
Direted Ayli Graph Representation of Deformable ModelsSiome Goldenstein1 Christian Vogler1 Dimitris Metaxas21CIS Department - University of Pennsylvania200S 33rd Street, Philadelphia, PA 191042Department of Computer Siene - Rutgers University110 Frelinghuysen Road, Pisataway, NJ 088541{siome,vogler}�graphis.is.upenn.edu 2dnm�s.rutgers.eduAbstratDeformable models are a useful tool in omputer vi-sion and omputer graphis. A deformable model is aurve (in two dimensions) or a surfae (in three dimen-sions), whose shape, position, and orientation are on-trolled through a set of parameters. Deformable modelsan represent manufatured objets, human faes andskeletons, and even bodies of �uid.In omputer graphis we use deformable models foranimations and simulations, whereas in omputer vi-sion appliations, suh as traking and �tting, de-formable models help to restrit the family of possiblesolutions.In this paper, we introdue the use of a diretedayli graph (dag) to desribe the position and Ja-obian of eah point on the surfae of deformable mod-els. This data struture, ombined with a topologialdesription of the points, is simple, powerful, and ex-tremely useful for both omputer vision and omputergraphis appliations. We show a omputer vision ap-pliation, 3D deformable fae traking, and a omputergraphis appliation, yberglove data visualization andalibration.1. IntrodutionFor years engineers and omputer sientists havebeen dealing with di�erent abstrations to representreal solid objets inside a omputer. One the om-puter has an internal model of an objet, we ananalyze the objet's properties and simulate its per-formane (with �nite elements, for example), we antransform the objet to ahieve speial e�ets, and wean even try to reognize the objet and its ations.Whenever the objet's shape an hange, aording toa set of parameters, we an all it a deformable model.Deformable models an represent a wide variety ofthings, from manufatured parts to the soft surfae ofthe human body. It is a hallenge to have a uni�ed

way to store and manipulate all these models. Also,the parameters an have di�erent types of e�ets overa model. Usually, we lassify the parameters in threetypes: those that do not hange for a partiular ob-jet (stati parameters), those that hange and a�etall the model globally (global parameters), and thosethat hange and a�et only some regions of the model(loal parameters). For example, in the model of a hu-man fae for traking, the parameters responsible fordeforming a generi fae to a partiular individual arethe stati parameters, the rotation and translation thatplae the fae in the world are global parameters, andthe parameters that ontrol the raising of eyebrows oropening of the jaw are among the loal parameters.A deformable model based traking appliation hasa limitation: it only traks objets that an be de-sribed by the hosen model. On the other hand, thisrestrition simpli�es the problem and allows the algo-rithm to onentrate its attention to the hange of theimportant information. Going bak to the fae exam-ple, it is more important to apture the opening of themouth orretly than the individual 2D motion of allthe image points of the mouth. Parameterizing thelass of motion is even more important when we aimat 3D traking from monoular images.In this paper, we introdue the use of a diretedayli graph (dag) to represent a deformable model.This data struture treats all types of parameters on-sistently. It is easily extensible through the imple-mentation of new building bloks, and allows an ef-�ient integration between omputer vision and om-puter graphis appliations. Moreover, it reates a on-sistent way to desribe deformations of a solid modelthat the omputer an manipulate. As an implemen-tation tehnique, it takes advantage of all the theorybehind deformable models. The two most ompellingadvantages of this approah are that it beomes ex-tremely easy to swap out one deformable model foranother one without having to hange the appliation



ode, and that the appliation framework an optimizethe omputations on the model dynamially, suh asthrough elimination of ommon subexpressions.2. Related WorkSnakes are one of the �rst examples of deformablemodels to appear in the literature of omputer vi-sion [13℄. This theory was expanded to allow statis-tial representation of the shape of the models and itspoints, as well as an inrease the number of applia-tions [5, 3℄. In our traking example we use a general3D deformable model framework [14℄ that has also beenused for the estimation of shape from shading [19℄, forthe ombination of optial �ow and edges in fae trak-ing [7℄, and for the modeling of the human heart [15℄.There are several studies on how to represent the statishape of family of objets, like a pa deomposition [4℄,anthropometri harateristis [8, 9℄, or reonstrutionfrom images [16℄ to desribe the rest shape of humanfaes. Finally, there has been some reent and promis-ing advanes on how to dynamially improve and re�nethe shape and motion of a deformable model [20℄.A fairly broad overview of the di�erent methods forrepresentation of objets in omputer graphis an befound in [12℄. We should point to the reader that oneof the �rst onstrutive representations of objets, sg(Construtive Solid Geometry), is a tree with booleanoperations to onstrut the volume of the solid ob-jet [18℄. Hierarhial deformations have been longused to represent skeletons and artiulated rigid bod-ies in both omputer graphis and robotis [6, 10℄, thishierarhy an be represented as a tree.3. Deformable ModelsThe shape, position, and orientation of the surfaeof the model an hange. These hanges are ontrolledby a set of parameters ~q. For every point i on thesurfae of the model, there is a funtion Fi that takesthe deformation parameters and �nds
pi = Fi(~q),where pi is the point position in the world frame.Computer vision appliations need more than justthe position of every point of the model for the givenvalue of ~q. In order to trak or �t these parameters,most algorithms also require the knowledge of the �rstorder derivatives. Sine the spei�ation of the defor-mations is part of the reation, or modeling proess, ofthe deformable model, we assume that Fi, ∀i, is well-behaved: that is, that it has well-de�ned �rst orderderivatives with regard to ~q. The derivative of pi with

regard to ~q is the Jaobian Ji , where
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 .Eah olumn l of the Jaobian Ji is the gradient of piwith regard to parameter ql.In this setion we desribe a graphial model1 for thegeneral desription of arbitrary deformable models. Werepresent a disrete model � only a �nite number ofpoints on the surfae are represented �, and we use agraph to desribe the funtions that will generate thepositions of the nodes. Although the model represen-tation is disrete, points on the surfae an be easilyadded, removed, and modi�ed. Hene, it is straight-forward to apply multi-resolution tehniques with thisdata struture. We expliitly distinguish the topologyof the points (how they are onneted) from their ge-ometry (where they lie in spae), and desribe themseparately.
3.1. Topology DescriptionDeformations over the model a�et only the pointpositions, so keeping the topology apart enables usto have di�erent types of deformations applied overthe same topologial struture. Beause of this dualrepresentation, di�erent models that share the sametopology representation will have a bijetive relationbetween their points.In priniple, the topology representation is unnees-sary when all you need is a loud of points. In pra-tie, we are representing the surfae of a solid model,and we need the onnetivity to determine the visiblepoints of the model, so the omputer vision algorithmsan know whih nodes to a�et (only the visible ones),and so that the omputer graphis appliations anorretly render the objet. The topology desriptionspei�es the number of nodes (points) on the surfaeof the model, and how they onnet. Figure 1 showsthe topology of a simple ube, with one point on eahorner.
3.2. Directed Acyclic GraphThe desription of the model's geometry is moreomplex. While the topology usually remains stati,the position of the points is ontrolled by ~q, the pa-rameter vetor. We onstrut a direted ayli graph(dag) to represent the geometry. This data strutureis apable of evaluating the position and Jaobian ofall nodes given any value of the parameter vetor ~q.1The term graphial refers to graphs, as opposed to omputergraphis.
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Figure 1. Typical topology of a cube. The
eight corners are the only points represented
in this model.
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Figure 2. A simple dag representation of the
cube of Figure 3 parameterized by width,
depth and height. Nodes are represented as
circles, where the dashed ones are the ghost
nodes. Dependencies are represented as di-
amonds.This struture is omposed of two basi elements:nodes and dependenies. Nodes an be normal nodesand ghost nodes. Normal nodes are the atual nodeson the surfae of the model, and have their onne-tivity determined by the topology desription. Ghostnodes, on the other hand, are not physial points of thesurfae. Ghost nodes an be seen as auxiliary points,temporary results or vetors. The dependenies are themathematial building bloks that alulate the posi-tions and derivatives in a reursive way.Eah node has one parent: a dependeny, and eahdependeny an have multiple nodes as parents. Thedag representation of a mode is not unique. As anexample, onsider a parameterization of a ube, withthe topology of Figure 1, aording to its depth, height,and width.A simple parameterization an be ahieved with onlyone layer of dependeny, illustrated on Figure 2 (wherethe nodes represented as irles, and the dependeniesas diamonds). In this ase, eah orner of the ube isthe sum of the origin and weighted vetors along theX, Y and Z axis.Another possible dag realization reates a ghostnode to represent the enter of the front square by sub-

trating half the depth along Z from the origin. Thefour orners of the front square ome straight out of it,by adding and subtrating half of the height and width.From eah of the the four frontal nodes we an just addthe depth along Z to �nd the bak orners. This om-pliated realization is illustrated in Figure 3, where de-pendenies are represented by diamonds, ghost nodesby dashed irles, and normal nodes are solid irles.
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Figure 3. An illustration of a “not so simple”dag representation of cube parameterized by
width, depth and height. For a given model
the representation in a dag is not unique.
Nodes are represented as circles, where the
dashed ones are the ghost nodes. Dependen-
cies are represented as diamonds.Eah dependeny represents a basi operation, andhas enoded knowledge on how to alulate positionsand Jaobian, given a set of input nodes and param-eters. Whenever we query a node for its position, orJaobian, the node forwards the request to the respe-tive parent dependeny. The dependeny in turn getsthe position, or Jaobian, of the parent nodes, and al-ulates the resulting position, or Jaobian (using thehain rule). This struture de�nes a direted graph,and in order to avoid undetermined expressions2, thereare no loops. Thus, it is a direted ayli graph. Weevaluate all the information of the deformable modelby evaluating every node. When the data struture isimplemented with are, nodes and dependenies ahetheir values and there is no need to perform a topolog-ial sort beforehand.2This is not entirely true, there are reursive mathematialexpressions that are well de�ned, but to allow this lass of ex-pression would inrease the omplexity of the data struture andomputational feasibility.



3.3. DependenciesThe dependenies are the mathematial buildingbloks of the dag data struture. We only need asmall set of simple dependenies to model fairly om-plex deformations. We ahieve this with the smartuse of extra intermediary ghost nodes as temporary re-sults, whih orrespond to the ommon subexpressionsin the omputations. The dag data struture an beompared to a tree for symboli expressions as used inmany symboli pakages like MathematiaTM [21℄, anddesribed in the literature of parsing and formal lan-guages [2℄. Sine we allow the sharing of intermediateresults through several dependenies using the sameommon nodes, the struture is no longer a tree. Nev-ertheless the dag data struture an be seen as is asymboli evaluator.We now desribe only three simple dependenies.They are a small subset of all the dependenies thatwe have implemented.Fixed Point This dependeny does not have anynode as a parent. It takes 3 onstants λ1, λ2, and
λ3 to de�ne its position and Jaobian:

pi =
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 and Ji = 0.Sine the position is �xed and does not depend on anyother node or parameter, the Jaobian is simply 0.Linear Combination of Points This dependenyrequires a set of nodes {n1, . . . , nk} and a set of on-stants {λ1, . . . , λk}. Then, as the name implies:
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λjJnj .Add Parameterized Vetor This dependenyadds a vetor represented by three onstants λ1, λ2,and λ3, saled by parameter l, to an existing node j.
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3.4. Advantages of the DAG approachThe two main advantages of the graphial approahare �exibility and performane. On the �exibility side,

the deformable model framework beomes more gen-eral, beause it is easy to swap out one model for an-other without having to alter the framework in anyother way. In addition, the framework an reate mul-tiresolution models dynamially, just by ulling nodesfrom the dag.On the performane side, the dag struture makesit easy to fator out ommon subexpressions and to as-soiate them with ghost nodes. As a result, the numberof omputations on the deformable model is drastiallyredued. It is even oneivable � although we havenot implemented it � to use symboli manipulationtehnologies to fator out these subexpressions auto-matially.Furthermore, as PC-based arhitetures beomemore and more ubiquitous even for the most demand-ing omputer vision appliations, main memory band-width beomes a major performane bottlenek, be-ause images and large models are typially too largeto �t in the ahes of urrent PC proessors. As a re-sult, the order of omputations and their memory a-ess patterns have a larger e�et on performane thanthe raw number of �oating point operations. By usingtopologial sorting tehniques, the deformable modelframework an determine the optimal order and mem-ory storage of omputations automatially. In our faetraking experiments desribed in the next setion, thisoptimization alone sped up the running time by morethan 35% on an Intel Xeon running at 2 GHz, and by45% on an AMD Athlon running at 1.2 GHz. Thisoptimization would be very di�ult to perform if themodel were hardoded.4. ExamplesThe dag data struture is one omponent of a largersystem we have under development. We use this systemfor the two examples in this setion: fae traking andyberglove data visualization.We use Lua, a fully programmable embedded lan-guage [1℄, to desribe and onstrut the dag data stru-ture of the models. This allows a powerful and e�ientway to atually reate the models, and their depen-denies, proedurally. Sine we have a fully funtionallanguage for the model desription, we an automatethe model's dag onstrution, and all the dependen-ies parameters. For example, the fae model of thefae (in Setion 4.1) is automatially built from theposition of the undeformed points and the regions ofthe fae surfae where the deformations should a�et.In Setion 4.2, we onstrut a set of a�ne frames tobuild a hand model automatially.



Figure 4. Three positions of the eyebrows.

4.1. Face TrackingIn this setion we brie�y desribe how we have re-ated a simple, yet powerful, deformable fae model us-ing the dag data struture. We show some results ofour fae traking system.We started with a stati a geometri model of ahead, publily made available by the omputer graph-is group of the University of Washington3 as partof [16, 17℄. We arefully extrated a mask of the fae,and simpli�ed it using SlimKit Surfae ModelingTools4. The result was a stati mask model of a generifae with 1101 nodes and 2000 faes. We then markedregions in the surfae that are a�eted by a parameter,and how this e�et varied in this region. For every pa-rameter we applied a layer of deformation. Eah layerof deformation reated one new ghost node for everysurfae node a�eted by this parameter. The ghostnode took over the previous behavior of the surfaenode. The surfae node itself was altered to enode theextra deformation in a dependeny on the new ghostnode. Figure 4 is an example of the e�et of one singledeformation (eyebrow), showing three snapshots of themovement of the eyebrows.The model has one parameter to raise/lower eye-brows, two parameters for the smiling/strething of themouth, one parameter for the opening of the jaw, andanother 7 for the referene frame (a total of 11 parame-ters). For simpliity, we modeled the the jaw movementas an a�ne transformation. This approximation is suf-�ient for small openings of the mouth, even thougha rotation operation is the orret way to model thejaw. Note (in the movie) that for a large opening ofthe mouth the system orretly traks the the mouthmovement and does not loose trak, even if the shapeis temporarily not aurate.Figure 5 has six snapshots of a traking experimentusing this model. This sequene has approximately4000 graysale frames aptured at 60Hz on a 640×480resolution. The traking tehnique we used is partiallydesribed in [11℄. It onsists of a statistial tehniqueto adaptively integrate di�erent omputer vision ues.Before the beginning of a traking setion we per-form a �t of the base mask. The �t proess provides3http://www.s.washington.edu/researh/graphis/-projets/realfae/4http://www.s.mu.edu/~garland/quadris/

Figure 5. Snapshots of a tracking sequence
of approximate 4000 frames. The deformable
model used here has only 11 parameters.us with a new set of positions for the points (that rep-resent the fae at rest), and the orientation and trans-lation of the model in the �rst frame.

4.2. Cyberglove Visualization and CalibrationVisualization is an important appliation in humanbody motion researh. Deformable models are an idealtool for this visualization, beause they are powerfulenough to desribe the omplex shape and deforma-tions of human body parts, yet the parameterizationthat governs the deformations is often extremely sim-ple. As a result, they are easy to manipulate duringthe visualization proess. Moreover, it is possible toparameterize the models in a manner ompatible withthe motion apture systems that are often used for a-quiring the data.As an example, onsider visualizing the human handwith data aptured from a CybergloveTM. This instru-ment delivers values between 0 and 255 representing ameasure of the joint angles of the �nger digits, and theabdution angles between �ngers, as well as wrist yawand pith. The raw values between 0 and 255 need tobe onverted to joint angles via a onversion funtion
Fc, whih is di�erent for every human. As a result, FCneeds to be arefully alibrated, espeially for those ap-pliations that are highly sensitive to slight variationsin the joint angle, suh as gesture and sign languagereognition. To ahieve this alibration, it is neessaryto visualize the yberglove data with a hand model,while adjusting the alibration oe�ients arefully.The dag struture provides a very simple and el-egant way to parameterize the hand model that weuse for visualizing and alibrating the yberglove data.The raw values from the yberglove and the alibrationoe�ients both onstitute the model parameters. Foreah joint angle, we reate a set of four ghost nodesthat represent the a�ne frame for the digit ontrolledby this angle. These four nodes are parameterized bythe orresponding yberglove values and alibration o-e�ients. We express all other nodes that belong to the



Figure 6. Three example deformations of the
hand during cyberglove visualization and cal-
ibration.same digit as baryenters in that a�ne frame; that is,an unparameterized weighted sum of these four nodes.Figure 6 shows three examples of visualizing and ad-justing the alibration of yberglove data.Note that with some re�nement of the hand model� through adding more nodes �, the same dag ouldbe used for traking a hand with a deformable model.The traking algorithm would then estimate the pa-rameters of the model in a manner onsistent with thevalues that the yberglove generates. The ompellingadvantage of this onsisteny is that it makes it easyto swith from omputer vision-based traking to a y-berglove, and vie versa, without having to adjust therest of the appliation to deal with a di�erent set ofparameters.5. Conlusions and Future WorkIn this paper we introdued a powerful data stru-ture that an represent models for both omputer vi-sion and graphis. Using a small set of simple math-ematial primitives (the dag dependenies) it is pos-sible to desribe extremely omplex deformations. Inaddition, new dependenies an be easily reated byapplying the hain rule to determine the Jaobian.When reating hard oded models by hand, the taskof omputing the Jaobians is hard and extremely timeonsuming . Using the dag data struture, it is easy toautomatially speify omplex deformations over largenumber of nodes � the omputation of the Jaobians isdone automatially, on demand.The dag data struture an represent both layeredand hierarhial deformations as we have shown in thetwo examples. A possible future appliation is to de�nea deformable fae whose parameters oinide with thempeg4 faial animation parameters (fap), thus allow-ing our fae traking system to generate mpeg4 data.This tehnique allows the formal spei�ation of de-formations as graphs. An interesting problem, for ex-ample, that remains open is how to develop algorithmsthat an simplify a graph to obtain a more ompu-tationally e�ient struture. Another important andextremely hard appliation is the onstrution of thedependeny graph for a set of nodes based on data.
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