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Applications of clustering
- Dissimilarity (similarity) of samples
 Clustering algorithms
K-means
Gaussian mixture model (GMM)
Hierarchical clustering
Spectral clustering



- Recall in the setting of classification and
regression, the training data are represented as
(i,Yi)i=1...n, the goal is to learn a function that
predicts Y given Z. (supervised learning)

- In the unsupervised setting, we only have
data (%;)i=1..n. Can we infer some
properties of the distribution of X?



Raw data is cheap but them can be costly.

The data lies in a high-dimensional space. We might find
some low-dimensional that might be sufficient to
describe the samples (next lecture).

In the early stages of an investigation, it may be valuable
to perform and gain some
insight into the nature or structure of data.

Cluster analysis is one method for unsupervised learning.



 Cluster analysis aims to discover clusters or groups of
samples such that samples within the same group are
more similar to each other than they are to the samples of
other groups.

A function between samples.

A to evaluate a groupings of samples into
clusters.

An that optimizes this loss function.

|




- Introduction
Unsupervised learning
What is cluster analysis?

- Dissimilarity (similarity) of samples
 Clustering algorithms
K-means
Gaussian mixture model (GMM)
Hierarchical clustering
Spectral clustering



Image Segmentation
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http://people.cs.uchicago.edu/~pff/segment/



Clustering Search Results

EisenLab

Commercial use of the ScanAlyze, Cluster and/or TreeView executable and/or ... Cluster and
TreeView are an integrated pair of programs for analyzing and ...
rana.lbl.gov/EisenSoftware.htm - 11k - Cached - Similar pages

Book results for cluster

The Linux Enterprise Cluster : build a highly ... - by Karl Kopper - 466 pages
Messier's Nebulae and Star Clusters - by Kenneth Glyn Jones - 456 pages

0: cluster

cluster analysis server cluster
cluster windows 2003 sal cluster oracle cluster

|c|uster Search |

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve |
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Clustering gene
expression data

Eisen et al, PNAS 1998



Vector quantization to
compress images

Bishop, PRML

Original image
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- The natural question now is: how should we measure the
dissimilarity between samples?

The clustering results depend on the choice of
dissimilarity.

Usually from matter consideration.
Need to consider the type of the features.
Quantitative, ordinal, categorical.

Possible to learn the dissimilarity from data for a
particular application (later).
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Most of time, data '; have measurements Lij on
7=1,...,p.

A common choice of dissimilarity function between samples is
the

D(zi,xir) = ||zi — zir|| = \/Zﬁzl(wij — Tir5)?

Clusters defined by Euclidean distance is invariant to
translations and rotations in feature space, but not invariant to
scaling of features.

One way to the data: translate and scale the
features so that all of features have zero mean and unit
variance.

BE CAREFUL! It is not always desirable. 18



Standardization not always
helpful
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- Represent the data set in terms of K clusters,
each of which is summarized by a prototype pg

- Each data is assigned to one of K clusters
Represented by responsibilities r;x € {0, 1} such
K

that >~ r;, = 1 for all data indices /
k=1

- Example: 4 data points and 3 clusters
/(10 0)
ray= |90
\0 0 1) 1



K-means: Idea

Loss function: the sum-of-squared
distances from each data point to its
assigned prototype (is equivalent to the
within-cluster scatter). _data

K

n
T=5 % rlle; — mell?
i=1

responsibilities prototypes
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. problem

If prototypes known, can assign responsibilities.

If responsibilities known, can compute optimal
prototypes.

- We minimize the loss function by an iterative
procedure.

- Other ways to minimize the loss function include
a merge-split approach.
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Fix values for ttr. and minimize J w.r.t. r;;
Assign each data point to its nearest prototype

Fix values for 7;x and minimize J w.r.t 1z
This gives
_ > i TikTi

> i Tik

Each prototype set to the mean of points in that
cluster.

Convergence guaranteed since there are a finite
number of possible settings for the responsibilities.

It can only find the local minima, we should start the
algorithm with many different initial settings.

Hk
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The Cost Function after each
E and M step
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In some cases it is known apriori from problem
domain.

Generally, it has to be estimated from data and
usually selected by some heuristics in practice.

Recall the choice of parameter K in nearest-neighbor.

The loss function J generally decrease with
iIncreasing K
Assume that K* is the right number

We assume that for K<K* each estimated cluster
contains a subset of true underlying groups

For K>K* some natural groups must be split

Thus we assume that for K<K* the cost function
falls substantially, afterwards not a lot more 30



How to Choose K?
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- The Gap statistic provides a more principled way of
setting K.
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- K-means converge to a local optimum.

 Clusters produced will depend on the
Initialization.
- Some heuristics

Randomly pick K points as prototypes.

A greedy strategy. Pick prototype: + 1so that it is
farthest from prototypes {1,...,%}
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Hard assignments of data points to clusters
Small shift of a data point can flip it to a different cluster

replace hard clustering of K-means with soft
probabilistic assignments (GMM)

Assumes spherical clusters and equal probabillities
for each cluster.
GMM

Clusters arbitrary with different values of K

As K is increased, cluster memberships change in an
arbitrary way, the clusters are not necessarily nested

hierarchical clustering

Sensitive to outliers.
use a different loss function.

Works poorly on non-convex clusters.
spectral clustering
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The Gaussian Distribution

« Multivariate Gaussian

1 1

) = —(r—p)i= N (z -
N%, ) (zwlzl)l/zexp{ NCRIDIEC u)}
mean covariance

« Maximum likelihood estimation

=15 (z—p)(z — )T
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Gaussian Mixture

. Linear combination of Gaussians
K

K
p(z) = > mpN(x|py, Tp) where Y m, =1, 0<m <1

parameters to be estimated
1
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Gaussian Mixture

To generate a data point:
first pick one of the components with probability 7T
then draw a sample L; from that component distribution

Each data point is generated by one of K components, a latent
variable z; = (z;1, - .., 2; ) is associated with each I;

Zle zir = 1 and p(zj, = 1) = mp

1

05 i {'r‘..{..%‘ ..,

05 1
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Synthetic Data Set Without Colours
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- Loss function: The negative log likelihood of the
data.
Equivalently, maximize the log likelihood.

n K
Inp(z|m, u, ) = Y In{ ) mN(zlug, Zp)}
i=1 k=1
-  Without knowing values of latent variables, we have
to maximize the incomplete log likelihood.

Sum over components appears inside the logarithm, no
closed-form solution.
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. Given the complete data set (x, 2) = (x;, 2;)i=1
Maximize the complete log likelihood.
n K
Inp(z, zlm, 1, 3) = > Y zipg{Inmy + InN (@] g, ) }
1=1k=1
Trivial closed-form solution: fit each component to the

U )

corresponding set of data points.

Observe that if all the 7 and Xk are equal, then the
complete log likelihood is exactly the loss function used in
K-means.

- Need a procedure that would let us optimize the incomplete
log likelihood by working with the (easier) complete log
likelihood instead.
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: for given parameter values we can
compute the expected values of the latent
variables (responsibilities of data points)

rie = E(zir) = p(zip = 1z, mp0, X)
p(zzk — 1)p(xz‘zzk — 17777,LL7 Z)

/ Zé(:]_ p(zzk — 1)p($2|zzk = 1,m,pu, Z)
N (24| ug, Zf)

S mN (g]ug, Zg)

Bayes rule =

Note that 71 € |0, 1] instead of 10,1} but we still
have 25:1 r;r. = 1 for all ¢
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o maximize the expected complete log
likelihood

n K
Ellnp(z, zlm, pw, D) = > Y rig{Inmp + InN (| pg, Zie) }
i=1k—1

- Parameter update:

. ZZ Tk = Zz Tik2Lq
Tk = n Zz Tk
- X rik (@ — pg) (@ — pg) T

k ——

>i Tik
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. lterate E-step and M-step until the log
likelihood of data does not increase any

more.
Converge to local optima.

Need to restart algorithm with different
initial guess of parameters (as in K-means).

« Relation to K-means
Consider GMM with common covariance.
>, =821
As §° — 0,7, — 0 or 1, two methods coincide. «





















Loss function:

Minimize sum of squared
Euclidean distance.
Can be optimized by an EM
algorithm.
E-step: assign points to
clusters.
M-step: optimize clusters.
Performs hard assignment
during E-step.
Assumes spherical clusters
with equal probability of a
cluster.

Loss function

Minimize the negative log-
likelihood.

EM algorithm

E-step: Compute posterior
probability of membership.

M-step: Optimize parameters.
Perform soft assignment
during E-step.
Can be used for non-spherical
clusters. Can generate clusters
with different probabilities.
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« K-means not robust.

Squared Euclidean distance gives greater weight
to more distant points.

- Only the dissimilarity matrix may be given
and not the attributes.

- Attributes may not be quantitative.
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Restrict the prototypes to one of the data points
assigned to the cluster.

Fix the prototypes and minimize J w.r.t. 7;%
Assigns each data point to its nearest prototype

Fix values for 7;z and minimize J w.r.t the
prototypes.
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Use L1 distance instead of squared
Euclidean distance.

Prototype is the median of points in a cluster.

Recall the connection between linear and L1
regression.
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- Organize the clusters in an hierarchical way
- Produces a rooted (binary) tree ( )

?tep 0 ?tep 1 ?tep 2 ?tep 3 ?tep 4 >a sglomera tive

e | | | | divisive
Step4 Step3 Step2 Stepl Step O
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- Two kinds of strategy

Recursively merge two groups with
the smallest between-cluster dissimilarity (defined later on).

In each step, split a least coherent cluster
(e.g. largest diameter); splitting a cluster is also a clustering
problem (usually done in a greedy way); than
bottom-up way.

?tep 0 ?tep 1 ?tep 2 ?tep 3 ?tep 4 ggglomera tive

< | | | divisive

| |
Step4 Step3 Step2 Stepl Step O
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- User can choose a cut through the hierarchy to

represent the most natural division into clusters

e.g, Choose the cut where dissimilarity
exceeds some threshold

tepl Step2 Ste :
?tepO ?ep ?ev ?te.’3 ?tep“ >agglomeratlve

(4> ab

>

S | | | | divisive
Step4 Step3 Step2 Stepl Step O
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- Have to measure the dissimilarity for two disjoint
groups G and H, D(G, H) is computed from
pairwise dissimilarities D(i,j) withi € G,j € H

tends to yield extended clusters.
Dsp(G, H) = minieg jen D(i,])
tends to yield round clusters.
Do (G, H) = maxieq, jen D(1,7)

tradeoff between them. Not invariant
under monotone increasing transform.

Dga(G,H) = "”LG;WJH Zz’EG,jEH D(i, )
58



6830x64 matrix of real numbers.

Rows correspond to genes,
columns to tissue samples.

Cluster can deduce
functions of unknown genes from
known genes with similar
expression profiles.

Cluster can
identify disease profiles: tissues
with similar disease should yield
similar expression profiles.

Gene expression matrix

SIDW299104
SIDW380102
SID73161
GNAL
H sapiensmRN
SID225394
RASGTPASE
SIDA7172

s
SIDW377402

MYBPROTO
ESTsChr. 1
SID277451

SIDWA470450
SIDWA487261
Homosapiens
SIDW376586
T
MITOCHOND
SID47116
ESTSChr.6
SIDW296310
SID488017
SID205167
ESTSChr.3
SID127504
SID259414

SIDW201620
SIDW279654
SIDW510534

SIDW203464
SID239012
SIDW205716
SIDW376776
HYPOTHETIC
WASWiskott
SIDW321854

D485148
SID207905
s
SIDW436740
SMALLNUC
ESTs
SIDW366311

SIDW357197
SID52979

SID:

250265
SIDWa08182
SID281508

SID42354

59



Example: Human Tumor Microarray Data

« 6830x64 matrix of real numbers

« GA clustering of the microarray data
Applied separately to rows and columns.
Subtrees with tighter clusters placed on the left.

" Produces a more informative picture of genes and samples than
]‘ | ‘r he randomly ordered rows and columns.

1—";51‘ Tl i

‘ | RN T

T AL et T ey
TT’T!F. I o "'7""!17'"“""1'7'E'f""""'"‘a-r. T

60



Introduction

Unsupervised learning

What is cluster analysis?

Applications of clustering
Dissimilarity (similarity) of samples
Clustering algorithms

K-means

Gaussian mixture model (GMM)

Hierarchical clustering

61



- Represent datapoints as the vertices V of a
graph G.

- All pairs of vertices are connected by an
edge E.
- Edges have weights W.

Large weights mean that the adjacent vertices are
very similar; small weights imply dissimilarity.
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- Clustering on a graph is equivalent to partitioning
the vertices of the graph.

« A loss function for a partition of V into sets A and B
cut(A, B) = Z Wyw

- |n a good partition, vertices in different partitions will

be dissimilar.
Mincut criterion: Find a partition A, B that minimizes

cut(A, B)
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- Mincut criterion ignores the size of the
subgraphs forme

« Normalized cut criterion favors balanced

partitions.

Neut(4,B) = —4B)  cul(4,B)

Z’U,EA,'UEV WU>U ZUEB,UEV WU,U
- Minimizing the normalized cut criterion exactly
Is NP-hard.
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- One way of approximately optimizing the normalized
cut criterion leads to spectral clustering.

- Spectral clustering

Find a new representation of the original data points.

Cluster the points in this representation using any
clustering scheme (say 2-means).

- The representation involves forming the row-
normalized matrix Y using the largest 2
eigenvectors of the matrix L

D = diag(W1) and L=D :WD 2
Wuo = exp(— || su — 85 [|* /(20%))
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Example: 2-means
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Example: Spectral clustering
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Suppose a user indicates certain objects are considered by him to be
“similar”:
(5,2;) € S if x; and z; are similar

Consider learning a dissimilarity that respects this subjectivity

D(z,x) = ||z — xj||la = /(z; — ;)T A(z; — ;)

If Ais , It corresponds to Euclidean distance

Generally, A parameterizes a family of

Leaning such a dissimilarity is equivalent to finding a of data by
replacing X with Al/zaj , and then applying the standard Euclidean

distance
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- A simple way to define a criterion for the
desired dissimilarity:

111%11 Z:‘.,-‘._..;, es |1Ti — ;] “
S.L. Z{.r!..r_, VED H.‘l',' o '1'\}" ‘.-1 > 1,
A= 0.

A convex optimization problem, could be

solved by gradient descent and iterative
projection

- For detalls, see [Xing, Ng, Jordan, Russell '03]
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Learning Dissimilarity
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- Hastie, Tibshirani and Friedman, The
Elements of Statistical Learning, Chapter 14

- Bishop, Pattern Recognition and Machine
Learning, Chapter 9
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