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Abstract

This paper presents a novel segmentation method to assist the rigging of articulated bodies. The method computes

a coarse-to-fine hierarchy of segments ordered by the level of detail. The results are invariant to deformations, and

numerically robust to noise, irregular tessellations, and topological short-circuits. The segmentation is based on

two key ideas. First, it exploits the multiscale properties of the diffusion distance on surfaces, and then it introduces

a new definition of medial structures, composing a bijection between medial structures and segments. Our method

computes this bijection through a simple and fast iterative approach, and applies it to triangulated meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Character articulation is a fundamental and time consuming
task in animation systems. The rigging of a 3D character can
be effectively oriented by segmentation methods. This ap-
peals to the fact that the segmentation identifies joints and
meaningful regions. Furthermore, the segmentation can also
provide different levels of details. In the coarser levels, the
segments indicate functional regions, such as arms and legs.
In the finer levels, the segments correspond to rigid compo-
nents, approximating the bones of a skeleton.

In this paper, we present a novel method to segment arti-
culated bodies. Our approach recovers the articulation struc-
ture of the model, resulting in a coarse-to-fine hierarchy
of segments. The method is based on two main concepts.
First, we investigate a family of metrics called diffusion dis-

tance [CL06]. The diffusion distance defines a multi-scale
metric with nice properties, such as robustness to noise and
topologic events, enhancement of concave regions, and in-
variance to isometric deformations. Second, we introduce a
generalization of the medial structures [MPS∗04]. At each
level of detail, we decompose the model computing a bijec-
tion between the medial structures and the segments.

1.1. Related Work

Mesh segmentation has become a commonplace in many
graphics applications, ranging from simplification, para-
meterization, and shape matching. For surveys, see [Sha04,

AKM∗06, Sha06]. Here, we focus on the problem of seg-
menting articulated bodies into meaningful regions.

Many segmentation methods are based on cognition stu-
dies. Cognition researches [HR84, HS97] have shown that
the human vision breaks a shape in salient parts, setting
the boundaries in concave regions. To reproduce the cogni-
tion studies, some methods incorporate concavity measures
into clustering techniques [MW99, STK02, PKA03, LZ04].
In particular, Katz and Tal [KT03] extracted skeletons us-
ing a fuzzy clustering with graph cuts and a metric that
combines geodesic distances and dihedral angles. Lee et
al. [LLS∗05] also exploited cognition studies and presented
a semi-automatic detection of salient contours in 3D models.
Their method applies geometric-snakes over the points with
minimum curvature values.

Local attributes, such as dihedral angles and curvatures,
are sensitive to noise and to mesh resolution. As a conse-
quence, the previous methods suffer from numerical ins-
tability. In our approach, we use the diffusion distance to
achieve the cognition results with numerical robustness. By
construction, the diffusion distance emphasizes the conca-
vities of a model, measuring the rate of Brownian paths bet-
ween points (Sec. 2.1). This averaging scheme also reduces
the interference of noise and sampling.

Some segmentation methods identify meaningful regions
through the detection of geometric features. Hilaga et
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al. [HSKK01] defined a feature point as a local maximum
of the Average Geodesic Distance function (AGD). Geome-
trically, the AGD measures how isolated a surface point is.
In [KLT05], the AGD features were used as anchor points
of a spherical mirroring to extract the core component of
3D models. In [ZMT05], the segments were decomposed
through the analysis of the area variation around the AGD

features. Zhang and Liu [ZL05, LZ07] computed meaning-
ful segments recursively, using a linear search with salient
cut metrics from each extracted feature point. In [ZL05], the
feature points were estimated approximating the AGD by a
small set of reference faces. In [LZ07], the feature selection
was improved via spectral embedding and contour analysis.

Despite the fact that feature points identify segments, a
segment may not have a feature point. Therefore, feature-
based methods may fail, and thus create an incomplete hi-
erarchy of details. We avoid these problems introducing a
new structure to identify the segments at each level of detail.
Our structure is a generalization of the medial structures pro-
posed by [MPS∗04]. Originally, the medial structures were
computed as loops in tubular regions. Here, we define a me-
dial structure as the set of points with the smallest average
of the diffusion distance (Sec 2.2).

Recent techniques approximate meaningful segments by
convex components. In [LKA06], an iterative approach
generated hierarchical segmentations and multi-resolution
skeletons using the approximate convex decomposition
method [LA04]. Kreavoy et al. [KJS07] used segmentation
to create a model composition system from interchangeable
components. The models were decomposed into a hierarchy
of nearly convex components using a variational decomposi-
tion method [KS06]. Because the convex segments approxi-
mate rigid components, the hierarchy of segments is built in
a bottom-up fashion. This requires the computation of finer
segmentations and also a merging step. In our approach, we
compute a coarse-to-fine hierarchy of details.

Example-based approaches [MG03,AKP∗04,JT05,SY07]
learn skeletons and skinning weights from a set of reference
poses. These methods decompose the poses simultaneously,
and guarantee results consistent to deformations. Our algo-
rithm computes consistent segments from a single pose of
the model. We achieve consistency because the diffusion dis-
tance is invariant to isometric deformations. In [Rus07], a
variation of the diffusion distance was introduced as an in-
variant shape descriptor and, combined with k-means clus-
tering, it also generated consistent segments. While this des-
criptor embeds the surface in an unique level of detail, we
exploit the scale space offered by the diffusion distance.

At last, Shapira et al. [SSCO08] presented a segmentation
algorithm based on the Shape Diameter Function (SDF).
The SDF links local shape volumes to the surface by mea-
suring a shape-diameter. The SDF is oblivious to any defor-
mation that does not alter the volumetric shape locally, and,
therefore, it is appropriated for consistent segmentation. The

segments are computed using a Gaussian mixture model to
cluster the histogram of SDF values. The number of Gaus-
sian indicates the level of the segmentation hierarchy, and
not the number of segments. Consequently, the segments at
one level are independent from previous levels, and may not
compose a hierarchical tree.

1.2. Contributions

The main contributions of our work are:

• We present a novel segmentation method for articulated
bodies. Our results are robust to noise and mesh tessella-
tion, and consistent to isometric deformations.

• We review the diffusion distance on surfaces, and discuss
its benefits for the segmentation problem.

• We introduce a new definition of medial structures, and
formulate a bijection between them and the segments.

• We describe a simple iterative algorithm to compute the
bijection between segments and medial structures, reco-
vering the hierarchy of segments of articulated bodies.

2. Theory

In the following, we present the two essential concepts for
our segmentation method. First, we review the family of dif-
fusion distances, and discuss some relevant properties. After,
we introduce the definition of medial structures, and describe
the bijection between segments and medial structures.

2.1. Diffusion Distance

Diffusion distance was first presented for stochastic dynamic
systems, and applied to the problem of dimensionality reduc-
tion and data parameterization [CL06]. In this context, given
a Markov Random Field defined on a data set X , the diffu-
sion distance between two points x and y at a time step t is
given by:

D2
t (x,y) =

Z

X
(pt(x,z)− pt(y,z))

2
dµ(z), (1)

where pt(·, ·) is the probability to walk between two points
in less than or equal to t steps, and µ(·) is the distribution of
points in X .

The diffusion distance indicates the rate of connectivity
between the points of X . This measure will be small if there
are a lot of random walks of time less than or equal to t,
and it will be large if, on the contrary, the number of random
walks is small.

In this work, we restrict the data set to compact
and continuous two-dimensional manifold M (boundaries
are allowed). It is well-known in stochastic processes
(c.f. [Bas95]) that, in the scaling limit, random walks on M
are equivalent to Brownian paths, and the probability func-
tion pt(·, ·) converges to the heat kernel Kt(·, ·) of M. In this
sense, the diffusion distance between points of M measures
the rate of Brownian paths at the time scale t,

D2
t (x,y) =

Z

M
(Kt(x,z)−Kt(y,z))

2
dz. (2)
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Figure 1: Consistent segmentations in successive scales of seven poses of a scanned human model [AKP∗04]. The images

show the segments of the first and second levels of details, respectively.

The averaging scheme introduced by the diffusion dis-
tance provides desirable properties for the segmentation
problem. First of all, it makes the measures robust to noise
and to topological short-circuits. Unlike geodesic distances,
the diffusion distance increases greatly through shrunken re-
gions, and then highlights concavities of M (Fig. 3).

Another advantage of the diffusion distance is the multi-
scale analysis provided by the time parameter t, expanding
the diffusion distance to a family of metrics. In long time
intervals, the diffusion distance evaluates global structures
of M, and in shorter time intervals, the measures become
local and sensitive to small features.

The heat kernel Kt(·, ·) is determined by the eigenvalues
and eigenfunctions of the laplacian operator,

Kt(x,y) =
∞

∑
k=0

e
−λktφk(x)φk(y). (3)

In surfaces (or higher dimension manifolds), the laplacian
is generalized by the Laplace-Beltrami operator. Its eigenva-
lues compose an increasing sequence 0 = λ0 < λ1 ≤ . . . ↑∞,
and its eigenfunctions φk are functions on M with increasing
oscillations. Each pair (λk, φk) corresponds to a solution of
the stationary Helmholtz equation,

∆φk = −λkφk. (4)

The Laplace-Beltrami operator is invariant to isometries.
This means that, if M is deformed preserving the geodesic
distances, the Laplace-Beltrami operator will not change. As
a consequence, the pairs (λk,φk), the heat kernel, and the
family of diffusion distances are also invariant to isometries.
This property enables our method to segment different poses
of an object in a consistent way.

Following [CL06], we can replace Eq. 3 into Eq. 2, and

rewrite the diffusion distance in term of diffusion maps,

Φt(x) =
(

· · ·e−λktφk(x) · · ·
)T

. (5)

Then, the diffusion distance becomes an euclidian distance
between vectors of infinity dimension,

D2
t (x,y) = ‖Φt(x)−Φt(y)‖

2 =
∞

∑
k=1

e
−2λkt(φk(x)−φk(y))2.

(6)
Since the eigenvalues {λk} increase rapidly, we can truncate
the diffusion maps and approximate the diffusion distance
using just the first terms of the sum. Henceforth, we refer to
Φt(·) as the vector with e−λkt > δ, where δ = 0.1.

2.2. Medial Structure

Now, we discuss how to identify the meaningful components
of a region R ⊂ M. We address this issue using the diffu-
sion distance to formulate a bijection between the medial
structures and the segments of R . In one way of the bijec-
tion, we compute the medial structures from the segments of
R. In the opposite way, we compute the segments from the
medial structures.

In the remaining, we refer tR as the time scale of the diffu-
sion distance sufficient to emphasize the global concavities
of R, filtering its small features.

Segments → Medial Structures

Given a segment Ri ⊂R, we characterize Ri by its medial
structure. In [MPS∗04], medial structures were introduced
as loops equidistant to the boundaries of tubular regions.
Here, we set a medial structure as the most distant points
from the concavities of the segment. Note that medial struc-
tures differ from medial axis, since the former is medial with
respect to the segments.
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To compute the medial structure of Ri, we evaluate the
Average Diffusion Distance function (ADD):

ADD(x) =
1

ARi

Z

Ri

D2
tR(x,y)dy. (7)

Similar to the AGD [HSKK01], the ADD presents high
values for boundary and extrema points, and small values
for points in the center of the segment. Because the ADD

inherits the properties of the diffusion distance, the points
with small ADD values correspond to distant points from
the concavities (Fig. 2(a)). Therefore, we define the medial
structure Si of the segment Ri as:

Si =

{

x ∈Ri : ADD(x) = min
y∈Ri

ADD(y)

}

. (8)

Medial Structures → Segments

Given the medial structures {Si} of R, we employ compe-
ting fronts to recover the segments {Ri}. Each front Fi is
propagated by increasing the iso-value d of the diffusion dis-
tance relative to Si,

Fi(d) =

{

x ∈R : min
y∈Si

D2
tR(x,y) = d

}

. (9)

The competition starts from the medial structures, Fi(0), and
ends when all the fronts collapse.

During propagation, we set each segment Ri as the region
covered by the respective front Fi. Since the concavities at
tR are distant from the medial structures, the boundaries of
segments tend to reside in the concavities. Fig. 3 shows with
colors the front propagation from different medial structures.
Observe that the iso-values d increase rapidly in the mean-
ingful concavities of the model.

3. Algorithm

(a) ADD (b) Initialization (c) Segmentation

Figure 2: Spheres represent the points of the medial struc-

tures. (a) The ADD function of the region and its medial

structure. The colors indicate the ADD values, increasing

from blue to red. (b) The initial medial structures and seg-

ments. (c) The final segmentation with the bijection between

the segments and the medial structures.

Based on the concepts of Sec. 2, we present our algorithm
for the segmentation problem. Here, we describe it for trian-
gulated meshes M = (V,E,F), but it can be easily extended
to different surface representations (e.g., point clouds).

In a triangulated mesh M = (V,E,F), we discretize a
function f by the vector ~f , where fi is the value of f on the
vertex i ∈V . For points inside the triangles, we approximate
f using linear interpolation and barycentric coordinates.

Figure 3: Front propagation from each medial structure.

Spheres indicate the points of the medial structures. Colors

encode the iso-values of the diffusion distance between the

medial structures and the surface points, ranging from blue

to red. Note that the colors change greatly in the concavities.

As a pre-processing stage, we compute the eigen-pairs
(λk,~φk) of the Laplace-Beltrami operator of M (Eq. 4). In
our implementation, we use the solver proposed in [VL08],
which handles meshes with up a million of vertices and ir-
regular tessellations with computational time linear in the
number of eigen-pairs.

Given a region R ⊂ M, first we select a time scale tR.
We exploit the fact that larger area may contain more global
structures, and set

tR =
1

2λ1

AR

AM
, (10)

where AR, AM are the areas of R, M, respectively. The
constant 1/2λ1 makes the time selection invariant to the
scale of M (see [RWP06]). Then, we compute the diffusion
maps ΦtR for all the vertices of R.

We decompose a region R by computing the bijection bet-
ween its medial structures and segments. For that matter, our
algorithm has an initialization step and a main loop.

During initialization, we compute the number of segments
in R, and an initial guess for the medial structures {Si}
(Fig. 2(b)). We start setting the medial structure of R, SR,
as the first medial structure, S1. Then, recursively, we se-
lect the most distant vertex v ∈ R from the previous medial
structures. If the distance of v is larger than a threshold, we
add v as a new medial structure, otherwise, we stop the ini-
tialization. When the vertex v lies in a boundary, we also
extend it to a loop. In our experiments, we set the threshold
to κD, where κ ∈ [1,2] and D is the average of the diffusion
distance between the points in R and in SR (Eq. 15).

In the main loop, we refine the medial structures {Si}
iteratively, until achieving the bijection with the segments
{Ri} (Fig. 2(c)). At each iteration, first we compete fronts
from the medial structures to compose new segments. Then,
we use these segments to update the medial structures. The
above relaxation stops when the ratio of vertices in R chan-
ging segments is under a tolerance (0−5%).
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To compete fronts, we create a heap H containing the pairs
( f ,i), where f is a candidate face to be covered by the front
Fi. The pairs are ordered in H by the maximum distance
between the vertices of f and the medial structure Si,

max
v∈ f

(

min
u∈Si

D2
tR(v,u)

)

. (11)

We initialize H with all the faces adjacent to the vertices of
the current medial structures {Si}. At each step, we remove
the pair ( f ,i) with the smallest distance. If f is not in any
segment, we add it to Ri, otherwise, we discard it. After, we
update H with the neighbor faces of f in R. The competition
ends when the heap is empty.

To update the medial structures, we compute the vertices
with minimum ADD value in each segment Ri (Eq. 12). Be-
cause of the mesh resolution, the medial structures may be
subsampled. We overcome these cases by adding a tolerance
ε around the minimum ADD value. This tolerance must be
close to zero and adapted to the shape of Ri. In this work,
we set ε = 0.01ADD, where ADD is the average of the ADD

values in Ri (Eq. 14).

We apply the above algorithm recursively, starting with
R = M. The resulting segments compose a hierarchical
tree. This hierarchy reveals a coarse-to-fine order of the seg-
ments, and a tree of dependencies. The final segmentation
can be any cut of the tree (Fig. 4).

Figure 4: Three different cuts of the hierarchy of segments

of the dinopet model.

4. Results

We tested our method with a diversity of models and poses.
Fig. 5 shows a miscellaneous of results. In each example, we
indicate the segments with a different palette of colors.

In Fig. 6, we show an example of the hierarchy of seg-
ments. Note that the segments enhance salient parts, as sug-
gested by the cognition studies. The coarse segments corres-
pond to functional regions (in green), and the fine segments
correspond to rigid components (in yellow). The segments
also reveal the structure of model, and enable the combina-
tion of different levels of details. In Fig. 4, we present three
possible cuts of the hierarchy of segments of the dinopet

model. In the first image, we partitioned the arms, the legs,
and the head of the model, while, in the second image, we

divided only the core of the body. The third image shows a
fine segmentation, identifying even the fingers of the hands
and the nails of the toes.

Figure 5: Results of our segmentation algorithm.

Figure 6: The hierarchical tree of segments of the dog
model. Each color indicates a different level of detail.

Fig. 9 illustrates the consistency of our results to a vari-
ety of deformations of three distinct models. In Fig. 1, we
demonstrate that our segments are also consistent in succes-
sive scales. It is worth to note that our method resulted in
consistent segments, even though each pose has a different
mesh tessellation.

In Fig. 7, we show the robustness to noise of our al-
gorithm. We perturbed the vertices of the cat model by
moderate and exaggerated noise, and achieved segmenta-
tions similar to the segmentation of the original model. In
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Fig. 8(a), we show that our method is robust to topologi-
cal short-circuits, splitting the connected legs of the homer

model. However, the method fails when the topological han-
dle is large, as shown in Fig. 8(b). In this case, the handle
alters the diffusion distance, and then the segmentation iden-
tifies only the remaining fingers of the hand.

Fig. 10 shows skeletons extracted from the segmentations.
The skeletons are composed by edges connecting the centers
of mass of the segments (blue spheres) to their adjacent ar-
ticulations (gray spheres).

Table 1 reports running times. Notice that the number of
iterations to converge the bijection between medial struc-
tures and segments is not larger than 10. Therefore, the time
complexity of the algorithm depends on the cost of one ite-
ration of the main loop, which is O(|F| log |F|), in the worst
case. The most expensive step of our method is the com-
putation of the eigen-pairs. Nonetheless, we compute them
in a pre-processing phase and, using the solver proposed
in [VL08], the cost reduces to the order of seconds.

Table 1: Time report. The columns show, respectively, the

name of the model, the numbers of vertices and faces, the

time (sec.) to compute the eigen-pairs, the number of itera-

tions, and the time (sec.) spent by our algorithm to compute

the first level of detail. In all examples, we computed the first

200 eigen-pairs. The tests were performed on a 2.4GHz Intel

Core 2 Duo with 2GB RAM.

model |V | |F| solver iters level 1
dinopet 4k 8k 2.7 5 0.9
human 8k 16k 7.4 5 3.0

dog 9.5k 19k 9.2 6 4.7
armadillo 23k 46k 23.7 3 6.7
elephant 42k 84.5k 46.6 2 13.4
dinosaur 56k 112k 63.9 2 29.9

5. Conclusion and Future Work

In this paper, we presented a simple and fast algorithm
to segment articulated characters. Our results compose a
coarse-to-fine hierarchy of details, and reveal the underneath
structure of the models. The method is invariant to deforma-
tions, even though the input is a single pose. In addition, we
guarantee robustness to noise, mesh resolution, and topolo-
gical short-circuits.

We described the algorithm for triangulated meshes, but
it is straightforward to convert it to other surface representa-
tions. We also introduced a new definition of medial struc-
tures. Coupled with the segments, the medial structures can
be employed in problems of model compression, registra-
tion, matching, and morphing.

In the future, we intend to continuously exploit the dif-
fusion distance. We believe the diffusion distance can de-
termine the skinning weights along the segments, comple-
menting our method into a full rigging procedure. Finally,
we would like to extend the scope of our segmentation for
non-articulated models.

(a) Original (b) Moderate (c) Exaggerated

Figure 7: Our method is robust to noise. The images com-

pare the segmentations of the original model with two ver-

sions modified by moderate and exaggerated noise.

(a) (b)

Figure 8: (a) Our method is robust to short-topological

events. (b) However, it fails with large handles.
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Appendix A:

In this last section, we provide the equations to compute the
ADD value of a vertex, and the terms ADD and D in a region
R of a triangulated mesh M = (V,E,F) at time scale t.

Let A f be the area of the triangle f , fi be the i-th vertex of
f , and Av = (∑ f∈star(v) A f )/3 be the area in R of the vertex
v. Here, star(v) indicates the neighbor triangles in R of v.

The ADD function of a vertex (Eq. 7) is discretized as:

ADD(x) = ‖Φt(x)‖
2 −2

〈

Φt(x),
R

R
Φt (y)dy

AR

〉

+
R

R
‖Φt (y)‖

2dy

AR

≃‖Φt(x)‖
2 −2

〈

Φt(x),
∑v∈R Φt (v)Av

AR

〉

+QR,

(12)
where

QR =
1

6AR
∑

f∈R

A f

(

∑
i

‖Φt( fi)‖
2 + 〈Φt( fi),Φt( fi+1mod3)〉

)

.

(13)

The average of the ADD function is:

ADD =
1

AR

Z

R
ADD(x)dx≃ 2

(

QR−

∥

∥

∥

∥

∑v∈R Φt(v)Av

AR

∥

∥

∥

∥

2
)

.

(14)
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At last, the average of the diffusion distances between the
points of R and the points of the medial structure SR is:

D = 1
AR

R

R

(

minu∈SR
D2

t (x,u)
)

dx

≃ 1
AR

[

∑v∈R

(

minu∈SR
D2

t (v,u)
)

Av

+∑ f∈R
Af

6 〈Φt( f3)−Φt( f1),Φt( f3)−Φt( f2)〉

−∑ f∈R
Af

6

(

‖Φt( f3)−Φt( f1)‖
2 +‖Φt( f3)−Φt( f2)‖

2
)]

.

(15)

Note that the three equations can be computed with time
complexity linear on the size of R.

Figure 9: A variety of poses for three distinct models, and

the consistent segments generated with our method.
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Figure 10: Skeletons extracted from the segments. The blue spheres indicate the centers of mass of the segments, and the gray

spheres indicate central points in the joints of the characters.
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