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Principal Components Analysis

Variable redundancy and reduction

 Variable redundancy: some variables are correlated with 

one another, possibly because they measure the same 

“construct”

 Poverty, education, income and unemployment

 Should be possible to combine these variables into a smaller number 

that will account for most of the variance in the observed data

 Variable reduction: reducing a large set of variables into a 

much smaller set

 Naturally leads to loss of some information, but we try to 

minimize this!
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Principle Component Analysis

 A statistical technique used to examine the interrelations 

among a set of variables in order to identify the 

underlying structure of those variables

 Combine (reduce) a set of observed variables into a 

smaller set of “artificial” variables called principal 

components

 The resulting PCs can be used in subsequent analyses

 Regression

The assumptions of PCA

 Linearity

 Assumes the data set to be linear combinations of the 

variables

 The importance of mean and covariance

 There is no guarantee that the directions of maximum variance 

will contain good features for discrimination

 That large variances have important dynamics

 Assumes that components with larger variance correspond to 

interesting dynamics and lower ones correspond to noise
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PCA

 Where regression determines a line of best fit to a data 

set, PCA determines several orthogonal lines of best fit

 Orthogonal: meaning “at right angles”

 Actually the lines are perpendicular to each other in n-

dimensional space

 n-dimensional space is the variable sample space

 There are as many dimensions as there are variables, so in a 

data set with 4 variables the sample space is 4-dimensional

y

x

Regression line of best fit
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Regression line of best fit

Orthogonal line

Components

 A linear combination of weighted variables:

 The greatest variance of the data set is captured by the first 

axis (called the first principal component)

 The second greatest variance on the second axis (the second 

principal component)

 Note that components are uncorrelated since in the sample space 

they are orthogonal to each other

y

x

Orthogonal y

x

Non-orthogonal
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This line “explains”

50% of the variation

This line “explains”

22% of the variation

28% of the variation

Remains unexplained

Components

 The general form for the formula to compute scores on a 
components created using PCA is:

 Where:

 c1 = the subject‟s score on principal component 1 (the first 
component extracted)

 1p = the regression coefficient (or weight) for observed 
variable p, as used in creating principal component 1

 xp = the subject‟s score on observed variable p

 You will have as many c‟s (components) as variables in the 
dataset

ppxxxc 12121111 ...  
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Variable “loading”

 An observed variable “loads” on a factor if it is highly 

correlated with the factor (has a large eigenvalue)

 How much weight is given to a variable when 

constructing a principle component

 x1 has a loading of .44 (large) while x2 has a loading of .02 (small)

 So, x1 determines more of the variance explained by PC1

76543211 03.01.02.32.47.40.44. xxxxxxxc 

Eigenequations and eigenvalues

 The regression weights (loadings) are determined using a 

type of equation called an eigenequation

 These weights are optimal because no other set of weights 

could produce a set of components that are more successful in 

explaining the variation in the observed variables

 Sort of like maximum likelihood estimation (MLE)

 Sometimes called eigenvector

 The eigenvalue is a numeric estimation of how much of 

the variation each component explains



4/26/2010

7

Steps in conducting a PCA

 Initial extraction of the components

 Determining the number of components to retain

 Eigenvalue-one criterion

 Scree test

 Proportion of variance accounted for

 Interpretability criteria

 Rotation to a final solution

 Interpreting the rotated solution

 Creating factor scores

PCA in R

 There are numerous ways of conducting PCA in R

 prcomp() and princomp() are the most common

 We will focus on the principal() function in the 

psych package because it has the best options

> install.packages(“psych”)

> library(psych)
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Example: Swiss fertility

 Standardized fertility measure and socio-economic 
indicators for each of 47 French-speaking provinces of 
Switzerland

 47 observations on 6 variables

 Fertility - „common standardized fertility measure‟

 Agriculture - % of males involved in agriculture as occupation 

 Examination - % draftees receiving highest mark on army 
examination 

 Education - % education beyond primary school for draftees

 Catholic - % „Catholic‟ (as opposed to „protestant‟)

 Infant.Mortality - % live births that live less than 1 year

Example

 First, let‟s create a new dataset with only the variables we 

want to use in our PCA

> swiss2<-swiss[c(2:6)]

> names(swiss2)

[1] "Agriculture"  "Examination"  "Education"    "Catholic"        

[5] "Infant.Mortality"
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Initial extraction of the components
> swpca <- principal(swiss2, nfactors=5, rotate="none")

Principal Components Analysis

Call: principal(r = swiss2, nfactors = 5, rotate = "none")

item   PC1   PC2   PC3   PC4   PC5 h2 u2

Agriculture         1 -0.85              0.45        1  0

Examination         2  0.93                          1  0

Education           3  0.80        0.49              1  0

Catholic            4 -0.63  0.38  0.66              1  0

Infant.Mortality 5        0.90 -0.38              1  0

PC1  PC2  PC3  PC4  PC5

SS loadings    2.63 1.07 0.82 0.31 0.17

Proportion Var 0.53 0.21 0.16 0.06 0.03

Cumulative Var 0.53 0.74 0.90 0.97 1.00

Eigenvalues

(amount of variance

accounted for by each PC)

Variable loadings

Determine number of components to retain

Eigenvalue-one criteria

PC1  PC2  PC3  PC4  PC5

SS loadings    2.63 1.07 0.82 0.31 0.17

Proportion Var 0.53 0.21 0.16 0.06 0.03

Cumulative Var 0.53 0.74 0.90 0.97 1.00

 We‟re lucky here, PC3 is 0.82 which is enough below 1 that we 

don‟t feel the need to include it

 More challenging decision if PC3=0.95
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Determine number of components to retain

The scree test

> plot(swpca$values, type="b", ylab="Eigenvalues", 

xlab="Component", lab=c(5,5,5))

Look for a “break” between components

Before break = meaningful, retained

After break = not meaningful, dropped

Determine number of components to retain

Proportion of variance

PC1  PC2  PC3  PC4  PC5

SS loadings    2.63 1.07 0.82 0.31 0.17

Proportion Var 0.53 0.21 0.16 0.06 0.03

Cumulative Var 0.53 0.74 0.90 0.97 1.00

 Retain components that account for at least x% of the 

total variance

 5% or 10%, etc.

 Retain components that combined account for x% of the 

cumulative variance

 Usually at least 70%
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Determine number of components to retain

Interpretability

item   PC1   PC2   PC3   PC4   PC5 h2 u2

Agriculture         1 -0.85              0.45        1  0

Examination         2  0.93                          1  0

Education           3  0.80        0.49              1  0

Catholic            4 -0.63  0.38  0.66              1  0

Infant.Mortality 5        0.90 -0.38              1  0

 Do variables that load on a component share a conceptual 

meaning?

 Do variables that load on different components seem to 

measure a different construct?

 How many PC‟s would you choose?

Rotation to a Final Solution
 After initially deciding which PCs to retain, create a rotated factor pattern

 We do this for ease of interpretation

> swpca.r <- principal(swiss2, nfactors = 2, rotate = "varimax", scores = T)

Principal Components Analysis

Call: principal(r = swiss2, nfactors = 2, rotate = "varimax", scores = T)

item   RC1   RC2   h2   u2

Agriculture         1 -0.89       0.79 0.21

Examination         2  0.90       0.86 0.14

Education           3  0.82       0.68 0.32

Catholic            4 -0.51  0.52 0.54 0.46

Infant.Mortality 5        0.91 0.84 0.16

RC1  RC2

SS loadings    2.54 1.16

Proportion Var 0.51 0.23

Cumulative Var 0.51 0.74

Test of the hypothesis that 2 factors are sufficient.

The number of observations was 47 with Chi Square = 33.2 with prob < 8.3e-09
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Interpreting the rotated solution

 Determining just what is measures by each of the 

retained components
item   RC1   RC2   h2   u2

Agriculture         1 -0.89       0.79 0.21

Examination         2  0.90       0.86 0.14

Education           3  0.82       0.68 0.32

Catholic            4 -0.51  0.52 0.54 0.46

Infant.Mortality 5        0.91 0.84 0.16

 The first component seems to measure socioeconomic status

 The second component seems to measure beliefs and 

experiences

 May choose to remove catholic from interpretation because it loads 

highly on two different components

h2 is called the communality 

estimate

Measures the % of variance 

in an observed variable 

accounted for by the 

retained components

Creating factor scores

 Linear composite of the weighted observed variables

 Determine weights

 Multiply variable for each observation by these weights

 Sum the products

> swpca.r <- principal(swiss2, nfactors=2, rotate="varimax", 

scores=T)

> sw.scores<-swpca.r$scores

> sw.scores

RC1         RC2

Courtelary 0.74892706  0.61472668

Delemont -0.46078328  1.21119279

Franches-Mnt -0.68659489  0.73075268

Moutier -0.05433337  0.14329745

Neuveville 0.43894928 -0.07097574

Porrentruy -0.03838465  2.53479768
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Summarizing the results

 Only the first 2 components displayed eigenvalues greater than 1, chose to 

retain these.  Together, these two components accounted for 74% of the 

total variance.

 Variables and corresponding factor loading are presented in the table.

 Four items were found to load on PC1, which was labeled the 

“socioeconomic” component.  Two items loaded on PC2, which was labeled 

the “beliefs and experiences” component.

PC1 PC2  h2 

Agriculture    -0.89 0.79 

Examination  0.90 0.86

Education       0.82  0.68 

Catholic           -0.51  0.52 0.54

Infant.Mortality 0.91 0.84

Using the factor scores
> sw.scores<-data.frame(swpca.r$scores)

> sw.lm<-lm(swiss$Fertility~sw.scores$RC1 + sw.scores$RC2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)     70.143      1.242  56.472  < 2e-16 ***

sw.scores$RC1   -7.255      1.256  -5.779 7.13e-07 ***

sw.scores$RC2    5.835      1.256   4.648 3.06e-05 ***

---

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Residual standard error: 8.515 on 44 degrees of freedom

Multiple R-squared: 0.5555,     Adjusted R-squared: 0.5353 

F-statistic:  27.5 on 2 and 44 DF,  p-value: 1.789e-08 
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Some terminology

 Latent construct or unobserved variable

 A variable that cannot be measured directly

 Capture the variable (infer it) indirectly using other variables 

that are observed

 Factors are the underlying latent variables that are responsible 

for the covariation between observed variables

 Unique variance

 Variance of each variable unique to that variable and not 

explained or associated with other variables

What’s the difference between PCA and 

Factor Analysis?

 Fundamentally the same, both analyze correlation matrices

 Difference is mainly in how the variance is analysed:

 PCA: all variance of observed variables is analysed

 Shared, unique and error

 FA: only shared variance is analysed

 And the interpretation:

 PCA: components are empirically determined aggregates of the 

variables without presumed theory

 Labels are used but they are just a short hand for the component

 FA: factors are the underlying (latent) variables that CAUSE the 

covariation between observed variables

 Labels for factors are attempts to name these causal latent variables
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FA vs. PCA conceptually

Factor Analysis PCA

 Produces factors

 Factors cause variables

 Produces components

 Components are 

aggregates of the variables

FA

I1 I3I2

PCA

I1 I3I2

Conceptual FA and PCA
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FA vs. PCA conceptually

Factor Analysis PCA

 Analyzes only the variance 

shared among the 

variables

 common variance without 

error or unique variance

 “What are the underlying 

processes that could 

produce these 

correlations?”

 Analyzes all of the 

variance

 Just summarize empirical 

associations, very data 

driven

Example: Swiss data

 I believe that fertility in Switzerland is related to the type 

of job a person has and their religious beliefs surrounding 

family size

 BUT, I don‟t have data specifically on these things

 Instead I have variables I measured as “proxies” for these 

concepts:

 Agricultural employment,  level of education, aptitude for 

military service, percent catholic and infant mortality

 I think employment, education and military will group together 

to measure “Job Potential”

 Catholic and IMR will group together to measure “Beliefs”
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Factor Analysis in R
> sw.fa<-factanal(swiss2, factors=2, rotation="varimax")

> print(sw.fa, cutoff = .2, sort = TRUE)

Uniquenesses:

Agriculture      Examination        Education         Catholic Infant.Mortality

0.408            0.190            0.202            0.005            0.969 

Loadings:

Factor1 Factor2

Agriculture      -0.713   0.290 

Examination       0.778  -0.453 

Education         0.894         

Catholic                  0.984 

Infant.Mortality

Factor1 Factor2

SS loadings      1.940   1.287

Proportion Var 0.388   0.257

Cumulative Var 0.388   0.645

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 2.98 on 1 degree of freedom.

The p-value is 0.0843

The p-value for the 2 test 

(0.08) indicates that the 

hypothesis of perfect fit 

cannot be rejected

What did we learn?
Uniqueness:

Agriculture   Examination    Education     Catholic Infant.Mortality

0.408         0.190        0.202        0.005            0.969 

Factor1 Factor2

Agriculture      -0.713   0.290 

Examination       0.778  -0.453 

Education         0.894         

Catholic                  0.984 

Infant.Mortality

 There is too much unexplained (by other factors) variation in the Infant.Mortality measures 

to group it with other latent construct

 Agriculture, examination and education all appear to capture some underlying construct, 

perhaps on related to education and fertility (we‟ll call it Job Potential)

 Catholic appears to also capture some underlying latent structure, perhaps about beliefs 

regarding family size(so we‟ll call it Beliefs)              
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Which to use PCA vs. FA? 

Factor Analysis PCA

 Purpose is to identify the 

latent variables which are 

contributing to the 

common variance in a set 

of measured variables

 Purpose is to reduce the 

information in many 

variables into a set of 

weighted linear 

combinations of those 

variables


