O plano projetivo orientado

O plano projetivo orientado \mathbb{T}^2 consiste de pontos, retas, e uma relação ternária entre eles:

Pontos: triplas
$$[w, x, y]$$
 exceto $[0, 0, 0]$ sendo que $[w', x', y']$ e $[w'', x'', y'']$ são o mesmo ponto se e somente se existe $\alpha > 0$ tal que $w'' = \alpha w', x'' = \alpha x'$ e $y'' = \alpha y'.$ $\neg [w, x, y] = [-w, -x, -y] \neq [w, x, y]$

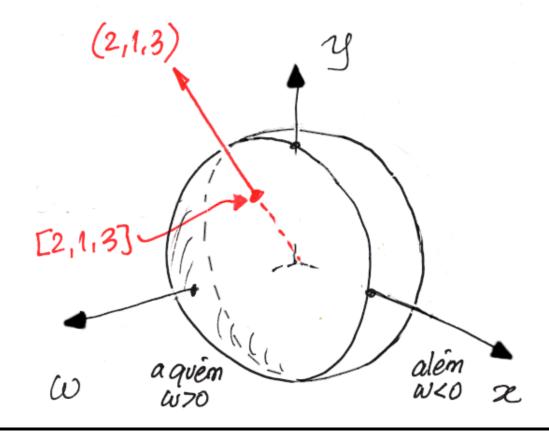
| Retas: triplas $\langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle$ exceto $\langle 0, 0, 0 \rangle$ sendo que $\langle \mathcal{W}', \mathcal{X}', \mathcal{Y}' \rangle$ e $\langle \mathcal{W}'', \mathcal{X}'', \mathcal{Y}'' \rangle$ são a mesma reta se e somente se existe $\alpha > 0$ tal que | existe $\alpha > 0$ tal que $w'' = \alpha w', x'' = \alpha x' \in y'' = \alpha y'. \quad | \mathcal{W}'' = \alpha \mathcal{W}', \mathcal{X}'' = \alpha \mathcal{X}' \in \mathcal{Y}'' = \alpha \mathcal{Y}'.$ $\neg [w, x, y] = [-w, -x, -y] \neq [w, x, y] \mid \neg \langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle = \langle -\mathcal{W}, -\mathcal{X}, -\mathcal{Y} \rangle \neq \langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle$

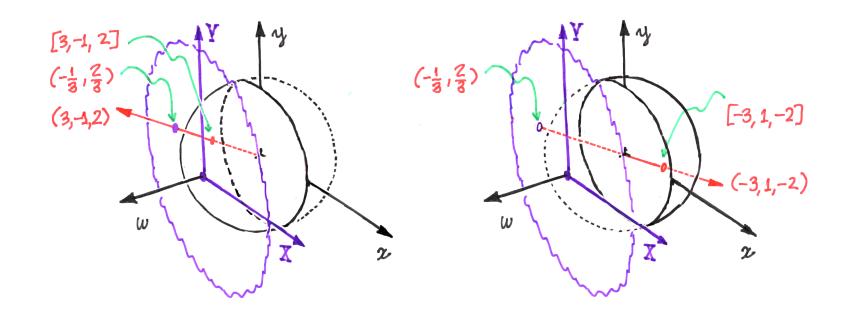
Posição ponto-reta:

$$[w, x, y] \diamond \langle \mathcal{W}, \mathcal{X}, \mathcal{Y} \rangle = \operatorname{sgn}(\mathcal{W}w + \mathcal{X}x + \mathcal{Y}y)$$

Toda a geometria projetiva orientada segue destas definições.

$$[w, x, y] \quad \leftrightarrow \quad \frac{(w, x, y)}{\sqrt{w^2 + x^2 + y^2}}$$





Segmentos

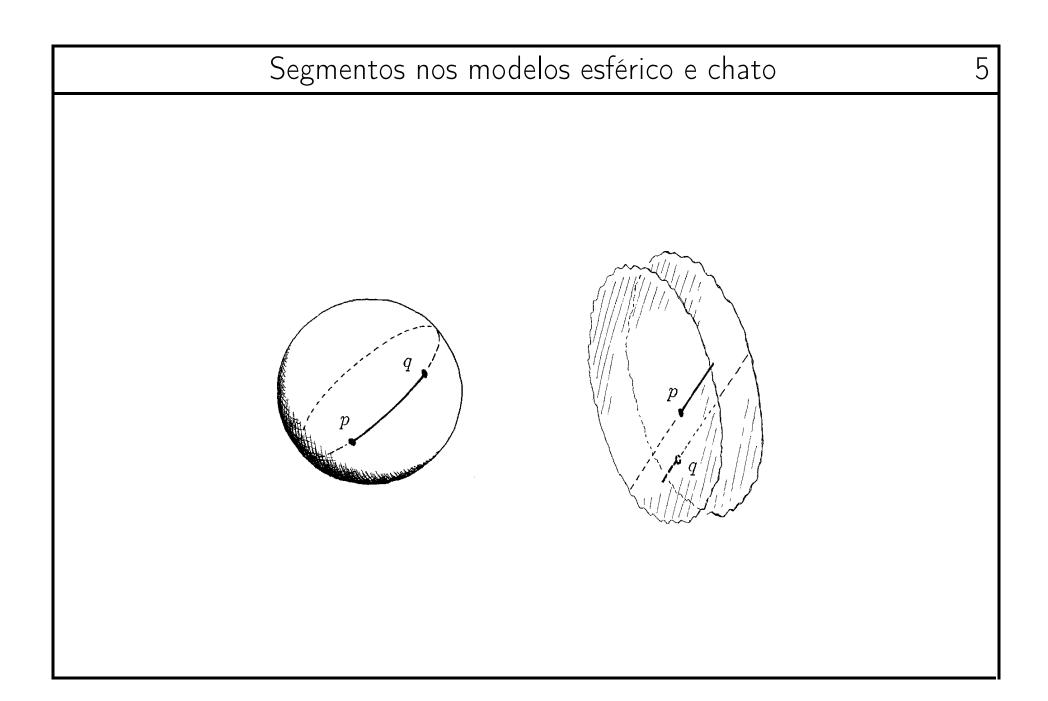
4

Sejam

$$p_1 = [w_1, x_1, y_1] p_2 = [w_2, x_2, y_2]$$

O segmento p_1p_2 é o conjunto de pontos

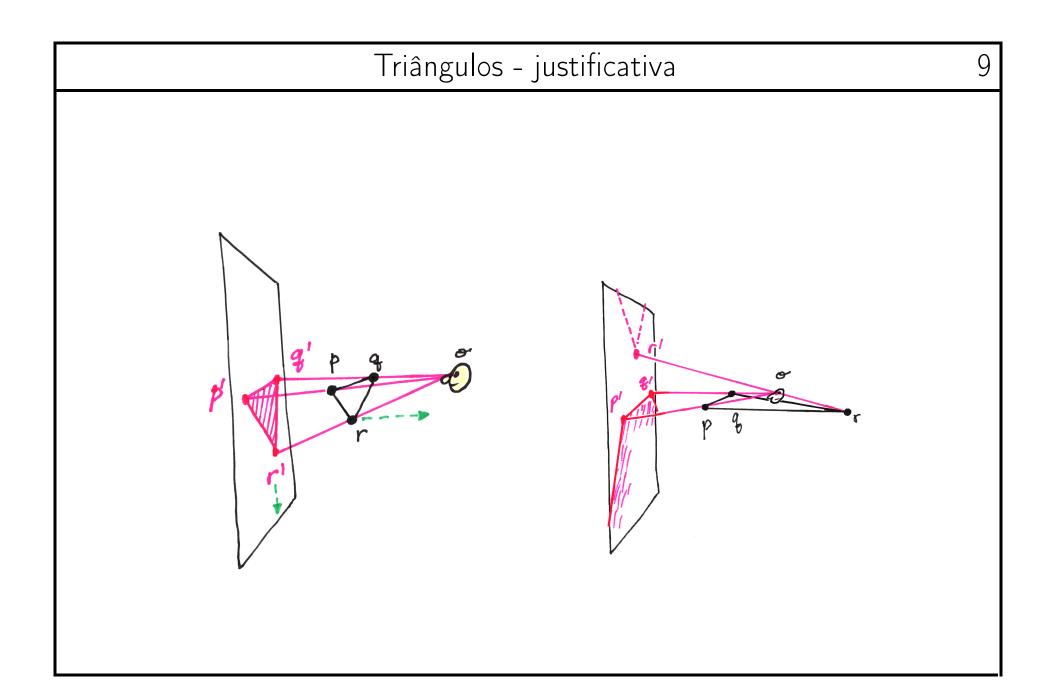
```
S(p_1, p_2) = \{ [\alpha w_1 + \beta w_2, \alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha y_1 + \beta y_2, \alpha y_1 + \beta y_2 \}
\vdots
\alpha, \beta \ge 0 \land \alpha + \beta > 0 
 \alpha + \beta > 0 
 \}
```



- \bullet Os pontos p_1 e p_2 pertencem a $S(p_1, p_2)$.
- ullet O segmento $S(p_2, p_1)$ é idêntico ao segmento $S(p_1, p_2)$.
- \bullet Se $p_1=p_2$, o segmento $S(p_1,p_2)$ tem apenas um ponto, $\{p_1\}.$
- Se $p_1 = \neg p_2$, o segmento $S(p_1, p_2)$ não está definido.
- Todos os pontos do segmento $S(p_1, p_2)$ estão todos sobre a reta $p_1 \vee p_2$.
- Se u e v pertencem ao segmento $S(p_1, p_2)$, então S(u, v) está contido em $S(p_1, p_2)$.

Dados três pontos $p_1 = [w_1, x_1, y_1], p_1 = [w_2, x_2, y_2]$ e $p_3 = [w_3, x_3, y_3]$, o triângulo é o ocujunto de pontos

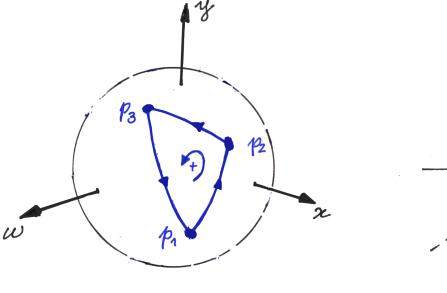
```
S(p_1, p_2, p_3) = \{ [\alpha w_1 + \beta w_2 + \gamma w_3, \alpha x_1 + \beta x_2 + \gamma x_3, \alpha y_1 + \beta y_2 + \gamma y_3 ] 
\vdots
\alpha, \beta, \gamma \ge 0 \land \alpha + \beta + \gamma > 0 \}
```

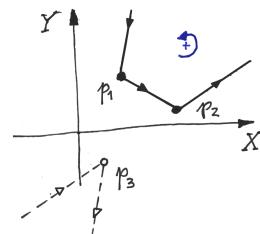


- \bullet O triângulo $S(p_1, p_2, p_3)$ não depende da ordem dos pontos.
- Os lados de $S(p_1, p_2, p_3)$ são $S(p_1, p_2)$, $S(p_2, p_3)$, e $S(p_3, p_1)$,
- $\bullet S(p_1, p_1, p_2)$ é o segmento $S(p_1, p_2)$.
- $S(p_1, p_1, p_1)$ é o conjunto $\{p_1\}$.
- $S(p_1, p_2, p_3)$ é indefinido se e somente se um dos lados contém o antípoda do vértice oposto.
- Se $u, v \in S(p_1, p_2, p_3)$ então $S(u, v) \subseteq S(p_1, p_2, p_3)$.
- Se $u, v, w \in S(p_1, p_2, p_3)$ então $S(u, v, w) \subseteq S(p_1, p_2, p_3)$.

Dados três pontos $p_1 = [w_1, x_1, y_1], p_1 = [w_2, x_2, y_2]$ e $p_3 = [w_3, x_3, y_3]$, sua *orientação* é o sinal do determinante

$$\Delta(p_1, p_2, p_3) = \operatorname{sgn} \begin{vmatrix} w_1 & x_1 & y_1 \\ w_2 & x_2 & y_2 \\ w_3 & x_3 & y_3 \end{vmatrix}$$
$$= \operatorname{sgn}(w_1 x_2 y_3 + x_1 y_2 w_3 + y_1 w_2 x_3 - y_1 x_2 w_3 - x_1 w_2 y_3 - w_1 y_2 x_3)$$





$$\Delta(p_2, p_1, p_3) = \Delta(p_3, p_2, p_1) = \Delta(p_1, p_2, p_3) = \Delta(p_1, p_3, p_2) = \Delta(p_1, p_2, p_3) = \Delta(p_1, p_2, p_3) = -\Delta(p_1, p_2, p_3)$$

$$\Delta(p_1, p_1, p_3) =$$

 $\Delta(p_1, p_2, p_2) =$
 $\Delta(p_1, p_2, p_1) = 0$

Os três pontos são colineares se e somente se $\Delta(p_1, p_2, p_3) = 0$

$$\Delta(p_1, p_2, p_3) = \operatorname{sgn} \begin{vmatrix} w_1 & x_1 & y_1 \\ w_2 & x_2 & y_2 \\ w_3 & x_3 & y_3 \end{vmatrix}$$

$$= \operatorname{sgn} \left(+w_1 \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} - x_1 \begin{vmatrix} w_2 & y_2 \\ w_3 & y_3 \end{vmatrix} + y_1 \begin{vmatrix} w_2 & x_2 \\ w_3 & x_3 \end{vmatrix} \right)$$

Portanto

$$\Delta(p_1, p_2, p_3) = p_1 \diamond (p_2 \vee p_3)$$

$$= p_2 \diamond (p_3 \vee p_1)$$

$$= p_3 \diamond (p_1 \vee p_2)$$