- 1. 248295 Descreva a potência genérica \mathcal{R}^n para $n \geq 2$ da relação $\mathcal{R} = \{(x,y) \mid x,y \in \mathbb{N} \land ((y=x+2) \lor (x=y+2))\}.$
- 2. 159955 Para este exercício, vamos definir uma fórmula algébrica como uma fórmula que usa apenas variáveis, constantes inteiras, parênteses, e as operações '+', '-', '×' (multiplicação de números reais), e '/' (divisão de números reais). Definimos também um polinômio como sendo uma fórmula algébrica que não usa a divisão '/'. Prove que toda fórmula algébrica \mathcal{F} tem uma fórmula equivalente \mathcal{F}' que é ou um polinômio, ou o quociente de dois polinômios. Dica: use indução sobre o número de operações da fórmula.

3. 160250

- a) Determine a potência \mathcal{R}^n da relação $\mathcal{R} = \{(1, 2), (2, 3), (3, 4), (4, 1), (5, 5)\}$ para cada n em $\{1, 2, 3, 4, 5\}$.
- b) Encontre uma relação S sobre o conjunto $A = \{1, 2, 3, 4, 5\}$ tal que S, S^2 , S^3 , S^4 são distintas, mas $S^5 = S$.
- c) Descreva a relação \mathcal{S}^{237} onde \mathcal{S} é a relação do item (b).
- 4. 257337 Seja $\mathbb{P} = \mathbb{N} \setminus \{0\}$ o conjunto dos inteiros positivos. Quais das afirmações abaixo são verdadeiras? Justifique.
 - a) $(\forall x \in \mathbb{P}) (\exists y \in \mathbb{P}) (\forall z \in \mathbb{P}) z + x y \le z$
 - b) $(\forall x \in \mathbb{P}) (\forall z \in \mathbb{P}) (\exists y \in \mathbb{P}) z + x y \le z$
 - c) $(\exists y \in \mathbb{P}) (\forall x \in \mathbb{P}) (\forall z \in \mathbb{P}) z + x y \le z$
 - d) $(\forall z \in \mathbb{P}) (\exists y \in \mathbb{P}) (\forall x \in \mathbb{P}) z + x y \le z$
- 5. 086062 Quais dos sequintes pares de fórmulas do cálculo proposicional são logicamente equivalentes:
 - a) $(p \to q) \to r$ e $r \lor (\neg q \land p)$
 - b) $p \oplus q \oplus (p \land q)$ e $p \lor q$
 - c) $(p \leftrightarrow q) \leftrightarrow r$ e $p \leftrightarrow (q \leftrightarrow r)$
- 6. **139035** Seja $A = \{1, 2, 3, 4\}$ e $\mathcal{R} = \{(1, 2), (2, 3), (3, 4)\}$. Determine:
 - a) O fecho reflexivo e simétrico de \mathcal{R} .
 - b) O fecho reflexivo e transitivo de \mathcal{R} .

- c) O fecho simétrico e transitivo de \mathcal{R} .
- 7. 140712 Seja \mathcal{R} a relação $\{(1,2),(2,3),(3,1),(4,5),(5,4)\}$. Prove, por indução, que $\mathcal{R}^{-3n} = \mathcal{R}^{3n}$ para todo natural n.
- 8. 155887 Seja A o conjunto de todas as palavras finitas e não vazias formadas com as letras $\{A, B, \dots, Z\}$; isto é,

$$A = \{A, B, \dots, Z, AA, AB, \dots, CTHULHU, \dots\}$$

Seja $\mathcal R$ a relação sobre A tal que x $\mathcal R$ y se e somente se x e y diferem apenas pela troca de duas letras consecutivas. Ou seja PINHO $\mathcal R$ PNIHO mas SOPA $\mathcal R$ SAPO e SAPO $\mathcal R$ PAPO.

Descreva o fecho transitivo de \mathcal{R} .

- 9. **168838** Mostre que, se \mathcal{R} é uma relação irreflexiva mas simétrica, \mathcal{R}^{2n} é reflexiva sobre $\text{Dom}(\mathcal{R}) \cup \text{Img}(\mathcal{R})$, para todo n natural.
- 10. 169786 Diz-se que uma relação \mathcal{R} sobre um conjunto A é uma involução sobre A se e somente se $\mathcal{R}^2 = \mathcal{I}_A$. Descreva a estrutura geral de tal relação.