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Abstract

Deformable models are a useful tool in computer vi-
sion and computer graphics. A deformable model is a
curve (in two dimensions) or a surface (in three dimen-
sions), whose shape, position, and orientation are con-
trolled through a set of parameters. Deformable models
can represent manufactured objects, human faces and
skeletons, and even bodies of fluid.

In computer graphics we use deformable models for
animations and simulations, whereas in computer vi-
ston applications, such as tracking and fitting, de-
formable models help to restrict the family of possible
solutions.

In this paper, we introduce the use of a directed
acyclic graph (DAG) to describe the position and Ja-
cobian of each point on the surface of deformable mod-
els. This data structure, combined with a topological
description of the points, is simple, powerful, and ex-
tremely useful for both computer vision and computer
graphics applications. We show a computer vision ap-
plication, 3D deformable face tracking, and a computer
graphics application, cyberglove data visualization and
calibration.

1. Introduction

For years engineers and computer scientists have
been dealing with different abstractions to represent
real solid objects inside a computer. Once the com-
puter has an internal model of an object, we can
analyze the object’s properties and simulate its per-
formance (with finite elements, for example), we can
transform the object to achieve special effects, and we
can even try to recognize the object and its actions.
Whenever the object’s shape can change, according to
a set of parameters, we can call it a deformable model.

Deformable models can represent a wide variety of
things, from manufactured parts to the soft surface of
the human body. It is a challenge to have a unified
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way to store and manipulate all these models. Also,
the parameters can have different types of effects over
a model. Usually, we classify the parameters in three
types: those that do not change for a particular ob-
ject (static parameters), those that change and affect
all the model globally (global parameters), and those
that change and affect only some regions of the model
(local parameters). For example, in the model of a hu-
man face for tracking, the parameters responsible for
deforming a generic face to a particular individual are
the static parameters, the rotation and translation that
place the face in the world are global parameters, and
the parameters that control the raising of eyebrows or
opening of the jaw are among the local parameters.

A deformable model based tracking application has
a limitation: it only tracks objects that can be de-
scribed by the chosen model. On the other hand, this
restriction simplifies the problem and allows the algo-
rithm to concentrate its attention to the change of the
important information. Going back to the face exam-
ple, it is more important to capture the opening of the
mouth correctly than the individual 2D motion of all
the image points of the mouth. Parameterizing the
class of motion is even more important when we aim
at 3D tracking from monocular images.

In this paper, we introduce the use of a directed
acyclic graph (DAG) to represent a deformable model.
This data structure treats all types of parameters con-
sistently. It is easily extensible through the imple-
mentation of new building blocks, and allows an ef-
ficient integration between computer vision and com-
puter graphics applications. Moreover, it creates a con-
sistent way to describe deformations of a solid model
that the computer can manipulate. As an implemen-
tation technique, it takes advantage of all the theory
behind deformable models. The two most compelling
advantages of this approach are that it becomes ex-
tremely easy to swap out one deformable model for
another one without having to change the application



code, and that the application framework can optimize
the computations on the model dynamically, such as
through elimination of common subexpressions.

2. Related Work

Snakes are one of the first examples of deformable
models to appear in the literature of computer vi-
sion [13]. This theory was expanded to allow statis-
tical representation of the shape of the models and its
points, as well as an increase the number of applica-
tions [5, 3]. In our tracking example we use a general
3D deformable model framework [14] that has also been
used for the estimation of shape from shading [19], for
the combination of optical flow and edges in face track-
ing [7], and for the modeling of the human heart [15].
There are several studies on how to represent the static
shape of family of objects, like a PCA decomposition [4],
anthropometric characteristics [8, 9], or reconstruction
from images [16] to describe the rest shape of human
faces. Finally, there has been some recent and promis-
ing advances on how to dynamically improve and refine
the shape and motion of a deformable model [20].

A fairly broad overview of the different methods for
representation of objects in computer graphics can be
found in [12]. We should point to the reader that one
of the first constructive representations of objects, CSG
(Constructive Solid Geometry), is a tree with boolean
operations to construct the volume of the solid ob-
ject [18]. Hierarchical deformations have been long
used to represent skeletons and articulated rigid bod-
ies in both computer graphics and robotics [6, 10], this
hierarchy can be represented as a tree.

3. Deformable Models

The shape, position, and orientation of the surface
of the model can change. These changes are controlled
by a set of parameters ¢. For every point i on the
surface of the model, there is a function F; that takes
the deformation parameters and finds

where p; is the point position in the world frame.
Computer vision applications need more than just
the position of every point of the model for the given
value of ¢. In order to track or fit these parameters,
most algorithms also require the knowledge of the first
order derivatives. Since the specification of the defor-
mations is part of the creation, or modeling process, of
the deformable model, we assume that F;, Vi, is well-
behaved: that is, that it has well-defined first order
derivatives with regard to ¢. The derivative of p; with

regard to ¢ is the Jacobian J; , where
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Each column [ of the Jacobian J; is the gradient of p;
with regard to parameter ¢;.

In this section we describe a graphical model® for the
general description of arbitrary deformable models. We
represent a discrete model — only a finite number of
points on the surface are represented —, and we use a
graph to describe the functions that will generate the
positions of the nodes. Although the model represen-
tation is discrete, points on the surface can be easily
added, removed, and modified. Hence, it is straight-
forward to apply multi-resolution techniques with this
data structure. We explicitly distinguish the topology
of the points (how they are connected) from their ge-
ometry (where they lie in space), and describe them
separately.

3.1. Topology Description

Deformations over the model affect only the point
positions, so keeping the topology apart enables us
to have different types of deformations applied over
the same topological structure. Because of this dual
representation, different models that share the same
topology representation will have a bijective relation
between their points.

In principle, the topology representation is unneces-
sary when all you need is a cloud of points. In prac-
tice, we are representing the surface of a solid model,
and we need the connectivity to determine the visible
points of the model, so the computer vision algorithms
can know which nodes to affect (only the visible ones),
and so that the computer graphics applications can
correctly render the object. The topology description
specifies the number of nodes (points) on the surface
of the model, and how they connect. Figure 1 shows
the topology of a simple cube, with one point on each
corner.

3.2. Directed Acyclic Graph

The description of the model’s geometry is more
complex. While the topology usually remains static,
the position of the points is controlled by ¢, the pa-
rameter vector. We construct a directed acyclic graph
(DAG) to represent the geometry. This data structure
is capable of evaluating the position and Jacobian of
all nodes given any value of the parameter vector ¢.

IThe term graphical refers to graphs, as opposed to computer
graphics.
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Figure 1. Typical topology of a cube. The
eight corners are the only points represented
in this model.

Figure 2. A simple DAG representation of the
cube of Figure 3 parameterized by width,

depth and height. Nodes are represented as

circles, where the dashed ones are the ghost

nodes. Dependencies are represented as di-

amonds.

This structure is composed of two basic elements:
nodes and dependencies. Nodes can be normal nodes
and ghost nodes. Normal nodes are the actual nodes
on the surface of the model, and have their connec-
tivity determined by the topology description. Ghost
nodes, on the other hand, are not physical points of the
surface. Ghost nodes can be seen as auxiliary points,
temporary results or vectors. The dependencies are the
mathematical building blocks that calculate the posi-
tions and derivatives in a recursive way.

Each node has one parent: a dependency, and each
dependency can have multiple nodes as parents. The
DAG representation of a mode is not unique. As an
example, consider a parameterization of a cube, with
the topology of Figure 1, according to its depth, height,
and width.

A simple parameterization can be achieved with only
one layer of dependency, illustrated on Figure 2 (where
the nodes represented as circles, and the dependencies
as diamonds). In this case, each corner of the cube is
the sum of the origin and weighted vectors along the
X, Y and Z axis.

Another possible DAG realization creates a ghost
node to represent the center of the front square by sub-

tracting half the depth along Z from the origin. The
four corners of the front square come straight out of it,
by adding and subtracting half of the height and width.
From each of the the four frontal nodes we can just add
the depth along Z to find the back corners. This com-
plicated realization is illustrated in Figure 3, where de-
pendencies are represented by diamonds, ghost nodes
by dashed circles, and normal nodes are solid circles.

Figure 3. An illustration of a “not so simple”
DAG representation of cube parameterized by
width, depth and height. For a given model
the representation in a DAG is not unique.
Nodes are represented as circles, where the
dashed ones are the ghost nodes. Dependen-
cies are represented as diamonds.

Each dependency represents a basic operation, and
has encoded knowledge on how to calculate positions
and Jacobian, given a set of input nodes and param-
eters. Whenever we query a node for its position, or
Jacobian, the node forwards the request to the respec-
tive parent dependency. The dependency in turn gets
the position, or Jacobian, of the parent nodes, and cal-
culates the resulting position, or Jacobian (using the
chain rule). This structure defines a directed graph,
and in order to avoid undetermined expressions?, there
are no loops. Thus, it is a directed acyclic graph. We
evaluate all the information of the deformable model
by evaluating every node. When the data structure is
implemented with care, nodes and dependencies cache
their values and there is no need to perform a topolog-
ical sort beforehand.

2This is not entirely true, there are recursive mathematical
expressions that are well defined, but to allow this class of ex-
pression would increase the complexity of the data structure and
computational feasibility.



3.3. Dependencies

The dependencies are the mathematical building
blocks of the DAG data structure. We only need a
small set of simple dependencies to model fairly com-
plex deformations. We achieve this with the smart
use of extra intermediary ghost nodes as temporary re-
sults, which correspond to the common subexpressions
in the computations. The DAG data structure can be
compared to a tree for symbolic expressions as used in
many symbolic packages like Mathematica™ [21], and
described in the literature of parsing and formal lan-
guages [2]. Since we allow the sharing of intermediate
results through several dependencies using the same
common nodes, the structure is no longer a tree. Nev-
ertheless the DAG data structure can be seen as is a
symbolic evaluator.

We now describe only three simple dependencies.
They are a small subset of all the dependencies that
we have implemented.

Fixed Point This dependency does not have any
node as a parent. It takes 3 constants Ai, Ao, and
A3 to define its position and Jacobian:

Since the position is fixed and does not depend on any
other node or parameter, the Jacobian is simply 0.

Linear Combination of Points This dependency
requires a set of nodes {n1,...,n;} and a set of con-
stants {A1,..., A\ }. Then, as the name implies:

k k
Di = Z Ajpnj and J; = Z >\jJnj.
j=1

j=1

Add Parameterized Vector This dependency
adds a vector represented by three constants A, Ao,
and A3, scaled by parameter [, to an existing node j.

A1
Di=Di+aq | A and
A3
0 A1 0
Ji=Ji4 -0 oo Ay oo 0 -
0 A3 0
——— ——

3.4. Advantages of the DAG approach

The two main advantages of the graphical approach
are flexibility and performance. On the flexibility side,

the deformable model framework becomes more gen-
eral, because it is easy to swap out one model for an-
other without having to alter the framework in any
other way. In addition, the framework can create mul-
tiresolution models dynamically, just by culling nodes
from the DAG.

On the performance side, the DAG structure makes
it easy to factor out common subexpressions and to as-
sociate them with ghost nodes. As a result, the number
of computations on the deformable model is drastically
reduced. It is even conceivable — although we have
not implemented it — to use symbolic manipulation
technologies to factor out these subexpressions auto-
matically.

Furthermore, as PC-based architectures become
more and more ubiquitous even for the most demand-
ing computer vision applications, main memory band-
width becomes a major performance bottleneck, be-
cause images and large models are typically too large
to fit in the caches of current PC processors. As a re-
sult, the order of computations and their memory ac-
cess patterns have a larger effect on performance than
the raw number of floating point operations. By using
topological sorting techniques, the deformable model
framework can determine the optimal order and mem-
ory storage of computations automatically. In our face
tracking experiments described in the next section, this
optimization alone sped up the running time by more
than 35% on an Intel Xeon running at 2 GHz, and by
45% on an AMD Athlon running at 1.2 GHz. This
optimization would be very difficult to perform if the
model were hardcoded.

4. Examples

The DAG data structure is one component of a larger
system we have under development. We use this system
for the two examples in this section: face tracking and
cyberglove data visualization.

We use Lua, a fully programmable embedded lan-
guage [1], to describe and construct the DAG data struc-
ture of the models. This allows a powerful and efficient
way to actually create the models, and their depen-
dencies, procedurally. Since we have a fully functional
language for the model description, we can automate
the model’s DAG construction, and all the dependen-
cies parameters. For example, the face model of the
face (in Section 4.1) is automatically built from the
position of the undeformed points and the regions of
the face surface where the deformations should affect.
In Section 4.2, we construct a set of affine frames to
build a hand model automatically.
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Figure 4. Three positions of the eyebrows.

4.1. Face Tracking

In this section we briefly describe how we have cre-
ated a simple, yet powerful, deformable face model us-
ing the DAG data structure. We show some results of
our face tracking system.

We started with a static a geometric model of a
head, publicly made available by the computer graph-
ics group of the University of Washington® as part
of [16, 17]. We carefully extracted a mask of the face,
and simplified it using SlimKit Surface Modeling
Tools?. The result was a static mask model of a generic
face with 1101 nodes and 2000 faces. We then marked
regions in the surface that are affected by a parameter,
and how this effect varied in this region. For every pa-
rameter we applied a layer of deformation. Each layer
of deformation created one new ghost node for every
surface node affected by this parameter. The ghost
node took over the previous behavior of the surface
node. The surface node itself was altered to encode the
extra deformation in a dependency on the new ghost
node. Figure 4 is an example of the effect of one single
deformation (eyebrow), showing three snapshots of the
movement of the eyebrows.

The model has one parameter to raise/lower eye-
brows, two parameters for the smiling/stretching of the
mouth, one parameter for the opening of the jaw, and
another 7 for the reference frame (a total of 11 parame-
ters). For simplicity, we modeled the the jaw movement
as an affine transformation. This approximation is suf-
ficient for small openings of the mouth, even though
a rotation operation is the correct way to model the
jaw. Note (in the movie) that for a large opening of
the mouth the system correctly tracks the the mouth
movement and does not loose track, even if the shape
is temporarily not accurate.

Figure 5 has six snapshots of a tracking experiment
using this model. This sequence has approximately
4000 grayscale frames captured at 60Hz on a 640 x 480
resolution. The tracking technique we used is partially
described in [11]. It consists of a statistical technique
to adaptively integrate different computer vision cues.

Before the beginning of a tracking section we per-
form a fit of the base mask. The fit process provides

3http://www.cs.washington.edu/research/graphics/-
projects/realface/
4http://wuw.cs.cmu.edu/"garland/quadrics/

Figure 5. Snapshots of a tracking sequence
of approximate 4000 frames. The deformable
model used here has only 11 parameters.

us with a new set of positions for the points (that rep-
resent the face at rest), and the orientation and trans-
lation of the model in the first frame.

4.2. Cyberglove Visualization and Calibration

Visualization is an important application in human
body motion research. Deformable models are an ideal
tool for this visualization, because they are powerful
enough to describe the complex shape and deforma-
tions of human body parts, yet the parameterization
that governs the deformations is often extremely sim-
ple. As a result, they are easy to manipulate during
the visualization process. Moreover, it is possible to
parameterize the models in a manner compatible with
the motion capture systems that are often used for ac-
quiring the data.

As an example, consider visualizing the human hand
with data captured from a Cyberglove™, This instru-
ment delivers values between 0 and 255 representing a
measure of the joint angles of the finger digits, and the
abduction angles between fingers, as well as wrist yaw
and pitch. The raw values between 0 and 255 need to
be converted to joint angles via a conversion function
F,, which is different for every human. As a result, F¢
needs to be carefully calibrated, especially for those ap-
plications that are highly sensitive to slight variations
in the joint angle, such as gesture and sign language
recognition. To achieve this calibration, it is necessary
to visualize the cyberglove data with a hand model,
while adjusting the calibration coefficients carefully.

The DAG structure provides a very simple and el-
egant way to parameterize the hand model that we
use for visualizing and calibrating the cyberglove data.
The raw values from the cyberglove and the calibration
coefficients both constitute the model parameters. For
each joint angle, we create a set of four ghost nodes
that represent the affine frame for the digit controlled
by this angle. These four nodes are parameterized by
the corresponding cyberglove values and calibration co-
efficients. We express all other nodes that belong to the



Figure 6. Three example deformations of the
hand during cyberglove visualization and cal-
ibration.

same digit as barycenters in that affine frame; that is,
an unparameterized weighted sum of these four nodes.
Figure 6 shows three examples of visualizing and ad-
justing the calibration of cyberglove data.

Note that with some refinement of the hand model
— through adding more nodes —, the same DAG could
be used for tracking a hand with a deformable model.
The tracking algorithm would then estimate the pa-
rameters of the model in a manner consistent with the
values that the cyberglove generates. The compelling
advantage of this consistency is that it makes it easy
to switch from computer vision-based tracking to a cy-
berglove, and vice versa, without having to adjust the
rest of the application to deal with a different set of
parameters.

5. Conclusions and Future Work

In this paper we introduced a powerful data struc-
ture that can represent models for both computer vi-
sion and graphics. Using a small set of simple math-
ematical primitives (the DAG dependencies) it is pos-
sible to describe extremely complex deformations. In
addition, new dependencies can be easily created by
applying the chain rule to determine the Jacobian.

When creating hard coded models by hand, the task
of computing the Jacobians is hard and extremely time
consuming . Using the DAG data structure, it is easy to
automatically specify complex deformations over large
number of nodes — the computation of the Jacobians is
done automatically, on demand.

The DAG data structure can represent both layered
and hierarchical deformations as we have shown in the
two examples. A possible future application is to define
a deformable face whose parameters coincide with the
MPEG4 facial animation parameters (FAP), thus allow-
ing our face tracking system to generate MPEG4 data.

This technique allows the formal specification of de-
formations as graphs. An interesting problem, for ex-
ample, that remains open is how to develop algorithms
that can simplify a graph to obtain a more compu-
tationally efficient structure. Another important and
extremely hard application is the construction of the
dependency graph for a set of nodes based on data.
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