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Unsupervised Learning
• Recall in the setting of classification and

regression, the training data are represented as
       , the goal is to learn a function that

predicts      given    . (supervised learning)
• In the unsupervised setting, we only have

unlabelled data .  Can we infer some
properties of the distribution of X?
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Why do Unsupervised
Learning?
• Raw data is cheap but labeling them can be costly.

• The data lies in a high-dimensional space. We might find
some low-dimensional features that might be sufficient to
describe the samples (next lecture).

• In the early stages of an investigation, it may be valuable
to perform exploratory data analysis  and gain some
insight into the nature or structure of data.

• Cluster analysis is one method for unsupervised learning.
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What is Cluster Analysis?
• Cluster analysis aims to discover clusters or groups of

samples such that samples within the same group are
more similar to each other than they are to the samples of
other groups.
• A dissimilarity (similarity) function between samples.
• A loss function  to evaluate a groupings of samples into

clusters.
• An algorithm that optimizes this loss function.
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Image Segmentation

http://people.cs.uchicago.edu/~pff/segment/



8

Clustering Search Results
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Clustering gene
expression data

Eisen et al, PNAS 1998
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Vector quantization to
compress images

Bishop, PRML
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Dissimilarity of samples

• The natural question now is: how should we measure the
dissimilarity between samples?

• The clustering results depend on the choice of
dissimilarity.

• Usually from subject matter consideration.

• Need to consider the type of the features.

• Quantitative, ordinal, categorical.

• Possible to learn the dissimilarity from data for a
particular application (later).
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Dissimilarity Based on features
• Most of time, data       have measurements         on features

• A common choice of dissimilarity function between samples is
the Euclidean distance.

• Clusters defined by Euclidean distance is invariant to
translations and rotations in feature space, but not invariant to
scaling of features.

• One way to standardize the data: translate and scale the
features so that all of features have zero mean and unit
variance.

• BE CAREFUL! It is not always desirable.
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Standardization not always
helpful

Simulated data, 2-means
without standardization

Simulated data, 2-means
with standardization
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K-means: Idea
• Represent the data set in terms of K clusters,

each of which is summarized by a prototype
• Each data is assigned to one of K clusters

• Represented by responsibilities        such

that               for all data indices i

• Example: 4 data points and 3 clusters
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K-means: Idea

• Loss function: the sum-of-squared
distances from each data point to its
assigned prototype (is equivalent to the
within-cluster scatter).

prototypesresponsibilities

data
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Minimizing the loss Function
• Chicken and egg problem

• If prototypes known, can assign responsibilities.
• If responsibilities known, can compute optimal

prototypes.
• We minimize the loss function by an iterative

procedure.
• Other ways to minimize the loss function include

a merge-split approach.
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Minimizing the loss Function
• E-step: Fix values for       and minimize     w.r.t.

• Assign each data point to its nearest prototype
• M-step: Fix values for       and minimize    w.r.t

• This gives

• Each prototype set to the mean of points in that
cluster.

• Convergence guaranteed since there are a finite
number of possible settings for the responsibilities.

• It can only find the local minima, we should start the
algorithm with many different initial settings.
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The Cost Function after each
E and M step
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How to Choose K?
• In some cases it is known apriori from problem

domain.
• Generally, it has to be estimated from data and

usually selected by some heuristics in practice.
• Recall the choice of parameter K in nearest-neighbor.

• The loss function J generally decrease with
increasing K

• Idea: Assume that K* is the right number
• We assume that for K<K* each estimated cluster

contains a subset of true underlying groups
• For K>K* some natural groups must be split
• Thus we assume that for K<K* the cost function

falls substantially, afterwards not a lot more
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How to Choose K?

• The Gap statistic provides a more principled way of
setting K.

K=2
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Initializing K-means

• K-means converge to a local optimum.
• Clusters produced will depend on the

initialization.
• Some heuristics

• Randomly pick K points as prototypes.
• A greedy strategy. Pick prototype        so that it is

farthest from prototypes               .
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Limitations of K-means
• Hard assignments of data points to clusters

• Small shift of a data point can flip it to a different cluster
• Solution: replace hard clustering of K-means with soft

probabilistic assignments (GMM)
• Assumes spherical clusters and equal probabilities

for each cluster.
• Solution: GMM

• Clusters arbitrary with different values of K
• As K is increased, cluster memberships change in an

arbitrary way, the clusters are not necessarily nested
• Solution: hierarchical clustering

• Sensitive to outliers.
• Solution: use a different loss function.

• Works poorly on non-convex clusters.
• Solution: spectral clustering
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The Gaussian Distribution
• Multivariate Gaussian

• Maximum likelihood estimation
mean covariance
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Gaussian Mixture
• Linear combination of Gaussians

where

parameters to be estimated
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Gaussian Mixture
• To generate a data point:

• first pick one of the components with probability
• then draw a sample       from that component distribution

• Each data point is generated by one of K components, a latent
variable      is associated with each
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Synthetic Data Set Without Colours
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• Loss function: The negative log likelihood of the
data.
• Equivalently, maximize the log likelihood.

• Without knowing values of latent variables, we have
to maximize the incomplete log likelihood.
• Sum over components appears inside the logarithm, no

closed-form solution.

Gaussian Mixture
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Fitting the Gaussian Mixture
• Given the complete data set

• Maximize the complete log likelihood.

• Trivial closed-form solution: fit each component to the
corresponding set of data points.

• Observe that if all the      and        are equal, then the
complete log likelihood is exactly the loss function used in
K-means.

• Need a procedure that would let us optimize the incomplete
log likelihood by working with the (easier) complete log
likelihood instead.
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The Expectation-Maximization
(EM) Algorithm
• E-step: for given parameter values we can

compute the expected values of the latent
variables (responsibilities of data points)

• Note that                      instead of        but we still
have

Bayes rule
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The EM Algorithm

• M-step: maximize the expected complete log
likelihood

• Parameter update:
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The EM Algorithm
• Iterate E-step and M-step until the log

likelihood of data does not increase any
more.
• Converge to local optima.
• Need to restart algorithm with different

initial guess of parameters (as in K-means).

• Relation to K-means
• Consider GMM with common covariance.

• As              , two methods coincide.
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K-means vs GMM
• Loss function:

• Minimize sum of squared
Euclidean distance.

• Can be optimized by an EM
algorithm.
• E-step: assign points to

clusters.
• M-step: optimize clusters.
• Performs hard assignment

during E-step.
• Assumes spherical clusters

with equal probability of a
cluster.

• Loss function
• Minimize the negative log-

likelihood.
• EM algorithm

• E-step: Compute posterior
probability of membership.

• M-step: Optimize parameters.
• Perform soft assignment

during E-step.
• Can be used for non-spherical

clusters. Can generate clusters
with different probabilities.
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• K-means not robust.
• Squared Euclidean distance gives greater weight

to more distant points.
• Only the dissimilarity matrix may be given

and not the attributes.
• Attributes may not be quantitative.

K-medoids
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K-medoids
• Restrict the prototypes to one of the data points

assigned to the cluster.
• E-step: Fix the prototypes and minimize     w.r.t.

• Assigns each data point to its nearest prototype
• M-step: Fix values for        and minimize     w.r.t  the

prototypes.
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K-medoids: Example

• Use L1 distance instead of squared
Euclidean distance.

• Prototype is the median of points in a cluster.
• Recall the connection between linear and L1

regression.
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Hierarchical Clustering
• Organize the clusters in an hierarchical way
• Produces a rooted (binary) tree (dendrogram)
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Hierarchical Clustering
• Two kinds of strategy

• Bottom-up (agglomerative): Recursively merge two groups with
the smallest between-cluster dissimilarity (defined later on).

• Top-down (divisive): In each step, split a least coherent cluster
(e.g. largest diameter); splitting a cluster is also a clustering
problem (usually done in a greedy way); less popular than
bottom-up way.
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Hierarchical Clustering
• User can choose a cut through the hierarchy to

represent the most natural division into clusters
• e.g, Choose the cut where intergroup dissimilarity

exceeds some threshold
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Hierarchical Clustering

• Have to measure the dissimilarity for two disjoint
groups G and H,              is computed from
pairwise dissimilarities

• Single Linkage: tends to yield extended clusters.

• Complete Linkage: tends to yield round clusters.

• Group Average: tradeoff between them. Not invariant
under monotone increasing transform.
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Example: Human Tumor Microarray Data

• 6830×64 matrix of real numbers.
• Rows correspond to genes, 

columns to tissue samples.
• Cluster rows (genes) can deduce 

functions of unknown genes from 
known genes with similar 
expression profiles.

• Cluster columns (samples) can 
identify disease profiles: tissues 
with similar disease should yield 
similar expression profiles.

Gene expression matrix
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Example: Human Tumor Microarray Data

• 6830×64 matrix of real numbers
• GA clustering of the microarray data

• Applied separately to rows and columns.
• Subtrees with tighter clusters placed on the left.
• Produces a more informative picture of genes and samples than

the randomly ordered rows and columns.
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Spectral Clustering

• Represent datapoints as the vertices V of a
graph G.

• All pairs of vertices are connected by an
edge E.

• Edges have weights W.
• Large weights mean that the adjacent vertices are

very similar; small weights imply dissimilarity.
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Graph partitioning
• Clustering on a graph is equivalent to partitioning

the vertices of the graph.
• A loss function for a partition of V into sets A and B

• In a good partition, vertices in different partitions will
be dissimilar.
• Mincut criterion: Find a partition            that minimizes
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• Mincut criterion ignores the size of the
subgraphs formed.

• Normalized cut criterion favors balanced
partitions.

• Minimizing the normalized cut criterion exactly
is NP-hard.

Graph partitioning
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Spectral Clustering
• One way of approximately optimizing the normalized

cut criterion leads to spectral clustering.
• Spectral clustering

• Find a new representation of the original data points.
• Cluster the points in this representation using any

clustering scheme (say 2-means).
• The representation involves forming the row-

normalized matrix     using the largest 2
eigenvectors of the matrix
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Example: 2-means
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Example: Spectral clustering



68

Learning Dissimilarity
• Suppose a user indicates certain objects are considered by him to be

“similar”:

• Consider learning a dissimilarity that respects this subjectivity

• If A is identity matrix, it corresponds to Euclidean distance
• Generally, A parameterizes a family of Mahalanobis distance

• Leaning such a dissimilarity is equivalent to finding a rescaling of data by

replacing      with          , and then applying the standard Euclidean

distance
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Learning Dissimilarity

• A simple way to define a criterion for the
desired dissimilarity:

• A convex optimization problem, could be
solved by gradient descent and iterative
projection

• For details, see [Xing, Ng, Jordan, Russell ’03]
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Learning Dissimilarity
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