

Instituto de Computação Unicamp

MC522 - Organização de Computadores 2º Semestre de 2003

2ª Lista de Exercícios

- 1. Projete um circuito que efetue a multiplicação de dois números binários sem sinal.
- 2. Projete um circuito que efetue a multiplicação de dois números binários com sinal.
- 3. Projete um circuito que efetue a soma de dois dígitos BCD (4 bits).
- 4. Considere a função $f(w_1, w_2, w_3) = \bar{w}_1 \bar{w}_2 + \bar{w}_2 \bar{w}_3 + w_1 w_2 w_3$. Projete um circuito que implemente f usando o menor número possível de multiplexadores 2X4. Mostre a tabela verdade de cada multiplexador.
- 5. Considere a função $f(w_1, w_2, w_3, w_4) = \sum m(0, 1, 3, 6, 8, 9, 14, 15)$. Projete um circuito que implemente f usando o menor número possível de multiplexadores 3x8. Mostre a tabela verdade de cada multiplexador.
- 6. Mostre o circuito que usando somente portas NAND implemente o flip flop SR com clock (gated SR latch).
- 7. Dado um sinal de clock de 100-MHz, projete um circuito que usando flip-flops tipo D produza sinais de clock de 50Mhz e 25Mhz. Desenhe o diagrama de tempo dos três sinais de clock. Considere um atraso razoável e seja coerente.
- 8. Mostre como um flip-flop JK pode ser implementado usando um flip-flop T e outras portas lógicas.
- 9. Projete um contador síncrono (na direção positiva apenas) de 4 bits utilizando apenas flip-flops tipo T.
- 10. O circuito da Figura 1 abaixo lembra muito um contador. Qual é a seqüência de números binários que ele conta?

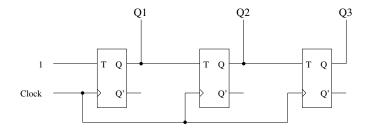


Figura 1: Circuito do problema 10.

- 11. Usando uma máquina de Moore, com uma única entrada e uma única saída, projete um diagrama e tabela de estados mínimos que gera uma saída igual a 1 caso detecte as seqüências 110 ou 101 na entrada. Atenção, sua máquina deve funciona também para o caso de superposição destas seqüências.
- 12. Repita o problema 11, mas agora usando uma máquina de Mealy.
- 13. Usando flip-flops tipo D, implemente uma máquina de estados finita que siga a tabela de estados, já determinados, da Figura 2.

Estado	Próximo Estado		
Atual	w=0	w=1	Saída
y_2y_1	Y_2Y_1	Y_2Y_1	z
0.0	1 0	1 1	0
0.1	0 1	0 0	0
10	1 1	0 0	0
1 1	1 0	0 1	1

Figura 2: Tabela de estados para problemas 13 e 14.

- 14. Repita o problema 13, utilizando flip-flops JK.
- 15. Descubra a tabela de estados do circuito da Figura 3 . O que este circuito faz?

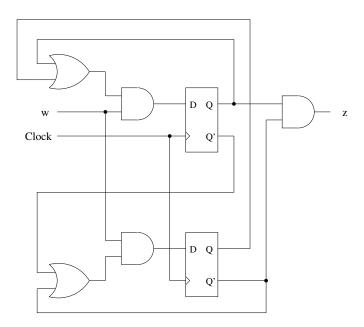


Figura 3: Circuito sequêncial do problema 15.