4.2. Computer programs as theories in Al

In the physical sciences, systems of differential equations provide the major tool
for expressing precise theories of system behavior. For predictions in any given
situation, the differential equations must be supplemented by empirical estimates
of system parameters and initial and boundary conditions.

In cognitive science, computer programs, which from a formal standpoint are
simply systems of difference equations, perform exactly the same role as systems
of differential equations do in physics. The only distinction between differential
and difference equations is that the former treat time as a continuous variable
while the latter treat it as a discrete variable-the system changes state with each
computation cycle. Since the basic time interval represented by the system can be
set to any value, this is a distinction without an important difference. (In fact,

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 107

when we make numerical computations on differential equation systems, we
routinely approximate continuous by discrete time.)

Simple systems of differential and difference equations in real or complex
numbers can be solved in closed form to yield general theorems of system
behavior for any values of the parameters. As we have seen, when matters get a
little more complex, or when the symbols in the equations are not numerical,
solutions in closed form can no longer be obtained, and the system is studied by
carrying out simulations for various values of the parameters. As the results apply
only to the particular parameter values used in the simulations, we return again to
the kinds of qualitative generalizations that characterize all complex systems.

In interpreting programs as theories, we must take care to define what
characteristics of the programs represent the theory, what characteristics are to be
regarded as irrelevant “notation”, and what parts constitute boundary conditions
and initial conditions for a particular application of the theory. These same
questions arise in natural science theories, but perhaps take a particular form in
AI that is worth examining.

In the earlier discussion of experimentation, we saw that a running AI program
contains a definition of the goal and knowledge about the task domain as well as
problem-solving processes. It also contains strategies, some of which may be
task-specific. When we say that GPS is a theory of problem solving, we are
speaking of the core program, including at least some of the more general, and
task-independent strategies.

For example, the EPAM program is a theory of human perceptual and memory
processes [ll]. To test its predictions in any given task situation, it must be given
the stimuli plus relevant knowledge assumed to be in memory already at the time
the task is performed and the strategies used by the subject to perform the task.
How this information got into memory and why and how particular strategies
were adopted are also appropriate targets of scientific inquiry, but they are not
part of the core EPAM theory.

If we strip all of the domain-specific content from EPAM, or a medical
diagnosis program or a chess-playing program, what remains is usually a small set
of fairly simple mechanisms. Likewise, BACON [21], which is capable of
discovering scientific laws and new theoretical concepts for a wide range of
physical and chemical phenomena, consists of a half dozen domain-independent
heuristics for generating hypotheses for consideration, and a simple search-control
heuristic.

Theory versus programming details
In the natural sciences, there is usually relatively little confusion between the

theory and the notation in which it is expressed. Maxwell’s equations can be
written in old-fashioned coordinate notation or in more modern vector notation.
Everyone agrees that in either form it is the same theory. Even in a more complex
and subtle case, everyone agrees that Heisenberg’s matrices, Schrbdinger’s wave
equations, and Dirac’s abstract algebraic formulation all represent the same
theory: quantum mechanics.

108 H.A. Simon I Artificial intelligence 77 (1995) 95-127

In theories implemented by running programs, there is still some ambiguity as
to how far down in the hierarchy of programming formalisms the theory extends.
Pretty clearly, the fact that a program is written in Common Lisp is not part of the
theory it expresses. But how about the fact that it is written in some form of Lisp?
Or that it is written in a list-processing language and not an algebraic language?
Since speed of execution is not an irrelevant consideration in judging the degree
of intelligence in a performance, the theory in an AI program is not wholly
independent of its programming implementation. Surely it is not irrelevant that
most AI programs are written in list-processing languages of some kind, and that
the processes in most of them are implemented as productions.

One way in which we can make clearer the substantive content of our programs
is to indicate as definitely as we can the domain primitives, which can then be
distinguished from the primitives of the programming language. However, this
distinction is not always easily made.

Beyond the pragmatic sentiments I have just expressed, the relations between
intelligence, on the one hand, and list processing and productions, on the other,
have perhaps not been adequately elucidated. One might even want to strengthen
the definition of a physical symbol system to include a requirement of list-
processing capabilities, especially the ability to form associations and labelled
associations (descriptions), as well as the ability to act on recognition (pro-
ductions). Almost all intelligent programs make essential use of these abilities.

In describing intelligent programs and those of their components that are of
theoretical interest, we are usually able to characterize these components in a
qualitative, if inexact, fashion. This brings us back to laws of qualitative structure
in AI. Much of our communication about our theories takes this shorthand form,
preferably backed up by the harder currency of running programs. The shorthand
allows us to ignore program details that are irrelevant to the theory; it does not
provide guarantees that the informally described system will perform as adver-
tised .

I will have more to say later about methods for describing and evaluating
programs. But before we go into questions of interpretation and evaluation, let us
turn to the other principal form of theory: laws of qualitative structure.

4.3. Laws of qualitative structure in AI

As we seek to develop theory in computer science, and specifically in AI, we
should be looking for laws of qualitative structure and regularities of organization
and process that characterize them. Our search for them will of necessity be
primarily empirical and experimental. In the case of AI the search will be carried
out by designing complex systems that embody these laws (quantified with
particular parameter values, of course) and operating them under a wide range of
conditions, using a variety of observations and measurements to characterize their
behavior.

In our Turing Address, Newell and I proposed, in addition to the Physical

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 109

Symbol System Hypothesis, a second QS law, the Heuristic Search Hypothesis
(HS):

Problems are solved (when intelligence is required for solution) by searching
selectively (heuristically) through a problem space (i.e., a problem repre-
sentation).

The Heuristic Search Hypothesis
The HS Hypothesis is nearly as broad as the PSS Hypothesis, and equally

qualitative. It is nevertheless quite powerful in what it excludes. It denies that
problems are generally solved by exhaustive search through large problem spaces,
or without the help of knowledge of the structure of the problem space. This
knowledge is used by converting it into search control heuristics.

The HS Hypothesis is augmented by a number of more specific QS laws that
characterize some relatively general and useful search heuristics, and by some
principles of effective search control. With respect to search heuristics, we have
learned that such processes as hill climbing and means-ends analysis provide
powerful bases for selectivity in many task domains, and we know a good deal
about the conditions under which heuristics like these are or aren’t effective.
Sometimes (e.g., [9]), we are even able to characterize these conditions formally.

For example, hill climbing is a reliable method only when local maxima are also
global maxima, and hill climbing must be supplemented by other criteria when
this condition is not met; means-ends analysis works only if the problem space is
factorable in a certain sense (when operators can be ordered so that differences
removed by operators of high priority are not reinstated by those of low priority
[7,191).

With respect to search control, special-purpose heuristics have been devised for
particular classes of task domains: for example, alpha-beta search for game
environments. The contrasts in performance among depth-first, breadth-first, and
best-first strategies are fairly well understood. Most of this knowledge also takes
the form of QS laws, although a few mathematical theorems are scattered through
the literature (e.g., theorems about the efficiency of the A* search algorithm,
measured by length of solution path; about efficiency, measured by expected
computing effort, about criteria for optimal best-first search [38]).

Twenty or more years of research on expert systems has produced a third very
general QS law, problem solution by recognition (REC):

Expert systems solve frequently occurring problems largely by the process of
recognition.

That is to say, an expert system (computer or human) possesses a set of
productions capable of noticing cues in everyday problems and thereupon evoking
the knowledge stored in memory that is relevant for dealing with the situations
marked by the cues. Recognition plays a central role, for example, in medical
diagnosis, whether human or automated, and in the early expert system,
DENDRAL, which interprets mass spectrograph data in order to elucidate
chemical structure [23].

110 H.A. Simon ! Artificial Intelligence 77 (1995) 95-127

Recognition processes are implemented, for example, in the discrimination net
of EPAM and the Rete nets of production system languages. Using recognition
processes enables the expert to draw upon large bodies of data, suggesting
another closely related QS law, the Knowledge Principle:

A system exhibits intelligent understanding and action at a high level of
competence primarily because of the specific knowledge that it can bring to
bear: the concepts, facts, representations, methods, models, metaphors, and
heuristics about its domain of endeavor. (Lenat and Feigenbaum [22])

These examples, and especially the QS laws, PSS, HS and REC, show in what
large measure our general knowledge about problem solving in AI is embedded in
laws of qualitative structure which have been induced from specific expert systems
modelled as computer programs. All of these programs are PSSs, and their
components that implement HS and REC heuristics are easily identified. In
comparison with the QS laws, the mathematical theorems that the field has
created to date fade into insignificance.

The same picture emerges when we turn to other subdisciplines within AI:
learning, for example. A number of systems have been constructed that learn
from their own problem-solving efforts, or from the successful problem-solving
efforts of others in the form of worked-out examples of problem solutions. The
adaptive production systems of Waterman, Neves and others [24,40], belong to
this line of work, as do the explanation-based learning systems of Mitchell, and
the chunking procedures of Soar [25]. What we have learned about learning from
the construction of such systems is perhaps best summed up by the QS law of
Learning from Examples (LE):

If a production system is provided with detailed examples of problem
solutions, showing the intermediate steps, then means-end analysis or some
related method of causal attribution can be used to create automatically new
productions capable of solving problems of the same general kind.

In yet another AI domain, more than three decades of experience in building
systems for automatic translation of natural language has produced a substantial
body of knowledge about the requisites of such systems, including the QS law:

Satisfactory translation of natural language requires not only knowledge of a
lexicon and syntax, but also a substantial body of semantic knowledge to
provide context for resolving ambiguities.

Similar examples of QS laws can be extracted from other domains within AI. In
this respect AI resembles most other scientific disciplines. In biology, for
example, empirical knowledge is typically embodied in descriptions of the
structures and processes of specific species of organisms, combined with more
general QS laws describing general mechanisms (e.g., metabolism, processes
connecting DNA with proteins, immune reactions). Increasingly, these mecha-
nisms are being modelled symbolically with computer programs; and computer
simulations are being compared with the findings of experimental manipulations.

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 111

4.4. Dealing with complexity

Currently, the topic of complexity attracts a great deal of interest, but there
remains a question of what can be said meaningfully about complexity in full
generality. There is more promise for theories that deal with particular aspects or
forms of complexity. The mathematical theory of chaos treats the complexity of
nonlinear dynamic systems whose long-term behavior is unpredictable. The
theory of systems that possess many interacting components deals with another
form of complexity. Theories of computational complexity deal with a third form.

Thus, while bare “complexity” may be a category too broad to support theories
with any considerable content (as “general systems” proved to be), one can be
optimistic about the possibility of building theories and discovering QS structure
that characterize various kinds of complex systems. Let me illustrate these
possibilities for just two rather closely related aspects of complexity: the
hierarchical structure of many-component systems; and seriality and parallelism in
complex systems.

Hierarchy
It has been observed empirically for a long time that most many-component

systems-both those observed in nature and those devised by man-have a
hierarchical architecture [36]. That is to say, viewed from the top down, they can
be divided into subsystems that are divided in turn into subsubsystems, and so on,
until we reach a level of primitives which we do not wish to, or cannot,
decompose further. The First Commandment of structured programming is to
respect this hierarchy by working from the top to the bottom. The Second
Commandment is to minimize the interaction between different substructures (No
GOTOs!). The Third Commandment is to make each level of the hierarchy
insensitive to the structure of the levels below, so that adjoining levels interact
only through inputs and outputs.

It would seem that structured programming was already invented many eons
ago by Nature, for these commandments are observed pretty well in a vast
majority of natural systems. Organisms are made of systems (digestive, respirato-
ry, circulatory and so on); systems are made of organs, organs of tissues, tissues
of cells, cells of organelles, organelles of proteins, proteins of amino acids, amino
acids of atoms and so on. At a still more minute scale, we run all the way down
through atomic nuclei to elementary particles, quarks, and possibly strings. At the
other end of the scale, the universe contains galaxies, which contain stars, which
may have planetary systems.

Hierarchy yields several laws of qualitative structure, and even some precise
mathematical generalizations. An example of the former is a QS law that
hierarchical systems will evolve more rapidly than non-hierarchical ones, and a
law that the long-run dynamics of such systems depends (approximately) only on
higher level structure, while the short-run, high frequency, dynamics is de-
termined nearly independently within each subsystem.

One of the mathematical generalizations is a formalization of the latter QS law,

II? H.A. Simon I Artificial Intelligence 77 (1995) 9.5-127

and provides algorithms for the computations [S, 361. These laws, both qualitative
and quantitative, are closely related to the commandments of structured program-

ming mentioned above.
Hierarchy may be viewed as a powerful antidote to computational complexity.

The amount of computation required to determine the (approximate) behavior of
a hierarchical system can be expected to increase only linearly with the number of
primitives; and if the subsystems at any given level are and remain identical (e.g.,
identical cells in tissues of an organism), to increase only logarithmically.

Since the possibilities for parallel computation in a system are inversely related
to the number and strength of precedence constraints, and the latter are related to
the intensity and frequency of interaction of parts, we would expect that
hierarchical organization would be conducive to parallelism, provided that the
lines of hierarchy were used to guide the boundaries of the parallel subsystems.
That is to say, we would expect to gain from a capability for parallelism between
components that do not have high-frequency interaction.

These claims would have to be made much more precise before they could be
taken literally, but they illustrate one way in which one might approach the design
of parallel systems. It is interesting that principles like these are instantiated in
most human organizations, which are almost always hierarchical (I am referring

not to hierarchy of authority but to boxes-within-boxes departmental arrange-
ments), and with the hierarchy arranged so that larger units have relatively
infrequent occasion to interact with each other.

As with the other topics we have discussed, we see that empirical research has
to play a major role in the study of complexity, but that there is also room for
mathematical theory that will at least handle simplified models of the complex
real phenomena and give guidance to the conduct and interpretation of experi-
ments. To a major extent, we will reach an understanding of complex systems
through building and testing them.

4.5. The role of formal theory

I have already made a number of comments about the role of formal theories in
artificial intelligence, observing that precise mathematical theorems have played
only a modest role in AI, and are unlikely to play a central role in the foreseeable
future. As in most other empirical sciences, the theories of greatest import and
impact have been laws of qualitative structure, supported by detailed experiments

and simulations.
On the other side of the matter, “precise mathematical theorems” is not

synonymous with “formal theories”. Computer programs meet the same stan-

dards of precision as do the symbolic expressions of other parts of mathematics.
What distinguishes them from some mathematics that has been applied to the
simpler problems in the physical sciences is that they do not usually admit
solutions in closed form (i.e., theorems). Consequently, as we have seen, the
principal technique for drawing inferences from them is to run them in appro-
priate task environments and evaluate their behavior.

H.A. Simon I Artijkial Intelligence 77 (1995) 95-127 113

If we think of theorems and simulation simply as two kinds of formal treatment,
we obtain the former when we simplify and abstract the real world to fit the
mathematical tools we have available. We obtain the latter when we take into
account more of the world’s complexity. In computer science in general, and in
AI in particular, we are usually operating in areas of greater complexity than
those in which theorems can be proved. This is not a virtue; it is simply a fact of
life. We should treasure the occasions when theorems of some generality, power
and relevance can be proved.

Initial and boundary conditions in programs
Some feel uncomfortable because programs seem so much more complex than

Newton’s laws of motion, or Maxwell’s equations, or even the laws of quantum
mechanics. Some comfort can be gained from the point made earlier, that a
substantial part of this complexity in AI programs arises because they incorporate
not only basic general mechanisms for performing their tasks, but also a great
deal of knowledge pertaining to particular task domains, and strategies and
heuristics specific to those domains. The domain-specific knowledge and strategies
correspond to the initial and boundary conditions of theories in other sciences.

Theory primitives versus programming details
I have also observed that even the computer code representing this kernel does

not signal where the AI theory leaves off and pure programming convenience
takes over. Where that boundary lies is a substantive, i.e., experimental,
question.

Specification languages for theories
A different way to clarify the theoretical claims embedded in programs is to

define relatively formal languages that are not as precisely implemented as
programming languages, but that describe the theory in a form that allows anyone
skilled in the art to program it. Examples of this method of generalizing while
retaining a good deal of precision will be found in the languages used in our book,
Scientific Discovery, to describe the BACON program and the other discovery
programs discussed there; and in several formalisms used in Human Problem
Solving to describe GPS and other problem-solving programs.

Some efforts are now under way [4] to define standard specification languages
that could be used to define theories in a formal way, short of full implementa-
tion; but it remains to be seen whether a single language can do the job or
whether a variety of languages will be needed to accommodate radically different
representations used in handling different cognitive tasks, or the same tasks with
different strategies.

And, finally, the mechanisms that programs incorporate can usually be stated
even more succinctly, if less precisely, as laws of qualitative structure.

I14 H.A. Simon ! Artificial Intelligence 77 (1995) 95-127

5. Evaluating intelligent systems

Evaluating the success of an artificial intelligence research effort can be
relatively simple or it can be complex. When the Logic Theorist (LT) demon-
strated that a rather primitive heuristic search, with a modest capability for
selectivity, could find proofs for many theorems in Principia, a basic work on
logic, that fact alone told us a great deal about intelligence. The significance of
the result depended on the task being nontrivial for humans. It depended also on
the fact that the program required modest amounts of computation (almost trivial
amounts by today’s standards), but amounts comparable to what we might think a
human brain could provide. It depended on the fact that LT’s heuristics, though
simple, made its search highly selective as compared with brute-force search.

Similar statements can be made about molecule identification systems like
DENDRAL, Winograd’s SHRDLU, medical diagnosis systems like MYCIN and
INTERNIST, or scientific discovery systems like AM and BACON. What makes
these systems centrally interesting for AI is that they perform tasks that, in
humans, require professional levels of intelligence and knowledge, and in doing
so, exhibit a combination of knowledge base, computing power and heuristics
sufficient for the task. We can echo Samuel Johnson’s statement about the dancing
dog: “The marvel is not that it dances well; the marvel is that it dances at all.”
Demonstrating the range of tasks requiring intelligence that can be programmed

for computers and describing the nature of these programs are major goals of the
AI enterprise. When we speak of evaluating such programs, our main focus
should be on understanding them.

5.1. The purposes of evaluation

How complex and difficult a matter it is to evaluate a system will depend upon

our goals. As we have just seen, if our purpose is to advance the pure theory of
intelligence, our first aim will be to construct systems that exemplify intelligence
of different forms in different task environments. Evaluating whether they do
what we expected them to do may be relatively simple. But there are other
occasions when evaluation must be more elaborate and principled.

Simulating human intelligence

When our interest lies in understanding human mental processes, showing that
the programs can do tasks that human professionals are capable of is only the first
step. If we wish to claim that BACON teaches us something about how human
scientists make discoveries, then we must also compare BACON’s processes with
data, from field or history or laboratory, describing the processes actually used by
scientists.

Designing expert systems
When the interest lies in creating expert systems, like DENDRAL or MYCIN,

that can complement, supplement or replace activities of human experts, the

H.A. Simon / Artificial Intelligence 77 (1995) 95-127 115

mechanisms employed and the measures of success change again. In building
expert systems the processes used by our systems will not be limited to human
processes; but we will need to compare the quality of the programs’ performances
with human performance, and with the performances of other expert systems in
the same domain, along all dimensions of concern: e.g., quality of solutions, error
rate, cost, user-friendliness, and so on.

Extending theory
In both cases just mentioned there is more to system synthesis than merely

designing and evaluating specific systems for particular uses. There is an interest
in improving designs (or simulations). The research includes determining what
characteristics systems must have and what general principles they must embody
to enable them to perform their tasks and perform them effectively.

Thus, in the domain of artificial intelligence, we need theories of the charac-
teristics and underlying principles of systems capable of holding information in
memory and retrieving it when needed, and theories of problem-solving systems,
systems for inducing concepts, systems for learning, systems for navigating and
operating in the external world (robots), systems for understanding human speech
so on. The more powerful these theories, the more we can anticipate what
properties systems in these domains must possess to exhibit intelligence
(humanoid or other), and the better the systems we can design.

Improving the design process
In addition, research may aim at improving the efficiency of the design and

evaluation processes themselves. As design and evaluation are intelligent pro-
cesses, hence come within the scope of artificial intelligence and the PSS
Hypothesis, this kind of research is not distinct from the research previously
mentioned. Indeed the theory of designing can best be regarded as a special part
of the theory of solving problems. It can be studied by creating and studying
systems for automatic design.

5.2. Evaluating expert system designs

In the case of expert systems, evaluation of a particular design is often very
pragmatic: Does the new system perform better and/or more efficiently than
systems already available? The greater the superiority, the more easily it can be
demonstrated. Analogously, although statistics were reported about how rapidly
the early computers of the 1940s performed certain computations, the most
important news was that they performed them. This was enough information to
support their continued development. So it has been with steam engines,
automobiles, airplanes, radios and all other major engineering innovations.

This is not to argue that evaluation is unimportant for the advancement of
technology; but it b to argue that at the frontiers of a new technology, very crude
qualitative evaluation may be enough to point the way. The design process, with
its constant modification of the emerging system to meet difficulties and failures in

llh H.A. Simon I Artificial Intelligence 77 (1995) 95-127

performance, incorporates in itself a severe regime of evaluation. Moreover,
considerations of extendability, visible to the designers who are familiar with the
design details, but not revealed in the performance of early designs, may be more
important in pointing toward fruitful directions for R&D than statistics of
performance.

We are faced with the celebrated recipe for rabbit stew, which begins: “First
catch the rabbit.” First design a system that has the desired general capability, at
least at a minimal level. Having accomplished that, improvement of the design
and final evaluation may be very difficult, but at least it has a foundation on which
to proceed.

The immediate research goal is sometimes to build a system that will be of
practical use. More often, the goal is to use design and evaluation as a basis for
building AI theories of the kinds suggested in the previous sections. The tasks are
selected for feasibility and for the light they can throw on the general principles of
organization and operation of intelligent systems, paving the way for construction
at a later date of systems having real-world utility.

In the beginning, tasks were selected that were relatively simple and well
structured, and that called for little real-world knowledge. Standard environments
like chess, the Tower of Hanoi and the Blocks World provided us with situations
within which we could experiment and reach understanding of the properties and
operation of fundamental problem-solving mechanisms.

With growing success in designing such systems (and growing size and speed of
the computers available for simulation), the research gradually extended to tasks
calling for large amounts of real-world knowledge and tasks where the initial goals
and constraints were less well defined: interpreting mass spectrograms, diagnosing
disease. They have taught us, among other things, how knowledge must be
organized in memory and processed in order to permit intelligent response to
knowledge-rich task environments.

Robotics tasks, that is, tasks in which a system must deal with an actual
real-world environment, are of growing importance to AI research, for they
compel attention to kinds and levels of complexity and uncertainty that can be
finessed in laboratory test beds. (What I am calling “robotics” is not limited to
tasks calling for sensing and physical response; a scheduling system that handles
an actual flow of factory orders and responds to genuine information about
completion, machine down-times, cancellations, data errors, etcetera, is also a
“robot” for these purposes.)

By now, a very wide range of tasks has been explored, including many that,
when performed by human beings, call for professional-level expertise, for
learning, and even for those qualities we call “intuition”, “insight” or “creativi-
ty”.

Which of these kinds of benchmark tasks and test beds offer the greatest
promise for future AI research? I can only answer, “All of the above”. A recent
article in the AZ Magazine [15] provides a thoughtful discussion of the issues, and,
especially as the authors reveal their disagreements along with their points of
agreement, illustrates vividly the complementarity of different sorts of test beds

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 117

for the AI enterprise. If I had to express a preference, I would generally endorse
Steve Hanks’ remarks about “the dangers of experimentation in the small”, not
because I think such experimentation is unnecessary, but because its manageabili-
ty and cleanliness sometimes seduces us into neglecting domains of real-world
complexity, and refusing to face squarely the issues of extendability.

What is a success, and what a failure, in expert system design? Three kinds of
criteria have been evoked: comparison with human performance, measurement of
performance on a standard set of tasks from the domain of interest, and
comparison with a theoretically determined upper bound of performance. But
before we take up these possible solutions to the evaluation problem, we need to
say something about what we mean by a “good” or “effective” expert system.

Dimensions of effectiveness
Three dimensions of effectiveness come immediately to mind: quality of

performance, range and flexibility, and computational efficiency. We can judge a
chess program, for example, along the first and third dimensions by its strength of
play and by the time it takes to make a move. Of course there will often be a
trade-off between these two criteria. With respect to range and flexibility, a
program to play chess is of no use for other tasks, whereas the General Problem
Solver can attempt any task for which a suitable representation and table of
connections between operators and differences can be devised. “Quality of
performance” is itself a multi-dimensional criterion, which may include such
components as reliability, graceful degradation, user-friendliness and others.

Comparisons with human performance
As soon as it was shown that one can invert a large matrix more rapidly with a

digital computer than wit a desk calculator, people began to do just that. Within a
very short time the computer was so much more powerful than the calculator,
even in economic terms, that sophisticated evaluation was not required to
demonstrate the superiority. The same may be said, in general, about expert
systems having more of an AI flavor than those used for matrix inversion.

Levels of human performance provide useful benchmarks for measuring the
quality of expert systems, as long as system performance lies within the human
range. Human performance not only provides a metric through that range, but
also calibrates the breadth and flexibility of system performance over diverse
tasks. Such measures can be used whether or not the expert system imitates
human processes.

Comparison on standard tasks
It is convenient to have available a set of benchmark standard tasks sampled in

some way from a domain’s population of tasks [12,33]. Standard tasks can be
used to evaluate a system at various stages of its development, and especially to
compare the power of competing systems. The difficulty lies in defining an
appropriate standard.

Suppose we wish to evaluate a medical diagnosis system. (For an excellent

11x H.A. SIrnon / Artificial Intelligence 77 (199.5) 95-127

recent example, see an evaluation of the QMR system by N.B. Giuse, et al. [13].)
We might be able to list the diseases for which we want the system to work. But
the symptoms that signal the presence of these diseases are highly variable. Our
sample of tasks needs to be a sample not only over diseases, but over patterns of
symptoms, including patterns where several ailments are present simultaneously.
Should we weight our sample by frequencies of symptom patterns in the human

population? Should we weight it by the seriousness of the diseases that the
symptoms signal? Some of these questions might be answered, at least in
principle, by using a decision-theoretic approach to the sampling problem.

But perhaps we are making the problem more difficult than it really is. For
many practical purposes we can assume that any relatively broad sample will rank

different expert systems in roughly the same order as any other broad sample. At
best, this will only be approximately true and is helpful only if our main interest is

in arriving at such a ranking. If we wish to use the test tasks as a guide to system
improvement, then their inclusiveness, and the possibility of relating their
components to specific system components may be more important than their

representativeness.
With all of these qualifications, standard sets of tasks can generally provide

useful benchmarks for evaluating the performance of expert systems and for
comparing different systems. A good example is the set of tests that ARPA set on
several occasions for the evaluation of speech recognition systems [26]. Different
systems were tested on the same corpus of speech, and evaluated with respect to

both speed and accuracy. Such tests can be designed to evaluate over specified
ranges of vocabulary and subject matter.

Similarly, chess programs are routinely evaluated by competition between

programs and with human players, and their strength specified by EL0 ratings,
using the same scale that is used to rate human chess players.

Objections have sometimes been raised to this kind of “horse racing” as

diverting attention from underlying scientific principles to mere ways of “win-
ning”. But the objections lack force. for to win means to demonstrate a powerful
system, and the tests of effectiveness provide rich information not only about who
is stronger, but also about the specific strengths and weaknesses of the designs,

the very kinds of empirical information that lead to understanding. These
competitions discourage projects from searching under street lamps where it is
easier to find things-however irrelevant the discoveries may be to the goal.

Theoretical bounds on performance
Theories of computational complexity have given us some theoretically-moti-

vated bounds on system performance. One disadvantage of the existing theories is
that most of them have focused on criteria that facilitate proving mathematical
theorems about complexity, and these may not be the criteria we would be using
to evaluate our systems. Another case of the street lamp.

The criterion about which it has been easiest to prove theorems is worst-case
performance in the limit, as some measure of problem size, N, grows indefinitely

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 119

large. By this criterion, a system whose expected worst-case computation time
grows exponentially with N is inferior to one whose time grows only polynomially
with N. Moreover, any system that does not guarantee completeness (reaching a
solution for every problem in finite time) automatically fails the worst-case test.

Surely we would prefer to measure quality by expected computation times
rather than worst-case times, but to determine the former, we have to define a
probability measure over the population of problems. For this, and other reasons
of mathematical feasibility, it has seldom proved possible to estimate expected
computation times, and most of the existing theorems use a worst-case criterion.

One of the pioneers in complexity theory, Michael Rabin, as early as 1974 [32]
described the dilemma I have just presented, expressed his dissatisfaction with the
limits of existing theory, and offered some remedial suggestions (including
defining algorithms of limited applicability and allowing computation with
occasional errors). What he did not suggest, and what I would offer as solution for
the dilemma, is the idea of using empirical criteria, based on actual computing
experience, of “what works”, in those usual cases where theorems of the desired
kind are unavailable. That is, in fact, what both AI and numerical computation
have done from the beginning.

For many purposes, we will prefer to use computational systems that, though
sometimes failing to solve problems, usually solve them in a short time and solve
a large fraction of the problems presented in an acceptable (if not always short)
time. Fig. 1 illustrates hypothetically some of the alternative ways in which we
might want to evaluate systems. System A in the figure solves 60 per cent of the
problems presented to it in 1 minute, but appears to reach asymptote after an

Fig. 1. Problem solving power of three algorithms.

120 H.A. Simon I Artificial Intelligence 77 (1995) 9S-127

hour with only 7.5 per cent of the total solved. System B reaches 60 per cent only
after 30 minutes, but solves 75 per cent with an hour, and appears to reach
asymptote above 90 per cent. System C is guaranteed to solve all of the problems
sooner or later, but solves only 10 per cent in 30 minutes, and 20 per cent in two
hours.

It is not evident which of these systems is to be preferred, and preference will
depend on computing costs and on how serious the consequences are of failing to
solve a problem within a given computing time. When the problems to be solved
are very large compared with our computing resources, we will seldom want to
rank alternative systems according to how long it will take them to solve every
problem.

Because of the relatively poor match between the mathematical tractability of
criteria for evaluating programs, on the one hand, and the practical significance of
the criteria, on the other hand, mathematical theories have not taken us very far
in system evaluation, and we have to rely principally on empirical evaluation
methods to guide design.

Closely related to issues of computational complexity is the question of the
scalability of a design. Designs that work well in a small scale do not always scale
up well. Here, because algorithms that are exponential in problem size explode
rapidly, the standard measures of computational complexity may be of some
value. However, the practical question is not how systems scale in the limit, but
what computation they require when used on problems of the sizes that occur in
practice. It is not particularly interesting to know whether a program for natural
language processing could handle a vocabulary of ten billion words; it is usually
much more interesting to know whether it can handle a vocabulary of one
hundred thousand words (or, for some applications, even 100 words).

Systems can also be evaluated for goodness of solution. In operations research
(linear programming, integer programming, etcetera) there is a tradition of
evaluating the efficiency of a program by the times it requires to reach optimal
solutions, but in many situations we might prefer a system that would usually
reach a very good (not necessarily optimal) solution in a short time to one that
would find the optimum, but only after much computation. In systems that have
to respond in real time, for instance, computation ordinarily returns the solution
that is “best so far” when the time limit is reached, or a “satisfactory” solution as
soon as one is obtained. It may be either impossible, or simply wasteful, to wring
out the last drop of approximation to the optimum solution.

There has also been a tradition (e.g., in relation to the A* search algorithm) of
seeking to minimize the number of steps to solution; whereas in many domains,
the number of steps to solution is of little interest; what is wanted is to conserve
on computation time required for finding the solution [38]. If we are proving
difficult theorems, we more often set the goal of finding a proof than of finding
the shortest proof. Shortest path to solution and shortest expected computation
time to solution are completely different criteria, and it is usually the latter, not
the former, that is relevant.

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 121

5.3. Use of statistical tests in evolution

The AI literature has made rather little use of standard statistical methods for
testing hypotheses. One can argue both sides of the question of whether this is
unfortunate or fortunate. I must confess to some rather strong attitudes on the
matter formed in the course of long experience with hypothesis testing theory, as
a user and observer of typical usage and, at times, as a contributor to the theory. I
can only provide these views in brief summary here, with some pointers to the
published literature.

Tests of statistical significance are widely used in psychology and biology, very
little in physics. (The classical “probable errors” of physics are usually estimates
of the accuracy of instruments, not tests of the probability that an observed
phenomenon could have occurred by chance.) Tests of significance are legitimate-
ly used to test whether a variable produces any effect (as compared with the null
hypothesis that the observed “effect” was produced by chance). The presence or
absence of statistical significance says nothing whatsoever of whether the effect is
important in magnitude: significance and importance are unrelated quantities.

As mathematical statisticians agree unanimously, tests of statistical significance
cannot be used to test whether a model fits data. (For a brief explanation of why
they can’t, see [14] or [35] and the references cited there.) One appropriate
alternative to reporting such tests is to report percentage of variance explained
(R*). In addition, regression coefficients (not correlation coefficients), showing
how much a dependent variable changes with change in an independent one,
provide measures of the importance of the independent variable. Even the latter
statement holds only if the equations being analyzed are structural equations,
reflecting the underlying causal structure of the phenomena [17].

As AI is primarily concerned with evaluating systems (i.e., models), statistical
hypothesis testing is unlikely to play a very useful role in the enterprise, although
a greater attention to measuring the magnitude, hence importance, of the effects
produced by changes in systems operating in particular kinds of environments
would be very desirable.

6. Theories of human intelligence

Throughout this paper I have emphasized the direction of AI research that is
concerned with the general theory of intelligence, and have not had much to say
about models of human cognitive processes: psychological models.

In spite of the shared method of research, the design and evaluation of systems,
there is no immediately obvious reason why there should be any close connection
between research directed at designing intelligent systems and simulating human
cognition, or between the corresponding theories of intelligence. It could be that,
because of the radical differences between electronic devices and brains, pro-

112 H. A. Simon ! Artificial Intelllgmce 77 (1W5) Y-5-127

grams designed to bc efficient expert systems would be totally different in
architecture and process from systems designed to simulate human thinking.

To some extent, this is the case. The strongest chess-playing programs
(designed specifically as expert systems) do not play chess in the same way as
human grandmasters. Their problem-solving searches are far more extensive and
far less selective than the searches of human chessmasters [39]. However, a few
chess programs of a different kind have been written (e.g., the NSS program,
MATER, PARADISE) with the aim of understanding human play by imitating it.

As of 1993. the most powerful of the programs designed as expert systems play
chess at a formidable grandmaster level: the most powerful of the programs
designed as cognitive simulations are modest amateurs. The programs designed as

expert systems conduct enormous searches. well beyond human capabilities,
before making their moves, and generally make use of only a moderate store of
chess knowledge. The cognitive simulations explore only a few (perhaps hun-
dreds, but not millions) of the branches of the game tree and make use of
heuristic chess knowledge to select the branches to be explored.

But there is another side to the matter. While expert systems and cognitive
simulations are subject to quite different internal constraints (the physics of
computers versus the biology of brains). when they are performing the same tasks
they are subject to the same external constraints- the same task demands. To the
extent that the task requirements are numerous and heavy, these requirements
may reveal themselves in fundamental similarities between the programs that
perform them, however dissimilar the means of implementation at the lowest

hardware level-the inner constraints.
Programs constructed to simulate human behavior are evaluated differently

from programs constructed simply to perform efficiently tasks requiring in-
telligence. The former are tested by comparing their behavior with the behavior
of human beings in the same task environments-exactly as any theories are
tested whose function is to describe and explain empirical phenomena in some
domain.

There is nothing about the methodology that distinguishes it at a general level
from the methodology in any empirical science. The general paradigm is to use
the theory to predict the empirical phenomena, observe the phenomena, compare
the predictions with the observations and revise the theory to bring about better
agreement of theory with data. As there is a large substantive literature on
symbolic models of cognition (e.g., [1.281) ’ ns well as a literature on methodology
(e.g., [6,25]). 1 will not discuss the topic further here.

7. The future of artificial intelligence

At the outset of my remarks, 1 said that I was going to prescribe for the future
of AI on the basis of what the past has taught us. A number of important lessons
of the past should now be reasonably plain, and I need summarize them only
briefly.

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 123

7.1. The fundamental strategy: pushing the frontier

Our main task in AI continues to be to explore a wider and wider range of
activities for whose performance intelligence is essential. We need to identify
aspects of intelligence that we have not yet succeeded in handling, and attack
each in turn as soon as we have any ideas about how to proceed. The attack must
consist, as in the past, of building systems that actually perform the tasks and
produce the phenomena associated with them. We need to evaluate our programs
for their efficiency, and for scope and scalability.

It is not hard to identify some task domains that should be high on the priority
list, although no claims can be made for the completeness of such a list. My own
candidates would be two that are already receiving considerable attention, and
another that is still pretty much on the frontier. These three candidates are:
machine learning, robotics and representation (including change of representa-
tion).

Machine learning
Machine learning is in a vigorous state of activity with its own journal and

specialists within AI. We might better say “specialists, alas”, for there is danger
that the specialization will delay the impact of new discoveries about learning
mechanisms on mainstream AI. Both serial and connectionist learning techniques
are being explored, a healthy competition that will teach us in which domains
each is effective.

There have been some achievements in theory-notably theorems about the
convergence of learning algorithms-but what I have said about theorems and
theories in the body of my paper is as applicable to learning as to other topics in
AI. Running programs and their evaluation, and QS laws are the key to progress.
Pat Langley (personal communication) believes that there is today a reasonable
balance between empirical work and theory in machine learning. A count of
papers presented at a recent machine learning conference showed that of 44
papers, 39 contained experimental evaluations of specific programs with explicit
measures of performance. On the other hand, the conferences on computational
learning theory, probably populated more by computer scientists from theory
than by specialists in artificial intelligence, present mainly theoretical papers.

Robotics
Robotics is also a vigorous field, and also in danger of being too far separated

from mainstream AI. I viewed with mixed feelings the establishment of a separate
graduate program in robotics in my own university. One of the common criticisms
of much mainstream AI research is that no distinction is made, in modelling
problem situations, between the actual, real-world, situation and the model of the
situation stored in computer memory. As robotics cannot afford this luxury of
confusing the model with external reality, it must incorporate in its systems
feedback channels that can correct the models periodically to reflect reality more
accurately. Of course, this distinction can be attained in AI modelling, by keeping

124 H.A. Simon 1 Artificial Intelligence 77 (1995) 95-127

in memory both an abstracted model and a simulated “real world”, but the virtue
of robotics is that it makes the distinction a necessity instead of an option, and
continually reminds the system builder of the complexity of the real real world-
the one outside the computer.

Representation
It is still typically the case that before a computer can exhibit intelligence in

handling any task it must be provided with a representation of the task domain: a
problem space that specifies the kinds of objects and phenomena in the problem
states, and the kinds of operators that are available for changing one problem
state into another. Some work has been done. but only a modest amount, to show
how problem representations can be generated from external information.

The UNDERSTAND program [16] for example, can generate problem repre-
sentations suitable as inputs to the General Problem Solver from verbal descrip-
tions of problems (simple puzzles). The ISAAC program [29] can generate
representations for specific physics problems from natural language descriptions in
textbooks. The Soar program of Newell, Laird and Rosenbloom [25], has some
capability for modifying its representations as it moves to new problem spaces.
Korf [19] specified some procedures for representation change in a restricted class

of abstract problems. Kaplan and Simon [18] have proposed a method that would
produce the critical change in representation needed to solve the Mutilated
Checkerboard problem.

This sample of what has been done reminds us of how much remains to be
done. What would a program be like that could invent the calculus, or even one
that could select the calculus as the appropriate representation for dealing with a
particular problem? Through what sequence of steps was Heisenberg’s matrix
representation for quantum mechanics obtained, or Schrodinger’s wave repre-
sentation?

At the most general level, the topic of representation leads us to consider the
differences between reasoning in words or in formal linguistic representations
(logic, mathematics) and reasoning from pictures or diagrams. Understanding the
properties of these representations is a basic issue not only within AI, but also in
the whole domain of human-computer interaction.

7.2. Methodology

In arguing that the past progress in Al came largely from constructing ever
more sophisticated and complex intelligent programs to perform increasingly
difficult and ill-structured tasks, I should not like to leave the impression that the
methodology we have used has been faultless and that there is not room for great
improvement in it. Wherever theory can be extracted from our models and the
phenomena they produce, we should extract it-just as is done in other empirical
sciences. But perhaps the greatest opportunity for improvement in method is to
make our experiments cumulative by (1) attending more systematically and
carefully to system evaluation, and (2) paying a great deal more attention to

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 125

comparison between systems as a basis for understanding the mechanisms, and
their interactions, that account for outcomes. Again, in discussing these matters, I
will address mainly the expert system side of AI and not comment on the
psychological side, where methodology has perhaps reached a somewhat higher
level of sophistication.

Standard tasks for evaluation
To evaluate systems in various task domains, we need standard sets of tasks

that will be used repeatedly by many investigators studying different systems. I
mentioned earlier the standards that DARPA has used to evaluate progress in
speech understanding. It could be a very appropriate activity for our professional
association to establish, through committees, such standards for a range of areas.
Not only would this create a consensus on benchmarks for investigators, but it
would also lead to a valuable dialogue on what constitutes good performance:
how the criteria depend on the presence or absence of real-time constraints on
computation, the relation between performance standards and theories of
computational complexity, and so on.

Extraction of general mechanisms and principles
The aim in evaluating systems is not simply to establish which is better at any

given moment, however interesting such contests (as among chess computers)
may be. Because we name, and thereby trademark, our systems, what we usually
report in the literature are comparisons between large complex systems, each
consisting of a substantial number of interacting mechanisms. After we have
learned that one system has solved more problems than another, or solved them
faster, we do not yet know the reasons for the superiority. We do not even know
in what respects they use quite similar or quite different mechanisms to
accomplish their results.

The comparison of systems does not end when we have determined which
performs better on particular kinds of tasks. That is just the beginning of a
comparison of the mechanisms that each system employs and the contributions of
these mechanisms to system performance on different kinds of tasks. What we are
seeking, as always, are QS laws that can guide the design of the next system, and
that can advance the general theory of intelligence and intelligent systems.

If, in my account of the past and future of AI research, I have emphasized
empirical methods over formal theory, it is because I have sensed, in our meetings
and in the pages of our journals in recent years, a kind of theory envy that
sometimes sacrifices attention to complex but real problems in favor of attention
to over-simple problems that are amenable to exact mathematical treatment.
Some distinguished members of our profession have even challenged and
demeaned the very concept of experimental computer science.

My own scientific record is strewn with examples of mathematical work, some
of it relevant to real problems, some of it perhaps not. The issue is not whether to
replace mathematics with experiments, or vice versa; it is to secure and maintain a
tolerance throughout our discipline for a plurality of approaches to our deep

126 H. A Simon I Artificiul Intelligence 77 (199.5) 95-127

scientific problems; and a dedication to improving each of these approaches in its

own terms.

Acknowledgments

This research was supported by the National Science Foundation, Grant No.
DBS-9121027; and by the Defense Advanced Research Projects Agency, Depart-
ment of Defense, ARPA Order 3597, monitored by the Air Force Avionics
Laboratory under contract F33615-81-K-1539. Reproduction in whole or in part is
permitted for any purpose of the United States Government. Approved for public
release; distribution unlimited.

References

Ill

I21
131

141

161
I71
(81

1101
[111

1121

11-11

1141

1151

1161

1171
1181
1191
1201

J .R. Anderson, The Archrrecture of (‘ogmtion (Harvard University Press, Cambridge, MA,

1083).

R.A. Brooks, Intelligence without representation, Artif. Intell. 47 (19’31) 139-159.

A.W. Burks, H.H. Goldstine and J. von Neumann. Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (Institute for Advanced Study, Princeton. NJ, 1946).

R. Cooper. J. Farringdon and J. Fox. Towards a systematic methodology for cognitive modelling,

Unpublished manuscript.

P.J. Courtois. Decomposability: Queuing and C‘omputer System Applications (Academic Press.

New York, 1977).

K.A. Ericsson and H.A. Simon. Protocol Analysis (MIT Press. Cambridge, MA, 1993).

G.W. Ernst. Sufficiency conditions for the success of GPS, .I. ACM 16 (1969) 517-533.

G.W. Ernst and A. Newell, GPS: A Case Study in Generality and Problem Solving (Academic

Press, New York. 1960).

0. Etzioni, Why PRODIGYiEBL works. in: Proceedings AAAI-90. Boston, MA (1990) 916-

Y22.

E.A. Feigenbaum and J.A. Feldman, Computers und Thought (McGraw-Hill, New York, 1963).

E.A. Feigenbaum and H.A. Simon, EPAM-like models of recognition and learning, Cognitive
SC;. 8 (1984) 305-336.
J. Gaschnig. Performance measurement and analysis of certain search algorithms. Ph.D. Thesis,

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA (lY79).

N.B. Giuse et al., Evaluating consensus among physicians in medical knowledge base construc-

tion, Methods Inf. Med. 32 (1993) 137-145.
L.W. Gregg and H.A. Simon, Process models and stochastic theories of simple concept

formation, J. Math. Psychol. 4 (1967) 246-276.
S. Hanks, M.E. Pollack and P.R. Cohen, Benchmarks, test beds, controlled experimentation.

and the design of agent architectures. Al Mag. 14 (4) (1993) 17-42.

J.R. Hayes and H.A. Simon, Understanding written problem instructions, in: L.W. Gregg, ed.,

Knowledge and Cognition (Erlbaum, Potomac. MD, 1974).

W.C. Hood and T.C. Koopmans, eds., Studies in Econometric Method (Wiley, New York, 1953).

C.A. Kaplan and H.A. Simon, In search of insight, Cognitive Psychol. 22 (1990) 374-419.
R.E. Korf, Toward a model of representational changes, Artif. Intell. 14 (1980) 41-78.
P. Langley and D. Kibler, The experimental study of machine learning, Unpublished Tech.

Report. NASA Ames Research Center, Moffett Field, CA (1991).

H.A. Simon I Artificial Intelligence 77 (1995) 95-127 127

[21] P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow, Scientific Discovery (MIT Press,

Cambridge, MA, 1987).

[22] D.B. Lenat and E.A. Feigenbaum, On the thresholds of knowledge, in: Proceedings IJCAI-87,
Milan, Italy (1987) 1173-1182; also Artif. InteN. 47 (1991) 185-250.

[23] R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum and J. Lederberg, DENDRAL: a case study of

the first expert system for scientific hypothesis formation, Artif. Intell. 61 (1993) 209-261.
(241 D.M. Neves, A computer program that learns algebraic procedures by examining examples and

working problems in a textbook, in: Proceedings 2nd National Conference of the Canadian
Society for Computational Studies of Intelligence, Toronto, Ont. (1978) 191-195.

[25] A. Newell, Unified Theories of Cognition (Harvard University Press, Cambridge, MA, 1990).

[26] A. Newell et al., Speech understanding systems: final report of a study group, Department of

Computer Science, Carnegie Mellon University (1971).

1271 A. Newell, A.J. Perlis and H.A. Simon, What is computer science?. Science 157 (1967)

1373-1374.

[28] A. Newell and H.A. Simon, Computer science as empirical inquiry: symbols and search, Comm.

ACM 19 (1976) 113-126.

[29] G.S. Novak, Representation of knowledge in a program for solving physics aproblems, in:

Proceedings IJCAI-77, Cambridge, MA (1977) 286-291.

[30] D.A. Pomerleau, J. Gowdy and C.E. Thorpe, Combining artificial networks and symbolic

processing for autonomous robot guidance, J. Eng. Appl. Artif. Intell. 4 (1991) 961-967.
[31] H. Pople, Problem solving: an exercise in synthetic reasoning, in: Proceedings IJCAI-77.

Cambridge, MA (1977).

[32] M.O. Rabin, Theoretical impediments to artificial intelligence, in: Proceedings IFIPS Conference
(1974).

[33] A.M. Segre, C. Elkan and A. Russell, Technical note: a critical look at experimental evaluations

of EBL, Mach. Learning 6 (2) (1991) 183-196.
[34] L. Siklossy, Natural language learning by computer, in: H.A. Simon and L. Siklossy, eds.,

Representation and Meaning (Prentice-Hall, Englewood Cliffs, NJ, 1972).

[35] H.A. Simon, On judging the plausibility of theories, in: Van Roostelaar and Staal, eds., Logic,
Methodology and Philosophy of Sciences III (North-Holland, Amsterdam, 1968).

[36] H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 2nd ed., 1981).

[37] H.A. Simon, Cognitive architectures and rational analysis: comment, in: K. vanlehn, ed.,

Architectures for Intelligence (Lawrence Erlbaum, Hillsdale, NJ, 1991).

[38] H.A. Simon and J.B. Kadane, Optimal problem-solving search: all-or-none solutions, Artif.
Intell. 6 (1975) 235-248.

[39] H.A. Simon and J. Schaeffer, The game of chess, in: R.J. Aumann and S. Hart, eds., Handbook
of Game Theory (Elsevier, Amsterdam, 1992) 1-17.

[40] D. Waterman, Generalization learning techniques for automating the learning of heuristics, Artif.
Intell. 1 (1970) 120-170.

[41] T. Winograd, Understanding Natural Language (Academic Press, New York, 1972).

