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Abstract We examine the philosophical disputes among computer scientists

concerning methodological, ontological, and epistemological questions: Is computer

science a branch of mathematics, an engineering discipline, or a natural science?

Should knowledge about the behaviour of programs proceed deductively or

empirically? Are computer programs on a par with mathematical objects, with mere

data, or with mental processes? We conclude that distinct positions taken in regard

to these questions emanate from distinct sets of received beliefs or paradigms within

the discipline:

– The rationalist paradigm, which was common among theoretical computer

scientists, defines computer science as a branch of mathematics, treats programs

on a par with mathematical objects, and seeks certain, a priori knowledge about

their ‘correctness’ by means of deductive reasoning.

– The technocratic paradigm, promulgated mainly by software engineers and has

come to dominate much of the discipline, defines computer science as an

engineering discipline, treats programs as mere data, and seeks probable,

a posteriori knowledge about their reliability empirically using testing suites.

– The scientific paradigm, prevalent in the branches of artificial intelligence,

defines computer science as a natural (empirical) science, takes programs to be

entities on a par with mental processes, and seeks a priori and a posteriori

knowledge about them by combining formal deduction and scientific

experimentation.
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We demonstrate evidence corroborating the tenets of the scientific paradigm, in

particular the claim that program-processes are on a par with mental processes. We

conclude with a discussion in the influence that the technocratic paradigm has been

having over computer science.

Keywords Philosophy of computer science � Ontology and epistemology of

computer programs � Scientific paradigms

1 Introduction

In his seminal work on scientific revolutions, Thomas Kuhn (1992) defines scientific

paradigms as ‘‘some accepted examples of actual scientific practice... [that] provide

models from which spring particular coherent traditions of scientific research’’. The

purpose of this paper is to investigate the paradigms of computer science and to

expose their philosophical origins.

Peter Wegner (1976) examines three definitions of computer science: as a branch

of mathematics (e.g., Knuth 1968), as an engineering (‘technological’) discipline,

and as a natural (‘empirical’) science. He concludes that the practices of computer

scientists are effectively committed not to one but to either one of three ‘research

paradigms’1. Taking a historical perspective, Wegner argues that each paradigm

dominated a different decade during the 20th century: the scientific paradigm

dominated the 1950s, the mathematical paradigm dominated the 1960s, and the

technocratic paradigm dominated the 1970s—the decade in which Wegner wrote his

paper2. We take Wegner’s historical account to hold and postulate (§5) that to this

day computer science is largely dominated by the tenets of the technocratic

paradigm. We shall also go beyond Wegner and explore the philosophical roots of

the dispute on the definition of the discipline.

Timothy Colburn (2000, p. 154) suggests that the different definitions of the

discipline merely emanate from complementary interpretations (or ‘views’) of the

activity of writing computer programs, and therefore they can be reconciled as such.

Jim Fetzer (1993) however argues that the dispute is not restricted to definitions,

methods, or reconcilable views of the same activities. Rather, Fetzer contends that

disagreements extend to philosophical positions concerning a broad range of issues

which go beyond the traditional confines of the discipline: ‘‘The ramifications of this

dispute extend beyond the boundaries of the discipline itself. The deeper question

that lies beneath this controversy concerns the paradigm most appropriate to

computer science’’. Not unlike Kuhn, Fetzer takes ‘paradigm’ to be that set of

coherent research practices that a community of computer scientists share amongst

them. By calling the disagreements ‘paradigmatic’ Fetzer claims that their roots

1 To which Wegner also refers as ‘cultures’ or ‘disciplines’ interchangeably.
2 The ‘‘Denning report’’ (Denning et al. 1989) authored by the task force which was commissioned to

investigate ‘‘the core of computer science’’ also lists three ‘‘paradigms’’ of the discipline: theory/

mathematics, abstraction/science, and design/engineering. According to this report, these paradigms are

‘‘cultural styles by which we approach our work’’. They conclude however that ‘‘in computing the three

processes are so intricately intertwined that it is irrational to say that any one is fundamental’’.
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extend into philosophical questions of existence (ontological) and knowledge

(epistemological) about computers and programs:

Some of the most important philosophical issues that arise within this context

concern questions of a philosophical character. These involve ‘‘ontic’’ (or

ontological) questions about the kind of things computers and programs are, as

well as ‘‘epistemic’’ (or epistemological) questions about the kind of

knowledge we can possess about things of this kind. (Fetzer 1993)

Like Fetzer and Wegner, we contend that computer scientists generally subscribe

to distinct paradigms, which emanate from distinct, inconsistent, and mutually

exclusive methodological positions concerning the choice of methods for investi-

gating programs (MET, §1.1), ontic positions concerning the nature of programs

(ONT, §1.2) and epistemic positions concerning the nature of knowledge about

them (EPI, §1.3). In the remainder of this section we examine the philosophical

disputes among computer scientists. Seeking to spell out the philosophical position

underlying each paradigm of computer science, we proceed in the following

sections to examine the tenets of each, contending that—

(§2) The rationalist paradigm, which was common among theoretical computer

scientists, defines the discipline as a branch of mathematics (MET-RAT),

treats programs on a par with mathematical objects (ONT-RAT), and seeks

certain, a priori knowledge about their ‘correctness’ by means of deductive

reasoning (EPI-RAT).

(§3) The technocratic paradigm, promulgated mainly by software engineers,

defines computer science as an engineering discipline (MET-TEC), treats

programs as mere data (ONT-TEC), and seeks probable, a posteriori

knowledge about their reliability empirically using testing suites (EPI-TEC).

(§4) The scientific paradigm, prevalent in artificial intelligence, defines computer

science as a natural (empirical) science (MET-SCI), takes programs to be on

a par with mental processes (ONT-SCI), and seeks a priori and a posteriori

knowledge about them by combining formal deduction and scientific

experimentation (EPI-SCI).

Since arguments supporting the tenets of the rationalist and technocratic

epistemological positions have already been examined elsewhere (e.g., Colburn’s

(2000) detailed account of the ‘verification wars’), their treatment in §2 and §3 is

brief. Instead, we expand on the arguments of complexity, non-linearity, and self-
modifiability for the unpredictability of programs and conclude that knowledge

concerning certain properties of all but the most trivial programs can only be

established by conducting scientific experiments.

In §4 we proceed to examine seven properties of program-processes (temporal,

non-physical, causal, metabolic, contingent upon a physical manifestation, and non-

linear) and conclude that program-processes are, in terms of category of existence,

on a par with mental processes. This discussion shall lead us to concur with Colburn

and conclude that the tenets of the scientific paradigm are the most appropriate for

computer science. Nonetheless, in §5 we demonstrate evidence for the dominance of
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the technocratic paradigm which has prevailed since Wegner (1976) described the

1970s as the decade of the ‘technological paradigm’ and examine its consequences.

Our discussion will lead us to conclude that this domination has not benefited

software engineering, and that for the discipline to become as effective as its sister,

established engineering disciplines it must abandon the technocratic paradigm.

1.1 The Methodological Dispute

Computer science textbooks, classics, research articles, conferences, and curricula of

undergraduate programs are dominated by radically different methods of conducting

research and teaching about computer programs. Mathematical methods of

investigation guide the research in computability, automata theory, computational

complexity, and the semantics of programming languages; design rules of thumb,

extensive testing suites, and regimented development methods dominate the

branches of software engineering, design, architecture, evolution, and testing; and

the methods of natural sciences, which combine mathematical theories with scientific

experiments, govern the research in artificial intelligence, machine learning,

evolutionary programming, artificial neural networks, artificial life, robotics, and

modern formal methods. This methodological incongruity manifests itself in many

ways. For example, in some research institutes computer science is a department in

the school of mathematics, in others it is a part of the engineering faculty, while other

computer science departments are grouped with the natural sciences.

The dispute concerning the definition of the discipline and its most appropriate

methods of investigation can thus be paraphrased as follows:

MET Is computer science a branch of mathematics, on a par with logic, geometry,

and algebra; is it an engineering discipline, on a par with chemical or aeronautical

engineering; or is it indeed a natural, experimental (empirical) science, on a par

with astronomy and geology? Should computer scientists rely primarily on

deductive reasoning, on test suites and regimented software development process,

or should they employ scientific practices which combine theoretical analysis with

empirical investigation? How is the notion of a scientific experiment different

from a test suite, if at all? What is the relation between theoretical computer

science and computer science?

We shall demonstrate that the methods employed by each paradigm of computer

science emanate from the stance that each paradigm takes in the ontological (ONT,

§1.2) and the epistemological disputes (EPI, §1.3), examined below.

1.2 The Ontological Dispute

We take the notion of a computer program to be central to computer science. In this

paper we focus our discussion in the ontological dispute concerning the nature of

programs.

In his discussion in questions that arise from Artificial Life (‘A-Life’), Eric Olson

poses the following ontological question:
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What ontological category would computer [programs] belong to? Are they

supposed to be material objects? ... If so, what matter; and if not, what are they

made of? ... Events or processes? Platonic complexes of pure information? ...

If not, where are they? ... Are they located in space and time at all? ... Or are

the traditional ontological categories of the philosophers adequate to account

for this new phenomenon? (Olson 1997)

We take into consideration all sorts of entities that computer scientists

conventionally take to be ‘computer programs’, such as numerical analysis

programs, database and World Wide Web applications, operating systems,

compilers/interpreters, device drivers, computer viruses, genetic algorithms,

network routers, and Internet search engines. We shall thus restrict most of our

discussion to such conventional notions of computer programs, and generally

assume that each is encoded for and executed by silicon-based von-Neumann

computers. We therefore refrain from extending our discussion to the kind of

programs that DNA computing and quantum computing are concerned with.

The ontological dispute in computer science may be recast in the terminology we

shall introduce below as follows:

ONT Are program-scripts mathematical expressions? Are programs mathemat-

ical objects? Alternatively, should program-scripts be taken to be just ‘a bunch of

data’ and the existence of program-processes dismissed? Or should program-

scripts be taken to be on a par with DNA sequences (such as the genomic

information representing a human), the interpretation of which is on a par with

mental processes?

Below we clarify some of the technical terms mentioned in ONT and in the

remainder of this paper.

Terminology

We seek to distinguish between two fundamentally distinct senses of the term

‘program’ in conventional usage: The first is that of a static script, namely a well-

formed sequence of symbols in a programming language, to which we shall refer as

a program-script. The second sense is that of a process of computation generated

by ‘executing’ a particular program-script, to which we shall refer as a program-
process. Any mention of the term ‘program’ shall henceforth apply to both senses3.

Rather than attempting to define these terms formally we shall illustrate them

with an example. Each program-script is associated with a programming language.

What distinguishes a program-script from a mere sequence of symbols is the

requirement that program-scripts are expressions that are well formed according to

the syntactical and semantic rules of a specific programming language.

The programming languages we are concerned are generally divided into

machine and high order programming languages. By machine programming
language we shall refer to programming languages which restrict themselves to

3 For example, the statement ‘programs are abstract’ shall be taken to assert that ‘program-scripts and

program-processes are abstract’.
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primitive machine instructions for a given von-Neumann, silicon-based, mass

produced class of microprocessors. For example, the Intel 8086 class of

microprocessors effectively defines a specific machine programming language,

such that a program-script encoded therein4 is decipherable by any computer based

on the 808X microprocessor family. In such machines, each program-script is

represented as a configuration of electrical charges of the machine’s memory,

normally transcribed in binary or hexadecimal code, as demonstrated in Table 1.

Not surprisingly, programs in machine programming languages proved to be

exceptionally difficult for humans to understand, reason about, and adapt.6 Worse

still, rapid developments in computing and microprocessor technology make

programs encoded for older generation microprocessors obsolete along with the

class of machines for which they were specifically tailored.

Improvements in the processing power of computers during the 1950s have

enabled the introduction of high-order programming languages (IEEE 1990), also

compiled or interpreted programming languages. High-order programming lan-

guages allow programmers to harness the power of other powerful programs, such

as compilers (interpreters) and operating systems, which interpret and execute

program-scripts encoded in these languages. As a result from their prevalence,

claims about the ‘text of the program’ (e.g., Hoare’s §2) most commonly refer to

programs encoded in high-order programming languages, such as the program-

script depicted in Table 2.

The second sense of the word ‘program’ is that of a process (also thread, task, or

bot). The term program-process is thus reserved to that entity which is generated

from executing a program-script in the appropriate operational environment. Once

generated, a copy of the program-script is loaded into the computer’s memory (the

program’s ‘image’), followed by executing of the first instruction copied to the

image. For example, executing the program-script in Table 2 with the numbers 4

and 5 as input using Intel Pentium IV PC equipped with the Linux operating system

and the COMLISP compiler (Georick et al. 1997) shall generate to a program-process

which calculates the value of the expression 3+(4·5), the proceedings of which are

depicted in Table 3.

Confusion concerning the notion of a computer program can often be traced to

the two senses of the term. But program-scripts must not be confused with program-

Table 1 Program-script encoded in a machine programming language5

75 E0 73 75 E1 73 FA D3 75 52 D5 75 74 F9 A2 21 F0 73

58 71 F9 A2 21 F0 73 30 73 E4 73 31 73 E5 73 32 73 E6

73 33 73 E7 44 70 34 F6 43 73 E6 43 73 E7 44 70 35 F6

73 34 73 E0 73 35 73 E1 75 60 5E D5 75 31 D3 75 30 F6

4 Also known as machine code or object code.
5 The program adds 3 to the product of two numbers, encoded in the 8086 microprocessor assembly

language (Adapted from Georick et al. 1997).
6 For example, consider the difficulty of spotting and correcting errors in the program in Table 1.
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processes: The first is an inert sequence of symbols; the second is a causal and a

temporal entity. Any number of program-processes can be potentially be generated

from each program-script. Furthermore, certain operating systems allow the

simultaneous generation of a large number of program-processes from a single

program-script executed concurrently by a single microprocessor. For example, my

Personal Computer can generate and concurrently execute large numbers of

program-processes from the program-script in Table 2.

1.3 The Epistemological Dispute

Program specifications are statements that assert our expectations from a program.

If specifications are defined before the program-script is encoded they can be used to

articulate the objectives of the encoding enterprise and drive the software

development process, which is often complex and arduous. For example, a

specification asserting that the program-script in Table 2 indeed calculates the sum

of the product of two numbers and the number 3 can be formally specified as a

lambda expression:

kxy:x� yþ 3 ð1Þ

In more conventional notation, (1) can also be represented as a two-place function:

exampleðx; yÞ ¼ x� yþ 3 ð2Þ

Having formally articulated the specification, the correctness of a program can be

taken to mean the extent to which it meets its specifications. The question of

correctness can thus be recast as the question whether any or all of the program-

processes that can, shall, and have been generated from program-script pss meet or

‘satisfy’ specification s. The hypothesis ‘program pss is correct with relation to s’

therefore asserts that pss satisfies s. For example, the correctness of example

Table 3 Steps in a sample program-process generated from executing the program in Table 2

[ ðexample 4 5Þ
ðþ ð� 4 5Þ 3Þ
ðþ 20 3Þ
23

Table 2 Program-script encoded in Lisp7

ðdefine example

ðlambda ðx yÞ
ðþ ð� yÞ 3ÞÞÞ

7 The program adds 3 to the product of two numbers, encoded here in the syntax of Scheme (Abelson and

Sussman 1996), a dialect of Lisp
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(Table 2) can be defined by the extent to which it satisfies specification (2). If the

specification is articulated in a mathematical language, as in (2), it is referred to as a

formal specification, in which case the question of ‘correctness’ is well-defined.

Most specifications however are not quite as simple as (2). Specifications may

assert not only the outcome of executing a particular program-script (e.g., adding a

record to a database of moving a robotic arm) but also how efficient are the

program-processes generated therefrom (e.g., how long it takes to carry out a

particular calculation) and how reliable they are (e.g., do they terminate

unexpectedly?). For this reason, fully formulated specifications are not always

feasible, as demonstrated by the specifications in Table 4.

Indeed, although the correctness of a program can be a source of considerable

damage, or even a matter of life and death, it may be very difficult—or, as Fetzer

and Cohn claimed, altogether impossible—to establish formally. And while

executing a program-script in various circumstances (‘program testing’) can

discover certain errors, no number of tests can establish their absence8. For these

reasons, the problem of program correctness has become central to computer

science. If correctness cannot be formally specified and the problem of establishing

it is not even well-defined then is it at all meaningful to ask whether a program is

correct, and if so then what should ‘correctness’ be taken to mean and how can it be

established effectively? These questions are at the heart of the epistemological

dispute:

EPI Is warranted knowledge about programs a priori or a posteriori?9 In other

words, does knowledge about programs emanate from empirical evidence or from

pure reason? What does it mean for a program to be correct, and how can this

property be effectively established? Must we consider correctness to be a well-

defined property—should we insist on formal specifications under all circum-

stances and seek to prove it deductively—or should we adopt a probabilistic

notion of correctness (‘probably correct’) and seek to establish it a posteriori by

statistical means?

Table 4 Sample informal specifications

• Program x does not cause the space shuttle to explode

• Program x translates French into English

• Program x is a computer virus

• Program x never lets unauthorized persons to access sensitive data

• Program x never terminates unexpectedly

• Program x takes a regular expression (a string of text) and returns a list of World Wide Web

documents sorted by their ‘relevance’ to this expression

• Program x detects whether the face of person y appear in any given picture

• Program x executes with visibly identical outcome regardless of the operating system used

8 A statement most widely attributed to Dijkstra.
9 We follow Colburn (2000) in taking a priori knowledge about a program to be knowledge that is prior

to experience with it, namely knowledge emanating from analyzing the program-script, and a posteriori

knowledge to be knowledge following from experience with observed phenomena, namely knowledge

concerning a given set of specific program-processes generated from a given script.
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Of all the philosophical questions we shall examine, computer scientists have

been most explicit in the position they take concerning the epistemological dispute.

2 The Rationalist Paradigm

By the rationalist paradigm we refer to that paradigm of computer science which

takes the discipline to be a branch of mathematics, the tenets of which have been

common among scientists investigating various branches of theoretical computer

science, such as computability and the semantics of programming languages. Tony

Hoare summarized the tenets of the rationalist paradigm as follows:

(1) Computers are mathematical machines. Every aspect of their behaviour

can be defined with mathematical precision, and every detail can be deduced

from this definition with mathematical certainty by the laws of pure logic. (2)

Computer programs are mathematical expressions. They describe with

unprecedented precision and in every minutest detail the behaviour, intended

or unintended, of the computer on which they are executed. ... (4)

Programming is a mathematical activity... its successful practice requires

determined and meticulous application of traditional methods of mathematical

understanding, calculation and proof10.

2.1 The Rationalist Methods

Concerned primarily with what is today taken to be the foundations of the

discipline, theoretical computer science is the oldest and the most rigorously

established branch of computer science. In the first decades following the work of

Turing (1936; Turing and Copeland 2004), who is widely considered to be the father

of the discipline, computer science has largely been identified with what von-

Neumann described as the mathematical investigation of ‘‘the extent and limitations

of mechanistic explanation’’. During the 1930s, influential mathematicians such as

Turing, Church, and Kleene developed mathematically potent theories which sought

(and succeeded) to lend precision to intuitive notions of mechanistic computation
(also effective computation). One of the earliest triumphs of theoretical computer

science has been the mathematical proof according to which all the different

mathematical notions of mechanistic computation on offer—turing machines,

lambda expressions, and recursive functions11—are computationally equivalent.

This important result lent considerable support to what came to be known as

Turing’s Thesis (also Church–Turing Thesis, Copeland 2002), according to which

any ‘mechanistic’ process of computation can indeed be represented as the process

of computation by a turing machine, and by extension, as an algorithm, a recursive

function, etc.

10 Delivered, according to Mahoney (2002), in 1985 during his Inaugural Lecture as Professor of

Computation at Oxford.
11 Which were later accompanied by algorithms and abstract state machines.
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During the 1940s the first electronic computers appeared, and with them emerged

the contemporary notions of computer programs (§1.2). A mathematical proof

demonstrating that programs encoded in machine programming languages are

computationally equivalent to the mathematical notions of mechanistic computation

on offer has established the relevance of deductive reasoning to modern computer

science. In particular, computational equivalence implied that any problem which

can be solved (or efficiently solved) by a turing machine can be solved by executing

a program-script encoded in a machine programming language (§1.2), and vice

versa, namely, that any problem which cannot be (efficiently) solved by a turing

machine also cannot be (effectively) solved by executing a program-script encoded

in a machine programming language. For this reason machine programming

languages are described as ‘turing-complete’ languages. High-order programming

languages have thus appeared in a rich mathematical context, the design of which

was heavily influenced by the mathematical notions of mechanistic computation on

offer. For example, the striking resemblance between the Lisp program in Table 2

and the lambda expression specifying it (1) emanates directly from the commitment

of the designer of the Lisp programming language (McCarthy 1960) to lambda

calculus.

The fundamental theorems of the theories of computation have remained relevant

notwithstanding generations of exponential growth in computing power. Time has

thus secured the primacy of deductive methods of investigation as a source of

certain knowledge about programs and led many to concur with Hoare. For

example, Knuth justifies his definition of computer science as a branch of

mathematics (Knuth 1968) as follows:

Like mathematics, computer science will be somewhat different from other

sciences in that it deals with man-made laws which can be [deductively]

proved, instead of natural laws which are never known with certainty. (Knuth

1974)

The rationalist stance in the methodological dispute can thus be summarized as

follows:

MET-RAT Computer science is a branch of mathematics, writing programs is a

mathematical activity, and deductive reasoning is the only accepted method of the

investigating programs.

MET-RAT is justified by the rationalist ontological and epistemological positions

examined below.

2.2 The Rationalist Ontology

Discovering the Turing-completeness of programming languages has established

that every program-process can be adequately represented by some turing

machine, and by extension, by an algorithm, a recursive function, and by any

other computationally equivalent mathematical notion of mechanistic computa-

tion. The powerful insights that these mathematical notions of programs offer

have led Hoare (1986), Dijkstra (1988), and Lamport (1977) to claim that
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program-scripts are mathematical expressions.12 This premise motivates the

rationalist position in the ontological dispute (ONT), which can be recast and

justified as follows:

ONT-RAT Program-scripts are mathematical expressions. Mathematical expres-

sions represent mathematical objects. A program p is that which is fully and
precisely represented by sp. Therefore p is a mathematical object.

Functional and logic programming languages lend considerable support to ONT-

RAT. Indeed, the striking similarity between the Lisp program in Table 2 and the

recursive function defined in expression (1) can be taken to demonstrate that what is

(fully and precisely) represented by a lisp program is indeed an recursive function, a

position which can be argued as follows:

ONT-RATfunction A program-script sp encoded in any turing-complete program-

ming language (e.g., Lisp) is a mathematical expression representing a recursive

function fp. A program p is that which is fully and precisely represented by sp.

Therefore p is the mathematical function fp.

A possible objection to the rationalist ontology stems from the proliferation of

the kinds of mathematical objects on offer. Why, indeed, should programs be taken

to be recursive functions or turing machines rather than algorithm or any other

(computationally equivalent) class of mathematical objects? But the proliferation of

mathematical explanations can be taken to corroborate rather than weaken ONT-

RAT. Indeed, computational equivalence precisely means that any deduction that

can be made from choosing one mathematical explanation of mechanistic

computation can be made from the other. Stronger objections to ONT-RAT are

examined in §4.3.

ONT-RAT raises metaphysical questions concerning the nature of mathematical

objects. Prima facie, ONT-RAT may be taken to commit the rationalist to a platonist

position (e.g., Balaguer 2004). Plato’s sphere of perfect existence consists of ideal

universals (or Forms), such as mathematical objects, which are abstract (intangible,

non-physical), eternal, observer-independent, non-mental, and immutable entities,

that can only be perceived thoughour intellects (which Plato takes to be a yet

another sensory organ). Universals are taken to exist regardless whether humans are

aware of their existence are unaffected by the creation or destruction of any number

of particulars. A platonist justification to ONT-RATfunction can be recast in these

terms as follows:

ONT-RATplatonism A program-script sp is a mathematical expression. A program

p is that which is fully and precisely represented by sp. Hence, p is a mathematical

object. Mathematical objects are platonic universals. Therefore, programs are

universals.

12 Dijkstra (1988) offered an explanationto how this ‘fact’ escaped mathematicians and programmers

alike: ‘‘Programs were so much longer formulae than [mathematics] was used to that [many] did not even

recognize them as such.
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ONT-RATplatonism has some interesting consequences. It implies that the lambda

calculus, abstract automata, as well as every build and every version of Windows

XP (and of every operating system) were discovered rather than invented (Turner

2007). It also implies that every program that has ever been written, will ever be

written, or can be written, exists eternally in the sphere of perfect existence,

regardless whether it is ‘discovered’, encoded, or executed.13

However, most theoretical computer scientists have refrained explicitly

committing computer programs to any particular category of existence. Despite

its appeal, we found no reference to ONT-RATplatonism or to any particular branch

of metaphysics. Indeed, ONT-RAT is also in line with other positions in

metaphysics, such as conventionalism and intuitionism. The objections to ONT-

RAT we examine in §4.3 shall therefore focus on the inadequacy of mathematical

objects as an account for the apparent properties of programs.

2.3 The Rationalist Epistemology

Hoare (1986) is explicit in his commitment to the primacy of a priori, certain

knowledge about programs and to the role of mathematical deduction in

establishing it. This position was shared by those who like Hoare sought to

establish mathematically the (formal) semantics of programming languages, most

notably Dana Scott and Christopher Strachey (1973). Hoare (1969) himself offers

an axiomatic theory formulated in the classical mathematical logic. By Hoare’

Logic, each stage in the computation process is represented by a state that can be

captured by a set of axioms in mathematical logic {P}. The consequences of

executing a particular statement s is represented as that state {Q} which results

from applying that rule of inference s0 which is associated with the statement s to

{P}. The Hoare triple {P}s{Q} can therefore be taken to represent the semantics

of statement s. For example, the intended behaviour of program example

(Table 2) can be represented by the following Hoare triple:

fx; y 2 Ng ðexample x yÞ foutput ¼ x� yþ 3g ð3Þ

The proof of correctness of the script in Table 2 shall proceed with the attempt

to prove (3) by employing the rules of inference of Hoare Logic. Once

established, such a mathematical proof shall thus secure the correctness of the

program-script in Table 2 with certainty otherwise reserved to mathematical

theorems.

Other efforts in delivering formal semantics have followed Hoare’s example in

the attempt to prove program correctness using other axiomatic theories. In

particular, Scott’s denotational semantics (Stoy 1977) harnessed the axioms of

Zermelo-Fraenkel to prove program correctness.

13 Bill Rapaport (2007) notes that such a position has interesting consequences on the question whether

programs can be copyrighted or patented.
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The mathematical investigation of semantics of programming languages has been

at least partially successful. If certain simplifying assumptions on the programming

language are taken then some of the properties of the program-script and some of

the consequences of executing it can indeed, at least in principle, be formally

deduced. However, such a notion of program correctness required not only that

specifications (§1.3) are fully and formally defined—a potentially unfeasible task

(Table 4), and that programs-scripts can be fully and precisely represented in the

same formal language, but also that these mathematical expressions lend

themselves to the deductive process of formal verification. In 1962 John McCarthy

even suggested that, not only that program correctness can be deductively proven,

but also that it should be possible to mechanize the process of checking such

proofs:

It should be possible to eliminate debugging. ... Instead of debugging a

program one should prove that it meets its specifications, and this proof should

be checked by a computer program. (McCarthy 1962)

Indeed for the rationalist correctness is a well-defined, a priori notion which must

be proven mathematically. Hoare dismisses whatever pragmatic arguments against

this epistemological position and claims that a posteriori knowledge emanating

from experience (e.g. ‘debugging’) must be dismissed as ineffective, anecdotal and

unscientific:

I find digital computers of the present day to be very complicated and rather

poorly defined. As a result, it is usually impractical to reason logically about

their behaviour. Sometimes, the only way of finding out what they will do is

by experiment. Such experiments are certainly not mathematics. Unfortu-

nately, they are not even science, because it is impossible to generalize from

their results or to publish them for the benefit of other scientists. (Hoare, in

Fetzer (1993))

The rationalist epistemological position can thus be recast as follows:

EPI-RAT Programs can be fully and formally specified, and their ‘correctness’ is

a well-defined problem. Certain, a priori knowledge about programs emanates

from pure reason, proceeding from self-evident axioms to the demonstration of

theorems by means of formal deduction. A posteriori knowledge is to be

dismissed as anecdotal and unreliable.

EPI-RAT is in line with rationalism in traditional epistemology (Markie 2004)

which holds that pure reason alone, as opposed to sense experience, play a role in

our attempt to gain knowledge, and that a priori knowledge is superior to

a posteriori knowledge. This motivated our choice to refer to the rationalist

paradigm of computer science as such.

EPI-RAT is intimately tied with the rationalist’s ontological commitment to

mathematical objects (ONT-RAT). While empirical evidence can give us some
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intuition about the nature of mathematical objects such as numbers, triangles, and

(set-theoretic), e.g., by adding up apples or by drawing triangles on paper, such

evidence only offer anecdotal knowledge. If programs are taken to be mathematical

objects (ONT-RAT) and the methods of computer science are the methods of

mathematical disciplines, then knowledge about programs can only proceed

deductively. Indeed, a rationalist position towards knowledge in branches of pure

mathematics such as geometry, logic, arithmetic, topology, and set theory largely

dismiss a posteriori knowledge as unreliable, ineffective, and not sufficiently

general.

Objections to EPI-RAT are examined in the following sections.

3 The Technocratic Paradigm

By the ‘technocratic paradigm’14 we refer to that paradigm of computer science

which defines the discipline as a branch of engineering, proponents of which

dominate the various branches of software engineering, including software design,

software architecture, software maintenance and evolution, and software testing. In

line with the empiricist position in traditional philosophy, the technocratic paradigm

holds that reliable, a posteriori knowledge about programs emanates only from

experience, whereas certain, a priori ‘knowledge’ emanating from the deductive

methods of theoretical computer science is either impractical or impossible in

principle.

3.1 The Technocratic Methods

Wegner describes the background to the emergence of the technocratic paradigm,

echoing what we shall refer to as the argument of complexity (§3.2):

During the 1970s emphasis shifted away from ‘‘pure research’’ towards

practical management of the environment, not only in computer science but

also in other scientific areas. Decreasing hardware costs and increasingly

complex software projects created a ‘‘complexity barrier’’ in software

development which caused the management of software-hardware complexity

to become the primary practical problem in computer science. Research was

directed away from the development of powerful new programming languages

and general theories of programming language structure towards the

development of tools and methodologies for controlling the complexity, cost

and reliability of large programs (Wegner 1976)15.

14 tech � noc � ra � cy n: A government or social system controlled by technicians, especially scientists

and technical experts. (The American Heritage1 Dictionary of the English Language: Fourth Ed., 2000.)
15 These events have led to the seminal NATO conference held in the fall of 1968 (Naur and Randell

1969) concerning the trouble that the software industry had been experiencing in producing reliable

computing systems. In the introduction to the conference’s report, Robert McClure (2001) argues that

although the term ‘software engineering’ was not in general use at that time, its adoption for the titles of

these conferences was deliberately provocative and played a major role in gaining general acceptance for

the term.
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The technocratic turn away from the methods of theoretical computer science,

indeed away from all scientific practices, was most explicitly articulated by John

Pierce:

I don’t really understand the title, Computer Science. I guess I don’t

understand science very well; I’m an engineer. ... Computers are worth

thinking about and talking about and doing about only because they are useful

devices, which do something for somebody. If you are just interested in

contemplating the abstract, I would strongly recommend the belly button.

(Pierce 1968)

Indeed the technocratic doctrine contends that there is no room for theory nor for

science in computer science. During the 1970 this position, promoted primarily by

software engineers and programming practitioners, came to dominate the various

branches of software engineering. Today, the principles of scientific experimen-

tation are rarely employed in software engineering research. An analysis of all

5,453 papers published during 1993–2002 in nine major software engineering

journals and proceedings of three leading conferences revealed that less than 2% of

the papers (!) report the results of controlled experiments. Even when conducted,

the statistical power of such experiments falls substantially below accepted norms

as well as the levels found in the related disciplines (Dybå et al. 2006).

Instead of conducting experiments, software engineers use testing suites, the

purpose of which is to establish statistically the reliability of specific products of the

process of manufacturing software. For example, to establish the reliability of a

program designed for operating a microwave oven, software engineering educators

speak of a regimented process of software design (although a precise specification

of which is hardly ever offered), followed by an ‘implementation’ phase during

which the program-script is encoded (about which little can be said), concluding

with the construction of a testing suite and executing (say) 10,000 program-

processes generated from the given program-script. If executed in a range of actual

(rather than hypothetical) microwave ovens, such a comprehensive test suite

furnishes the programmer with statistical data which can be used to quantitatively

establish the reliability of the computing system in question, e.g., using metrics

such as probability of failure on demand and mean time to failure (Sommerville

2006).

Evidence to the decline of scientific methods is found in textbooks on software

engineering (e.g., Sommerville 2006). Rarely dedicating any space to deductive

reasoning16 and never to the principles of scientific experimentation in empirical

sciences, such textbooks cover the subjects of software design, software evolution,

and software testing, focusing on manufacturing and testing methods borrowed from

traditional engineering trades. Much discussed topics include models of software

development lifecycles, methods of designing testing suites, reliability metrics, and

statistical modelling.

The position of the technocratic paradigm concerning the methodological dispute

can thus be recast as follows:

16 At most, lip-service is paid to the role of verification in ‘safety-critical software systems’.
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MET-TEC Computer science is a branch of engineering which is concerned

primarily with manufacturing reliable computing systems, a quality determined

by methods of established engineering such as reliability testing and obtained by

means of a regimented development and testing process. For all practical

purposes, the methods of theoretical computer science are dismissed as ‘naval

gazing’.

The technocratic methods of investigation are primarily motivated by the

technocratic epistemological position.

3.2 The Technocratic Epistemology

So far, there has been little philosophical discussion of making software

reliable rather than verifiable. ... If another view of software could arise ..., the

interests of real-life programming and theoretical computer science might both

be better served. (DeMillo et al. 1979)

The technocratic rejection of the premises of the rationalist epistemology (EPI-

RAT) rely on the argument of complexity for the inadequacy of deductive

reasoning, articulated by Richard DeMillo, Richard Lipton, and Alan Perlis as

follows:

Back in the real world ... the specifications for any reasonable compiler or

operating system fill volumes—and no one believes that they are complete. ...

The input assertions for these algorithms are not even formulable, let alone

formalizable. (DeMillo et al. 1979)

Indeed, whether a particular program-process meets our expectations depends on

the idiosyncrasies of the compiler, the operating system, and the particular computer

executing it, which are determined by the commercial concerns of their respective

vendors. These factors place specifications such as those listed in Table 4, as well as

the programs implementing them, at a level of complexity which does not lend itself

to formal deduction. By this argument, the inevitable conclusion is that formal

deduction is ineffective establishing the correctness of all but the most trivial

computer programs

The argument of complexity receives further corroboration from the technolog-

ical progress during the past three decades since it was first articulated. Since 1979,

the average size of programs and operating systems grew in at least four orders of

magnitude. More importantly, the complexity of compilers, operating systems,

microprocessors, and input is today compounded by component-based software

engineering technologies (Szyperski 2002), such as JavaBeans, .NET, and CORBA.

These technologies gave rise to gigantic programs such as Internet search engines

and electronic commerce applications which consist of hundreds of software

components (e.g., dynamically linked libraries, server-side and client-side threads),

whose construction is often ‘outsourced’ or otherwise delegated to a range of
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independent commercial bodies or individual volunteers17 and which execute on

any one of a wide range of microprocessors (i.e., in a ‘heterogeneous environment’).

The notion of ‘input’ with regard to these programs has also been much further

complicated as signals and data arrive to these programs from innumerable other

interacting programs, many of which can be as complex as autonomous software

agents (Fasli 2007), and which communicate via vast and very complex

communication networks. Any form of deductive reasoning about such programs

requires the representation of petabytes18 of instructions and data in every one of the

components of the program and of every computer, operating system, and network

router that is involved (directly or indirectly) in their execution. Since these often

change during the lifespan of a program-process, the very notion of a program-script

is therefore not well-defined, specifications are not well-defined, and deductive

reasoning about their de facto representations is an idealization that is as unrealistic

and ineffective as, say, deductive reasoning about the individual atomic particles of

airplanes and power stations.

From the analogy to airplanes and power stations, DeMillo et al. conclude that

only probabilistic methods such as those employed by statistic mechanics and

thermodynamics can effectively establish any knowledge about such gargantuan

engineering feats:

How then do engineers manage to create reliable structures? ... They have a

mature and realistic view of what ‘‘reliable’’ means; in particular, the one

thing it never means is ‘‘perfect’’. There is no way to deduce logically that

bridges stand, or that airplanes fly, or that power stations deliver electricity.

(DeMillo et al. 1979)

According to DeMillo et al. the argument of complexity is so compelling that any

resistance thereto amount to ‘symbol chauvinism’:

It is nothing but symbol chauvinism that makes computer scientists think that

our structures are so much more important than material structures that (a)

they should be perfect, and (b) the energy necessary to make them perfect

should be expended. We argue rather that (a) they cannot be perfect, and (b)

energy should not be wasted in the futile attempt to make them perfect.

(DeMillo et al. 1979)

Rather than taking ‘correctness’ to be a certain, formally defined property,

computer scientists must learn from the established branches of engineering that

more realistic notions of correctness are in place, meaning probabilistic notions of

reliability:

It is no accident that the probabilistic view of mathematical truth is closely

allied to the engineering notion of reliability. Perhaps we should make a sharp

17 For example, the Debian GNU/Linux 3.1 version of the Linux operating system (Debian 2007) is the

product of contributions made by thousands of individuals that are entirely unrelated except in their

attempt to improve it.
18 One petabyte (1PB) is 1,024 terabytes or 250 bytes.
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distinction between program reliability and program perfection—and concen-

trate our efforts on reliability. (DeMillo et al. 1979)

The technocratic position concerning the epistemological dispute may be recast

in terms of the argument of complexity as follows:

EPI-TEC It is impractical to specify formally or to prove deductively the

‘correctness’ of a complete program. A priori, certain knowledge about the

behaviour of actual programs is therefore unattainable. If at all meaningful,

‘correctness’ must be taken to mean tested and proven ‘reliability’, a posteriori

knowledge about which is measured in probabilistic terms and established using

extensive testing suites.

Fetzer (1993) and Avra Cohn (1989) offer what is essentially an ontological

argument for an even stronger epistemological position, to which we shall refer as

the argument of category mistake. According to this argument, a priori knowledge

about the behaviour of machines is impossible in principle:

A proof that one specification implements another—despite being completely

rigorous, expressed in an explicit and well understood logic, and even checked

by another system—should still be viewed in context of many extra-logical

factors which affect the correct functioning of hardware systems. (Cohn 1989)

The technocratic position concerning the nature of knowledge can be justified by

the argument of category mistake as follows:

EPI-TECOnt It is impossible to prove deductively the correctness of any physical

object. A priori, certain knowledge about the behaviour of actual programs is

unachievable. If at all meaningful, ‘correctness’ must be taken to mean tested and

proven ‘reliability’, a posteriori knowledge about which is measured in

probabilistic terms and established using extensive testing suites.

Peter Markie (2004) defines empiricism as that school of thought which holds

that sense experience is the ultimate source of all our concepts and knowledge.

Empiricism rejects pure reason as a source of knowledge, indeed any notion of

a priori, certain knowledge, claiming that warranted beliefs are gained from

experience. Thus, EPI-TEC and EPI-TECOnt are in line with the empiricist

philosophical position.

The argument of complexity won the hearts of many computer scientists. As a

result, the technocratic doctrine has come to dominate software engineering journals

(IEEE TSE) and conferences (ICSE), contributions to which are traditionally judged

by experience gained from actual implementations—‘‘concrete, practical applica-

tions’’—which must be employed to demonstrate any thesis put forth, may it be

theoretical or practical. Software engineering classics such as the 1969 NATO

report (Naur and Randell 1969) and the grand ‘‘Software Engineering Body of

Knowledge’’ project (Abran and Moore 2004) hold a posteriori knowledge to be
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superior on all other knowledge about programs and dismiss or neglect the role of

formal deduction. Same position is widely embraced in all branches of software

design. For example, the merits of design patterns (Gamma et al. 1995) and

architectural styles (Perry and Wolf 1992) are measured almost exclusively in terms

of the number of successful applications thereof.

3.3 The Technocratic Ontology

The records of the NATO conference on software engineering (Naur and Randell

1969) quote van der Pohl in suggesting that program-scripts are themselves just

‘‘bunches of data’’:

A program [script] is a piece of information only when it is executed. Before

it’s really executed as a program in the machine it is handled, carried to the

machine in the form of a stack of punch cards, or it is transcribed, whatever is

the case, and in all these stages, it is handled not as a program but just as a

bunch of data. (Van der Poel, in Naur and Randell 1969)

If mere ‘‘bunches of data’’, representing a configuration of the electronic charge

of a particular printed circuit, program-scripts are on a par with (the manuscript of)

Shakespeare’s Hamlet and (the pixelized representation of) Botticelli’s The Birth of
Venus. Therefore ‘that which can be represented by data’ can be just about anything,

including non-existent entities such as Hamlet and Venus. The existence of those

putative abstract (intangible, non-physical) entities must therefore be rejected.

This objection can be attributed to a nominalist position in traditional

metaphysics. Nominalism (Loux 1998) seeks to show that discourse about abstract

entities is analysable in terms of discourse about familiar concrete particulars.

Motivated by an underlying concern for ontological parsimony, and in particular the

proliferation of universals in the platonist’s putative sphere of abstract existence, the

nominalist principle commonly referred to as Occam’s Razor (‘‘don’t multiply

entities beyond necessity’’) denies the existence of abstract entities. By this

ontological principle, nothing exists outside of concrete particulars, including not

entities that are ‘that which is fully and precisely defined by the program script’

(ONT-RAT). The existence of a program is therefore unnecessary.

The technocratic ontology can thus be summarized as follows:

ONT-TEC ‘That which is fully and precisely represented by a script sp’ is a

putative abstract (intangible, non-physical) entity whose existence is not

supported by direct sensory evidence. The existence of such entities must be

rejected. Therefore, ‘programs’ do not exist.

Indeed, the recurring analogies to airplanes, power stations, chemical

analyzers, and other engineered artefacts for which no ontologically independent

notion of a program is meaningful seems to support ONT-TEC. But while ONT-

TEC is corroborated by a nominalist position, it is not committed thereto. In

absence of an explicit commitment to any particular school of thought in
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metaphysics, it is impossible to determine whether ONT-TEC is indeed motivated

by nominalism.

4 The Scientific Paradigm

The scientific paradigm contends that computer science is a branch of natural

(empirical) sciences, on a par with ‘‘astronomy, economics, and geology’’ (Newell

and Simon 1976), the tenets of which are prevalent in various branches of AI,

evolutionary programming, artificial neural networks, artificial life (Bedau 2004),

robotics (Nemzow 2006), and modern formal methods (Hall 1990). Since many

programs are unpredictable, or even ‘chaotic’, the scientific paradigm holds that

a priori knowledge emanating from deductive reasoning must be supplanted with

a posteriori knowledge emanating from the empirical evidence by conducting

scientific experiments. Since program-processes are temporal, non-physical, causal,

metabolic, contingent upon a physical manifestation, and nonlinear entities, the

scientific paradigm holds them to be on a par with mental processes.

4.1 The Scientific Methods

Allen Newel and Herbert Simon, prominent pioneers of AI, define computer

science as follows:

Computer science is the study of the phenomena surrounding computers ... it

an empirical discipline ... an experimental science ... like astronomy,

economics, and geology (Newell & Simon 1976)

Scientific experiments are traditionally concerned with ‘natural’ objects, such as

chemical compounds, DNA sequences, stellar bodies (e.g., Eddington’s 1919 solar

eclipse experiment), atomic particles, or human subjects (e.g., experiments

concerning cognitive phenomena.) It can be argued that the notion of scientific

experiment is only meaningful when applied to ‘natural’ entities but not to

‘artificial’ objects such as programs and computers; namely, that programs and

computers cannot be the subject of scientific experiments:

There is nothing natural about software or any science of software. Programs

exist only because we write them, we write them only because we have built

computers on which to run them, and the programs we write ultimately reflect

the structures of those computers. Computers are artifacts, programs are

artifacts, and models of the world created by programs are artifacts. Hence,

any science about any of these must be a science of a world of our own making

rather than of a world presented to us by nature. (Mahoney 2002)

As a reply, Newell and Simon contend that, even if they are indeed contingent

artefacts, programs are nonetheless appropriate subjects for scientific experiments,

albeit of a novel sort (‘‘nonetheless, they are experiments’’. Newell and Simon

1976) Their justification for this position is simple: If programs and computers are

taken to be some part of reality, in particular if the scientific ontology (ONT-SCI) is
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accepted, then we see no particular difficulty in employing scientific methods for

investigating them. Even Turing acknowledged the role of experiments in

investigating the behaviour of artificial artefacts:

We also wish to allow the possibility than an engineer or team of engineers

may construct a machine which works, but whose manner of operation cannot

be satisfactorily described by its constructors because they have applied a

method which is largely experimental. (Turing 1950)

Additional arguments supporting the relevance of scientific experimentation

concern the limits of analytical methods. In §4.2, we shall examine the argument of
non-linearity and the argument of self-modifiability and conclude that, indeed,

knowledge about even some of the simplest programs can only be gained via

experiments.

The scientific notion of experiment must be clearly distinguished from the

technocratic notion of a reliability test (§3.1). The purpose of a reliability test is to

establish the extent to which a program meets the needs of its users, whereas a

scientific experiment is designed to corroborate (or refute) a particular hypothesis. If

a test suite fails, the subject of experiment (the program) must be revised (or

discarded); if an experiment ‘fails’, the theory must be revised (or discarded), or

else the integrity of the experiment is in doubt. For example, an appropriate test

suite may have prevented that programming error (in the conversion a 64-bit

floating-point number to a 16-bit signed integer) which caused the Ariane 5 Flight

501 to disintegrate forty seconds after launch. The purpose of such a test suite is to

prevent the space shuttle from exploding; had a test suite discovered this error, the

program would have been revised. In contrast, Eddington’s experiment of

measuring the bending of light at a total solar eclipse in 1919 was specifically

tailored to test Einstein’s 1915 general theory of relativity. Had this experiment

failed to corroborate this theory, General Relativity or the integrity of Eddington’s

experiment would have been questioned.

For this reason, experiments with programs go beyond establishing the usability

of a particular manufactured artefact, even beyond the ‘extent and limitations of

mechanistic explanation’. Computer programs can also be used as tools in

discovering and empirically establishing the laws of nature. In particular, program

simulations can be used to examine the veracity of models of non-linear phenomena

(such as the ones we shall examine in §4.2) in other natural sciences. For example,

in cognitive psychology, an artificial intelligence programs can be taken to be a tool

for empirical examinations of models of memory and learning; in bioinformatics,

genetic algorithms are used to test the extent to which models of the reproduction of

DNA molecules are corroborated by the laws of Darwinian natural selection; and in

astronomy, the predictions of models for the creation of the universe can be tested

by means of computer simulations. If computer science is concerned with the

‘phenomena surrounding computers’—such as the behaviour of computer simula-

tions—then its subject matter is distinct from any given class of natural phenomena

at most in the extent to which scientific theories deviate from reality. In other words,

our programs are only ‘incorrect’ to the extent to which the scientific theories they
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implement deviate from the phenomena they seek to explain. In Popper’s (1963)

terms, the difference between programs and the (naturalistic view of) reality is at

most limited by the verisimilitude (or truthfulness) of our most advanced scientific

theory. The progress of science is manifest in the increase in this verisimilitude.

Since any distinction between the subject matter of computer science and natural

sciences is taken to be at most the product of the (diminishing) inaccuracy of

scientific theories, the methods of computer science are the methods of natural

sciences.

But the methods of the scientific paradigm are not limited to empirical validation,

as mandated by the technocratic paradigm. Notwithstanding the technocratic

arguments to the unpredictability of programs (as well as the additional arguments

we examine in §4.2), the deductive methods of theoretical computer science have

been effective in modelling, theorizing, reasoning about, constructing, and even in

predicting—albeit only to a limited extent—innumerable actual programs in

countless many practical domains. For example, context-free languages has been

successfully used to build compilers (Aho et al. 1986); computable notions of

formal specifications (Turner 2005) offer deductive methods of reasoning on

program-scripts without requiring the complete representation of petabytes of

program and data; and classical logic can be used to distinguish effectively between

abstraction classes in software design statements (Eden et al. 2006). If computer

science is indeed a branch of natural sciences then its methods must also include

deductive and analytical methods of investigation.

From this Wegner (1976) concludes that theoretical computer science stands to

computer science as theoretical physics stands to physical sciences: deductive

analysis therefore plays the same role in computer science as it plays in other

branches of natural sciences. Analytical investigation is used to formulate

hypotheses concerning the properties of specific programs, and if this proves to

be a highly complex task (e.g., Table 4) it nonetheless an indispensable step in any

scientific line of enquiry.

Tim Colburn concurs with this view and concludes that in reality the tenets of the

scientific paradigm offer the most complete description of the methods of computer

science:

Computer science ‘‘in the large’’ can be viewed as an experimental discipline

that holds plenty of room for mathematical methods, including formal

verification, within theoretical limits of the sort emphasized by Fetzer

(Colburn 2000, p. 154)

To summarize, the scientific position concerning the methodological question

(MET) can therefore be distinguished from the rationalist (MET-RAT) and the

technocratic (MET-TEC) positions as follows:

MET-SCI Computer science is a natural science on a par with astronomy,

geology, and economics, any distinction between their respective subject matters

is no greater than the limitations of scientific theories. Seeking to explain, model,

understand, and predict the behaviour of computer programs, the methods of

computer science include both deduction and empirical validation. Theoretical
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computer science therefore stands to computer science as theoretical physics

stands to physics.

4.2 The Scientific Epistemology

The argument of complexity (§3.2) demonstrates that deductive reasoning is

impractical for large programs. The following arguments however demonstrate that

the outcome of executing even very small and programs cannot be determined

analytically.

The argument of self-modifiability for the unpredictability of programs

concerns the fact that certain program-processes modify the very set of their

instructions (the program-script) during the process of computation. For example, in

genetic and evolutionary programming the program-script is treated as a chromo-

some, namely as a sequence of symbols that is subjected to mutation and crossover
during the process of computation. Therefore a genetic program-process, even if

entirely deterministic, does not follow a fixed set of instructions. Similarly, the

instructions encoded in the program-script for computer viruses are modified by

infected program-processes. For example, in the attempt to defeat anti-virus

scanners, polymorphic viruses randomly change their effect—indeed their very

program script (the virus ‘signature’)—arbitrarily with each ‘infection’; thus, any

instruction can change arbitrarily to any other instruction. As a result, the behaviour

of ‘infected’ programs is veritably impossible to predict analytically, not even when

government secrets or large fortunes are at stake. The behaviour of self-modifying

programs of other kinds is almost equally volatile.

Once one program is contaminated, any other program-process sharing the same

resources is likely to be affected. Since computer viruses and other forms of

malware are likely to infect (at one point of another) almost every networked

computer, almost any program in the Internet era carries the risk of becoming self-

modifiable.

The argument of non-linearity for the unpredictability of programs relies on the

fact that the vast majority of program-processes belong to the deterministically
chaotic class of phenomena. Dynamic systems theory (also complexity theory),

which accounts for a very large class of ‘natural’ phenomena (including weather

systems, traffic jams, ecosystems, and stock markets), states that the outcome of

chaotic and deterministically chaotic systems cannot be determined analytically

because ‘‘tiny deviations of initial data lead to exponentially increasing computa-

tional efforts to analyze future data, limiting long-term predictions, although the

dynamics is in principle uniquely determined’’. (Mainzer 2004)

A phenomenon is classified as ‘deterministic chaos’ if the following conditions

hold:

(1) Arbitrarily close to every state s1 of the system, there is a state s2 whose future

eventually is significantly different from that of s1. That is, the tiniest changes

can cause arbitrarily large changes in the future course of events.

(2) Arbitrarily close to every state s1 of the system, there is a state s2 whose future

behaviour eventually returns exactly to s2.
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(3) Given any two states s1 and s2, the futures of some states near s1 eventually

become near s2 (Devaney 1989).

For example, the future state of a program calculating the nth value of formula

(4) for some r > 3 satisfies the conditions of deterministically chaotic phenomenon,

and therefore cannot be determined analytically:

Stateðnþ 1Þ ¼ r � StateðnÞ � ð1� StateðnÞÞ ð4Þ

Already in 1946, before the principles of chaos theory have been developed and

evidence to its widespread applicability has been presented, von Neumann observed

that the outcome of programs computing non-linear mathematical functions cannot

be analytically determined:

Our present analytical methods seem unsuitable for the solution of the

important problems arising in connection with non-linear partial differential

equations and, in fact, with virtually all types of non-linear problems in pure

mathematics. (von Neumann, in Mahoney 2002)

In 1979, DeMillo et al. illustrated how ‘chaotic’ computer programs are using the

example of weather systems, for which an event as minute as the flap of a butterfly’s

wings may potentially have a disproportionate effect, indeed a result as catastrophic

as causing a hurricane:

Every programmer knows that altering a line or sometimes even a bit can

utterly destroy a program or mutilate it in ways that we do not understand and

cannot predict. ... Until we know more about programming, we had better for

all practical purposes think of systems as composed, not of sturdy structures

like algorithms and smaller programs, but of butterflies’ wings. (DeMillo et al.

1979)

In other words, even if a program was not specifically encoded to calculate a non-

linear function, in effect its behaviour amounts to such a program. The reason is that

one part or another of it is non-linear. DeMillo et al. specifically mention operating

systems and compliers, which in effect take large part in the behaviour or almost

any program. Therefore, it is very unlikely that any knowledge about all but the

most trivial programs can be established without conducting experiments.

Knuth conceded the weight of the argument of non-linearity, in particular with

relation to the class of programs that are the concern of artificial life:

It is abundantly clear that a programmer can create something and be totally

aware of the laws that are obeyed by the program, and yet be almost totally

unaware of the consequences of those laws; [for example,] running a program

from a slightly different configuration often leads to really surprising new

behaviour. (Knuth Undated)

Berry et al. corroborate the argument of non-linearity by showing that the very

behaviour of microprocessors is chaotic when executing certain program-processes:

158 A. H. Eden

123



As a consequence, the performance of these microprocessors during the

execution of certain programs displays complex non-repetitive variations

that challenge traditional analysis.... Our results show that ... for several

[programs], the complex dynamics observed result from deterministic

chaos. This suggests that a detailed prediction of microprocessor perfor-

mance at long execution times is unlikely with these programs. (Berry

et al. 2005)

Without specifically referring to non-linearity, Turing, in a remark which can

be taken to be an (anticipatory) rebuttal to Hoare (EPI-RAT), acknowledged

already in 1950 that the behaviour of some programs is inevitably a source of

surprises:

The view that machines cannot give rise to surprises is due, I believe, to a

fallacy to which philosophers and mathematicians are particularly subject.

This is the assumption that as soon as a fact is presented to a mind all

consequences of that fact spring into the mind simultaneously with it. It is a

very useful assumption under many circumstances, but one too easily forgets

that it is false. (Turing 1950)

In conclusion from the compelling arguments of complexity (§2.3), self-
modifiability, and non-linearity for the unpredictability of programs, the behaviour

of some programs is inevitably a source of a surprise, and a priori knowledge about

them is severely limited. Therefore, while it may be possible in principle to deduce

some of the properties of the program and all the consequences of executing it (EPI-

RAT), in practice it is very often impossible.

The tenets of the scientific epistemology can therefore be summarized as follows:

EPI-SCI While it may be possible in principle to deduce some of the

properties of the program and all the consequences of executing it, in
practice it is very often impossible. Therefore, while some knowledge about

programs can be established a priori, much of what we know about programs

must necessary be limited to some probabilistic, a posteriori notion of

knowledge.

4.3 The Scientific Ontology

To him who is a discoverer ... the products of his imagination appear so

necessary and natural that he regards them, and would like them regarded by

others, not as creations of thought but as given realities.

—Albert Einstein (1934)

We postulate that an adequate ontological explanation for program-processes must

offer an account for the following unique set of their apparent properties:
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1. Temporal: The existence of program-processes extends in time in the interval

between being created and being destroyed19;

2. Non-physical: Program-processes are non-physical, intangible entities;

3. Causal: Program-processes can interact with and move physical devices;

4. Metabolic: Program-process ‘consume’ energy20;

5. Contingent upon a physical manifestation: The existence of program-processes

depends on the existence of that physical computer which is said to be

‘executing’ it;

7. Nonlinear: The outcome of a program-process, in the general case, cannot be

analytically determined.

Let us examine briefly the weaknesses of the rationalist and of the technocratic

ontological explanations with relation to the apparent properties of program-

processes. Rationalism (ONT-RAT) asserts that programs are mathematical objects.

But mathematical objects, such as turing machines, recursive functions, triangles,

and numbers cannot be meaningfully said to metabolize nor have a causal effect on

the physical reality in any immediate sense. It would be particular difficult to justify

also a claim that mathematical objects have a specific lifespan or that they are

contingent upon any specific physical manifestation (except possibly as mental

artefacts). In this respect, ONT-RAT is inadequate.

Alternatively, the technocratic paradigm (ONT-TEC) reduces program-scripts to

mere ‘‘bunches of data’’. It is hostile towards assertions of existence of any abstract,

ontologically independent manifestations of whatever the data is taken to represent.

But program-processes do have causal effect on physical reality: They control

robotic arms, artificial limbs, machine guns (BBC 8-Apr-2006), ‘smart bombs’, the

navigation of automated and semi-automated vehicles, the sale and purchase of

stocks in stock exchanges, and to some degree almost every single home appliance.

Programs also treat depression (Medical News Today 22-Feb-2006), determine

whether your child shall receive her vaccination (Observer 26-Feb-2006), shortlist

job applications (Int’l Herald Tribune 26-Sep-2006), count votes in national

elections, and spread copies of themselves over the Internet. Program-processes

came to have a tangible effect on concrete, physical reality, an effect which ONT-

TEC fails to account for.

The inadequacy of both the rationalist and the technocratic ontological accounts

has led Dijkstra to conclude that program-processes are a ‘radical novelty’:

It is the most common way of trying to cope with novelty: by means of

metaphors and analogies we try to link the new to the old, the novel to the

familiar. Under sufficiently slow and gradual change, it works reasonably

well; in the case of a sharp discontinuity, however, the method breaks down:

though we may glorify it with the name ‘‘common sense’’, our past experience

is no longer relevant, the analogies become too shallow, and the metaphors

19 We ignore, for the moment, difficulties arising from concurrency and the possibility of suspending the

execution of program-processes.
20 That is, the computational process by the central processing unit depends on the consumption of

energy; if suspended, program-processes cease to exist.
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become more misleading than illuminating. This is the situation that is

characteristic for the ‘‘radical’’ novelty. (Dijkstra 1988)

According to Dijkstra, the ontological question (ONT) remains open.

Others contend that the misleading similarities to mathematical objects and to

engineered artefacts arise because program-processes are on a par with mental

processes. For example, Alan Bundy calls them ‘mental machines’:

The reason that it is possible to have this analogy both with applied

mathematics and pure engineering is that computer programs are strange

beasts; they are both mathematical entities and artifacts. They are formal

abstract objects which can be investigated symbolically as if they were

statements in some branch of mathematics. But they are also artifacts, in that

they can do things, e.g., run a chemical plant. They are machines, but they are

not physical machines, they are mental machines. (Bundy 2005, p. 218)

Indeed, cognitive and other mental processes are non-physical, causal, metabolic,

contingent upon a physical manifestation (e.g., the human brain), and non-linear

processes too. Bundy’s metaphor is therefore adequate at least according to the

criteria of their apparent properties listed above.

A symmetrical contention is made by computational theories of mind

(McLaughlin 2004), which suggest that the brain is a (programmable) computer

and that the computation of cognitive functions—that is, the exercise of mental

abilities, or simply ‘thinking’—is in effect a program-process. For example, Hilary

Putnam (1975) and more recently Eric Steinhart (2003) argued that the human mind

is in effect a finite-state automaton. Strong AI, which holds that intelligent mental

processes—artificial ‘‘thinking’’ processes—can be effectively reproduced by

executing programs using existing technology. Strong AI was upheld by the

pioneers of AI and to this day it the working assumption of those computer scientists

who investigate machine learning, evolutionary algorithms, and artificial life (Bedau

2004). The same stance was in effect taken by Turing as early as in 195021:

May not machines carry out something which ought to be described as thinking

but which is very different from what a man does? This objection is a very

strong one, but at least we can say that if, nevertheless, a machine can be

constructed to play the imitation game satisfactorily, we need not be troubled by

this objection. ... I believe that at the end of the century the use of words and

general educated opinion will have altered so much that one will be able to

speak of machines thinking without expecting to be contradicted. (Turing 1950)

The analogy to mental processes receives considerable support from recent

results in computational theories of the DNA. Brent and Bruck suggest that the

DNA molecule can be taken to be a program-script encoded in a turing-complete

21 Turing forecast named the year 2000 as a target. During that year, Jim Moor conducted an experiment

which refuted Turing’s prediction, but he hastens to add: ‘‘Of course, eventually, 50 years from now or

500 years from now, an unrestricted Turing test might be passed routinely by some computers. If so, our

jobs as philosophers would just be beginning’’. (Moor 2000)
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(‘procedural’) programming language, and the mechanisms of interpreting it to be

on a par with (turing-complete) digital computing machines:

It seems reasonable to view the DNA script in the genome as executable code

that could have been specified by a set of commands in a procedural

imperative [programming] language. (Brent and Bruck 2006)

If a monist, materialist (Stack 1998) position is taken, then the human mind is

indeed largely the product of the interpretation of the human genome. If the DNA

representing the human brain is taken to be a program-script then program processes

are indeed on a par with mental processes.

The scientific ontology and the arguments in its favour can thus be summarized

as follows:

EPI-SCI Program-scripts are on a par with DNA sequences, in particular with the

genetic representation of human organs such as the brain, the product of whose

execution—program-processes—are on a par with mental processes: temporal,

non-physical, causal, metabolic, contingent upon a physical manifestation, and

non-linear entities.

5 Discussion

We examined the basic tenets of three paradigms of computer science, each of

which holds different positions concerning the definition of the discipline, warranted

notions of program correctness, and whether programs are mathematical objects.

We concluded that the disputes among computer scientists go beyond the

boundaries of the discipline and extend to philosophical positions concerning the

nature of computer programs and the nature of knowledge about them. We

expanded on the arguments that corroborate the scientific position concerning these

questions and concluded that, since almost all programs are non-linear or self-

modifiable, a priori knowledge about them is unattainable. Therefore, the methods

of computer science must combine deductive reasoning with scientific experimen-

tation. Our analysis of the apparent properties of program-processes has also

demonstrated that the category of mental process offer the most compelling account

for their existence.

The significant increase in the complexity of software systems has lent much

support to the argument of complexity, leading almost all who upheld the rationalist

paradigm to abandon it22. But while most computer scientists pledge allegiance to

the scientific position, at least in principle, mainstream computer science is yet to

concede the ontological commitments of the scientific paradigm. Rather, since

Wegner observer the prevalence of the technocratic paradigm in 1976, the failure of

the methods of theoretical computer to deliver effective solutions to this crisis and

the vested interest of the multi-billion dollar software industry (Ophir 2006) have

22 Hoare (2006) has recently conceded that ‘‘Because of its effective combination of pure knowledge and

applied invention, Computer Science can reasonably be classified as a branch of Engineering Science.’’
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contributed to the dominance of the technocratic doctrine in all but some branches

of AI.

As a result of the increasing influence that the technocratic paradigm has been

having on undergraduate curricula, ‘computer science’ academic programs are

seldom true to their name. Courses teaching computability, complexity, automata

theory, algorithmic theory, and even logic in undergraduate programs have been

dropped in favour of courses focusing on technological trends teaching software

design methodologies, software modelling notations (e.g., the Unified Modelling

Language200523), programming platforms, and component-based software engi-

neering technologies. As a result, a growing proportion of academic programs churn

increasing numbers of graduates in ‘computer science’ with no background in the

theory of computing and no understanding of the theoritical foundations of the

discipline.

In 1988, Dijkstra scathingly attacked the decline of mathematical, conceptual,

and scientific principles, a trend which has turned computer science programmes

into semi-professional schools which train students in commercially driven, short-

lived technology:

So, if I look into my foggy crystal ball at the future of computing science

education, I overwhelmingly see the depressing picture of ‘‘Business as

usual’’. The universities will continue to lack the courage to teach hard

science, they will continue to misguide the students, and each next stage of

infantilization of the curriculum will be hailed as educational progress.

(Dijkstra 1988)

It is difficult to determine precisely the outcome of the domination of the

technocratic doctrine on computer science education. but the anti-scientific attitude

has evidently taken its toll on the software industry. Since it was declared in the

1968 NATO conference (Naur and Randell 1969), the never-ending state of

‘software crisis’ has been renamed to ‘software’s chronic crisis’ (Gibbs 1994) and in

2005 it was pronounced ‘software hell’ (Carr 2004). The majority of multimillion-

dollar software development projects, government and commercial, largely

continues to end with huge losses and no gains (Carr 2004). As a standard,

software manufacturers sign their clients on an End-User Licence Agreements

(EULA) which offer less of a guarantee for their merchandise than any other

commodity with the possible exception of casinos and used cars. Much of the

professional literature refers to software in a jargon borrowed from mathematics,

melodrama, and witchcraft in almost equal measures (e.g., Raymond 1996). Crimes

involving bypassing security bots guarding the most heavily protected electronically

stored secrets and spreading a wide spectrum of software malware have become part

of daily life. The correct operation of the majority of computing devices has become

largely dependent on daily—even hourly—updates of a host of defence mecha-

nisms: firewalls, anti-virus, anti-spyware, anti-trojans, anti-worms, anti-dialers, anti-

rootkits, etc. Even with the widespread use of these defence mechanisms, virtually

no computer is invulnerable to malicious programs that disable and overtake global

23 To which Bertrand Meyer (1997) satirical critique offers valuable insights.
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networks of millions of zombie computers (‘botnets’) through the Internet.

Paradoxically, the doctrine preached primarily by software engineers and practi-

tioners has done little but deepen the disparity between the state of practice in

‘software engineering’ and estabilished engineering disciplines.

David Parnas, who became known for his contributions to software design (e.g.,

Parnas 1972) pointed out that even in software engineering the technocratic stance is

untenable, upholding instead the basic tenets of the scientific paradigm:

There is no engineering profession in which testing and mathematical

validation are viewed as alternatives. It is universally accepted that they are

complementary and that both are required. (David Parnas, in Denning 1989)

Parnas’ argument is upheld by the analogy between software engineering and

established and more successful branches of engineering such civil engineering,

chemical engineering, and even genetic engineering. These branches of engineering

would not exist if not for the rigour their scientific and theoretical counterparts, e.g.,

material sciences, chemistry, and molecular biology, respectively. Robin Milner

(2007) concurs and concludes that indeed, the failures of software engineering

emanate from the decline in the role of theoretical computer science and its

methods. Therefore, before software engineering matures to that level of established

engineering disciplines and stand to computer science as chemical engineering

stands to chemistry, computer scientists must abandon the technocratic paradigm.

Epilogue

If the scientific paradigm comes to dominate, and mainstream computer science is

recognized as a branch of natural sciences, the question is how computer science

can mature as such. Quine offers the following criterion of maturity for a scientific

discipline:

A branch of science would qualify for recognition and classification at all ...

only when it had matured to the point of clearing up its similarity standards

[between natural kinds]. ... In general we can take it as a very special mark of

the maturity of a branch of science that it no longer needs an irreducible notion

of similarity and kind. It is that final stage where the animal vestige is wholly

absorbed into the theory. (Quine 1969)

An interesting open question is therefore whether computer programs are natural

kinds (Copeland 2006) and if not then what mature scientific theory of computer

programs can lead us to better understanding of the technology that civilization has

come to depend upon.
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