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tDeformable models are a useful tool in 
omputer vi-sion and 
omputer graphi
s. A deformable model is a
urve (in two dimensions) or a surfa
e (in three dimen-sions), whose shape, position, and orientation are 
on-trolled through a set of parameters. Deformable models
an represent manufa
tured obje
ts, human fa
es andskeletons, and even bodies of �uid.In 
omputer graphi
s we use deformable models foranimations and simulations, whereas in 
omputer vi-sion appli
ations, su
h as tra
king and �tting, de-formable models help to restri
t the family of possiblesolutions.In this paper, we introdu
e the use of a dire
teda
y
li
 graph (dag) to des
ribe the position and Ja-
obian of ea
h point on the surfa
e of deformable mod-els. This data stru
ture, 
ombined with a topologi
aldes
ription of the points, is simple, powerful, and ex-tremely useful for both 
omputer vision and 
omputergraphi
s appli
ations. We show a 
omputer vision ap-pli
ation, 3D deformable fa
e tra
king, and a 
omputergraphi
s appli
ation, 
yberglove data visualization and
alibration.1. Introdu
tionFor years engineers and 
omputer s
ientists havebeen dealing with di�erent abstra
tions to representreal solid obje
ts inside a 
omputer. On
e the 
om-puter has an internal model of an obje
t, we 
ananalyze the obje
t's properties and simulate its per-forman
e (with �nite elements, for example), we 
antransform the obje
t to a
hieve spe
ial e�e
ts, and we
an even try to re
ognize the obje
t and its a
tions.Whenever the obje
t's shape 
an 
hange, a

ording toa set of parameters, we 
an 
all it a deformable model.Deformable models 
an represent a wide variety ofthings, from manufa
tured parts to the soft surfa
e ofthe human body. It is a 
hallenge to have a uni�ed

way to store and manipulate all these models. Also,the parameters 
an have di�erent types of e�e
ts overa model. Usually, we 
lassify the parameters in threetypes: those that do not 
hange for a parti
ular ob-je
t (stati
 parameters), those that 
hange and a�e
tall the model globally (global parameters), and thosethat 
hange and a�e
t only some regions of the model(lo
al parameters). For example, in the model of a hu-man fa
e for tra
king, the parameters responsible fordeforming a generi
 fa
e to a parti
ular individual arethe stati
 parameters, the rotation and translation thatpla
e the fa
e in the world are global parameters, andthe parameters that 
ontrol the raising of eyebrows oropening of the jaw are among the lo
al parameters.A deformable model based tra
king appli
ation hasa limitation: it only tra
ks obje
ts that 
an be de-s
ribed by the 
hosen model. On the other hand, thisrestri
tion simpli�es the problem and allows the algo-rithm to 
on
entrate its attention to the 
hange of theimportant information. Going ba
k to the fa
e exam-ple, it is more important to 
apture the opening of themouth 
orre
tly than the individual 2D motion of allthe image points of the mouth. Parameterizing the
lass of motion is even more important when we aimat 3D tra
king from mono
ular images.In this paper, we introdu
e the use of a dire
teda
y
li
 graph (dag) to represent a deformable model.This data stru
ture treats all types of parameters 
on-sistently. It is easily extensible through the imple-mentation of new building blo
ks, and allows an ef-�
ient integration between 
omputer vision and 
om-puter graphi
s appli
ations. Moreover, it 
reates a 
on-sistent way to des
ribe deformations of a solid modelthat the 
omputer 
an manipulate. As an implemen-tation te
hnique, it takes advantage of all the theorybehind deformable models. The two most 
ompellingadvantages of this approa
h are that it be
omes ex-tremely easy to swap out one deformable model foranother one without having to 
hange the appli
ation




ode, and that the appli
ation framework 
an optimizethe 
omputations on the model dynami
ally, su
h asthrough elimination of 
ommon subexpressions.2. Related WorkSnakes are one of the �rst examples of deformablemodels to appear in the literature of 
omputer vi-sion [13℄. This theory was expanded to allow statis-ti
al representation of the shape of the models and itspoints, as well as an in
rease the number of appli
a-tions [5, 3℄. In our tra
king example we use a general3D deformable model framework [14℄ that has also beenused for the estimation of shape from shading [19℄, forthe 
ombination of opti
al �ow and edges in fa
e tra
k-ing [7℄, and for the modeling of the human heart [15℄.There are several studies on how to represent the stati
shape of family of obje
ts, like a p
a de
omposition [4℄,anthropometri
 
hara
teristi
s [8, 9℄, or re
onstru
tionfrom images [16℄ to des
ribe the rest shape of humanfa
es. Finally, there has been some re
ent and promis-ing advan
es on how to dynami
ally improve and re�nethe shape and motion of a deformable model [20℄.A fairly broad overview of the di�erent methods forrepresentation of obje
ts in 
omputer graphi
s 
an befound in [12℄. We should point to the reader that oneof the �rst 
onstru
tive representations of obje
ts, 
sg(Constru
tive Solid Geometry), is a tree with booleanoperations to 
onstru
t the volume of the solid ob-je
t [18℄. Hierar
hi
al deformations have been longused to represent skeletons and arti
ulated rigid bod-ies in both 
omputer graphi
s and roboti
s [6, 10℄, thishierar
hy 
an be represented as a tree.3. Deformable ModelsThe shape, position, and orientation of the surfa
eof the model 
an 
hange. These 
hanges are 
ontrolledby a set of parameters ~q. For every point i on thesurfa
e of the model, there is a fun
tion Fi that takesthe deformation parameters and �nds
pi = Fi(~q),where pi is the point position in the world frame.Computer vision appli
ations need more than justthe position of every point of the model for the givenvalue of ~q. In order to tra
k or �t these parameters,most algorithms also require the knowledge of the �rstorder derivatives. Sin
e the spe
i�
ation of the defor-mations is part of the 
reation, or modeling pro
ess, ofthe deformable model, we assume that Fi, ∀i, is well-behaved: that is, that it has well-de�ned �rst orderderivatives with regard to ~q. The derivative of pi with

regard to ~q is the Ja
obian Ji , where
Ji =




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

 .Ea
h 
olumn l of the Ja
obian Ji is the gradient of piwith regard to parameter ql.In this se
tion we des
ribe a graphi
al model1 for thegeneral des
ription of arbitrary deformable models. Werepresent a dis
rete model � only a �nite number ofpoints on the surfa
e are represented �, and we use agraph to des
ribe the fun
tions that will generate thepositions of the nodes. Although the model represen-tation is dis
rete, points on the surfa
e 
an be easilyadded, removed, and modi�ed. Hen
e, it is straight-forward to apply multi-resolution te
hniques with thisdata stru
ture. We expli
itly distinguish the topologyof the points (how they are 
onne
ted) from their ge-ometry (where they lie in spa
e), and des
ribe themseparately.
3.1. Topology DescriptionDeformations over the model a�e
t only the pointpositions, so keeping the topology apart enables usto have di�erent types of deformations applied overthe same topologi
al stru
ture. Be
ause of this dualrepresentation, di�erent models that share the sametopology representation will have a bije
tive relationbetween their points.In prin
iple, the topology representation is unne
es-sary when all you need is a 
loud of points. In pra
-ti
e, we are representing the surfa
e of a solid model,and we need the 
onne
tivity to determine the visiblepoints of the model, so the 
omputer vision algorithms
an know whi
h nodes to a�e
t (only the visible ones),and so that the 
omputer graphi
s appli
ations 
an
orre
tly render the obje
t. The topology des
riptionspe
i�es the number of nodes (points) on the surfa
eof the model, and how they 
onne
t. Figure 1 showsthe topology of a simple 
ube, with one point on ea
h
orner.
3.2. Directed Acyclic GraphThe des
ription of the model's geometry is more
omplex. While the topology usually remains stati
,the position of the points is 
ontrolled by ~q, the pa-rameter ve
tor. We 
onstru
t a dire
ted a
y
li
 graph(dag) to represent the geometry. This data stru
tureis 
apable of evaluating the position and Ja
obian ofall nodes given any value of the parameter ve
tor ~q.1The term graphi
al refers to graphs, as opposed to 
omputergraphi
s.
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Figure 1. Typical topology of a cube. The
eight corners are the only points represented
in this model.
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Figure 2. A simple dag representation of the
cube of Figure 3 parameterized by width,
depth and height. Nodes are represented as
circles, where the dashed ones are the ghost
nodes. Dependencies are represented as di-
amonds.This stru
ture is 
omposed of two basi
 elements:nodes and dependen
ies. Nodes 
an be normal nodesand ghost nodes. Normal nodes are the a
tual nodeson the surfa
e of the model, and have their 
onne
-tivity determined by the topology des
ription. Ghostnodes, on the other hand, are not physi
al points of thesurfa
e. Ghost nodes 
an be seen as auxiliary points,temporary results or ve
tors. The dependen
ies are themathemati
al building blo
ks that 
al
ulate the posi-tions and derivatives in a re
ursive way.Ea
h node has one parent: a dependen
y, and ea
hdependen
y 
an have multiple nodes as parents. Thedag representation of a mode is not unique. As anexample, 
onsider a parameterization of a 
ube, withthe topology of Figure 1, a

ording to its depth, height,and width.A simple parameterization 
an be a
hieved with onlyone layer of dependen
y, illustrated on Figure 2 (wherethe nodes represented as 
ir
les, and the dependen
iesas diamonds). In this 
ase, ea
h 
orner of the 
ube isthe sum of the origin and weighted ve
tors along theX, Y and Z axis.Another possible dag realization 
reates a ghostnode to represent the 
enter of the front square by sub-

tra
ting half the depth along Z from the origin. Thefour 
orners of the front square 
ome straight out of it,by adding and subtra
ting half of the height and width.From ea
h of the the four frontal nodes we 
an just addthe depth along Z to �nd the ba
k 
orners. This 
om-pli
ated realization is illustrated in Figure 3, where de-penden
ies are represented by diamonds, ghost nodesby dashed 
ir
les, and normal nodes are solid 
ir
les.
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Figure 3. An illustration of a “not so simple”dag representation of cube parameterized by
width, depth and height. For a given model
the representation in a dag is not unique.
Nodes are represented as circles, where the
dashed ones are the ghost nodes. Dependen-
cies are represented as diamonds.Ea
h dependen
y represents a basi
 operation, andhas en
oded knowledge on how to 
al
ulate positionsand Ja
obian, given a set of input nodes and param-eters. Whenever we query a node for its position, orJa
obian, the node forwards the request to the respe
-tive parent dependen
y. The dependen
y in turn getsthe position, or Ja
obian, of the parent nodes, and 
al-
ulates the resulting position, or Ja
obian (using the
hain rule). This stru
ture de�nes a dire
ted graph,and in order to avoid undetermined expressions2, thereare no loops. Thus, it is a dire
ted a
y
li
 graph. Weevaluate all the information of the deformable modelby evaluating every node. When the data stru
ture isimplemented with 
are, nodes and dependen
ies 
a
hetheir values and there is no need to perform a topolog-i
al sort beforehand.2This is not entirely true, there are re
ursive mathemati
alexpressions that are well de�ned, but to allow this 
lass of ex-pression would in
rease the 
omplexity of the data stru
ture and
omputational feasibility.



3.3. DependenciesThe dependen
ies are the mathemati
al buildingblo
ks of the dag data stru
ture. We only need asmall set of simple dependen
ies to model fairly 
om-plex deformations. We a
hieve this with the smartuse of extra intermediary ghost nodes as temporary re-sults, whi
h 
orrespond to the 
ommon subexpressionsin the 
omputations. The dag data stru
ture 
an be
ompared to a tree for symboli
 expressions as used inmany symboli
 pa
kages like Mathemati
aTM [21℄, anddes
ribed in the literature of parsing and formal lan-guages [2℄. Sin
e we allow the sharing of intermediateresults through several dependen
ies using the same
ommon nodes, the stru
ture is no longer a tree. Nev-ertheless the dag data stru
ture 
an be seen as is asymboli
 evaluator.We now des
ribe only three simple dependen
ies.They are a small subset of all the dependen
ies thatwe have implemented.Fixed Point This dependen
y does not have anynode as a parent. It takes 3 
onstants λ1, λ2, and
λ3 to de�ne its position and Ja
obian:

pi =





λ1

λ2

λ3



 and Ji = 0.Sin
e the position is �xed and does not depend on anyother node or parameter, the Ja
obian is simply 0.Linear Combination of Points This dependen
yrequires a set of nodes {n1, . . . , nk} and a set of 
on-stants {λ1, . . . , λk}. Then, as the name implies:
pi =

k∑

j=1

λjpnj
and Ji =

k∑

j=1

λjJnj .Add Parameterized Ve
tor This dependen
yadds a ve
tor represented by three 
onstants λ1, λ2,and λ3, s
aled by parameter l, to an existing node j.
pi = pj + ql


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3.4. Advantages of the DAG approachThe two main advantages of the graphi
al approa
hare �exibility and performan
e. On the �exibility side,

the deformable model framework be
omes more gen-eral, be
ause it is easy to swap out one model for an-other without having to alter the framework in anyother way. In addition, the framework 
an 
reate mul-tiresolution models dynami
ally, just by 
ulling nodesfrom the dag.On the performan
e side, the dag stru
ture makesit easy to fa
tor out 
ommon subexpressions and to as-so
iate them with ghost nodes. As a result, the numberof 
omputations on the deformable model is drasti
allyredu
ed. It is even 
on
eivable � although we havenot implemented it � to use symboli
 manipulationte
hnologies to fa
tor out these subexpressions auto-mati
ally.Furthermore, as PC-based ar
hite
tures be
omemore and more ubiquitous even for the most demand-ing 
omputer vision appli
ations, main memory band-width be
omes a major performan
e bottlene
k, be-
ause images and large models are typi
ally too largeto �t in the 
a
hes of 
urrent PC pro
essors. As a re-sult, the order of 
omputations and their memory a
-
ess patterns have a larger e�e
t on performan
e thanthe raw number of �oating point operations. By usingtopologi
al sorting te
hniques, the deformable modelframework 
an determine the optimal order and mem-ory storage of 
omputations automati
ally. In our fa
etra
king experiments des
ribed in the next se
tion, thisoptimization alone sped up the running time by morethan 35% on an Intel Xeon running at 2 GHz, and by45% on an AMD Athlon running at 1.2 GHz. Thisoptimization would be very di�
ult to perform if themodel were hard
oded.4. ExamplesThe dag data stru
ture is one 
omponent of a largersystem we have under development. We use this systemfor the two examples in this se
tion: fa
e tra
king and
yberglove data visualization.We use Lua, a fully programmable embedded lan-guage [1℄, to des
ribe and 
onstru
t the dag data stru
-ture of the models. This allows a powerful and e�
ientway to a
tually 
reate the models, and their depen-den
ies, pro
edurally. Sin
e we have a fully fun
tionallanguage for the model des
ription, we 
an automatethe model's dag 
onstru
tion, and all the dependen-
ies parameters. For example, the fa
e model of thefa
e (in Se
tion 4.1) is automati
ally built from theposition of the undeformed points and the regions ofthe fa
e surfa
e where the deformations should a�e
t.In Se
tion 4.2, we 
onstru
t a set of a�ne frames tobuild a hand model automati
ally.



Figure 4. Three positions of the eyebrows.

4.1. Face TrackingIn this se
tion we brie�y des
ribe how we have 
re-ated a simple, yet powerful, deformable fa
e model us-ing the dag data stru
ture. We show some results ofour fa
e tra
king system.We started with a stati
 a geometri
 model of ahead, publi
ly made available by the 
omputer graph-i
s group of the University of Washington3 as partof [16, 17℄. We 
arefully extra
ted a mask of the fa
e,and simpli�ed it using SlimKit Surfa
e ModelingTools4. The result was a stati
 mask model of a generi
fa
e with 1101 nodes and 2000 fa
es. We then markedregions in the surfa
e that are a�e
ted by a parameter,and how this e�e
t varied in this region. For every pa-rameter we applied a layer of deformation. Ea
h layerof deformation 
reated one new ghost node for everysurfa
e node a�e
ted by this parameter. The ghostnode took over the previous behavior of the surfa
enode. The surfa
e node itself was altered to en
ode theextra deformation in a dependen
y on the new ghostnode. Figure 4 is an example of the e�e
t of one singledeformation (eyebrow), showing three snapshots of themovement of the eyebrows.The model has one parameter to raise/lower eye-brows, two parameters for the smiling/stret
hing of themouth, one parameter for the opening of the jaw, andanother 7 for the referen
e frame (a total of 11 parame-ters). For simpli
ity, we modeled the the jaw movementas an a�ne transformation. This approximation is suf-�
ient for small openings of the mouth, even thougha rotation operation is the 
orre
t way to model thejaw. Note (in the movie) that for a large opening ofthe mouth the system 
orre
tly tra
ks the the mouthmovement and does not loose tra
k, even if the shapeis temporarily not a

urate.Figure 5 has six snapshots of a tra
king experimentusing this model. This sequen
e has approximately4000 grays
ale frames 
aptured at 60Hz on a 640×480resolution. The tra
king te
hnique we used is partiallydes
ribed in [11℄. It 
onsists of a statisti
al te
hniqueto adaptively integrate di�erent 
omputer vision 
ues.Before the beginning of a tra
king se
tion we per-form a �t of the base mask. The �t pro
ess provides3http://www.
s.washington.edu/resear
h/graphi
s/-proje
ts/realfa
e/4http://www.
s.
mu.edu/~garland/quadri
s/

Figure 5. Snapshots of a tracking sequence
of approximate 4000 frames. The deformable
model used here has only 11 parameters.us with a new set of positions for the points (that rep-resent the fa
e at rest), and the orientation and trans-lation of the model in the �rst frame.

4.2. Cyberglove Visualization and CalibrationVisualization is an important appli
ation in humanbody motion resear
h. Deformable models are an idealtool for this visualization, be
ause they are powerfulenough to des
ribe the 
omplex shape and deforma-tions of human body parts, yet the parameterizationthat governs the deformations is often extremely sim-ple. As a result, they are easy to manipulate duringthe visualization pro
ess. Moreover, it is possible toparameterize the models in a manner 
ompatible withthe motion 
apture systems that are often used for a
-quiring the data.As an example, 
onsider visualizing the human handwith data 
aptured from a CybergloveTM. This instru-ment delivers values between 0 and 255 representing ameasure of the joint angles of the �nger digits, and theabdu
tion angles between �ngers, as well as wrist yawand pit
h. The raw values between 0 and 255 need tobe 
onverted to joint angles via a 
onversion fun
tion
Fc, whi
h is di�erent for every human. As a result, FCneeds to be 
arefully 
alibrated, espe
ially for those ap-pli
ations that are highly sensitive to slight variationsin the joint angle, su
h as gesture and sign languagere
ognition. To a
hieve this 
alibration, it is ne
essaryto visualize the 
yberglove data with a hand model,while adjusting the 
alibration 
oe�
ients 
arefully.The dag stru
ture provides a very simple and el-egant way to parameterize the hand model that weuse for visualizing and 
alibrating the 
yberglove data.The raw values from the 
yberglove and the 
alibration
oe�
ients both 
onstitute the model parameters. Forea
h joint angle, we 
reate a set of four ghost nodesthat represent the a�ne frame for the digit 
ontrolledby this angle. These four nodes are parameterized bythe 
orresponding 
yberglove values and 
alibration 
o-e�
ients. We express all other nodes that belong to the



Figure 6. Three example deformations of the
hand during cyberglove visualization and cal-
ibration.same digit as bary
enters in that a�ne frame; that is,an unparameterized weighted sum of these four nodes.Figure 6 shows three examples of visualizing and ad-justing the 
alibration of 
yberglove data.Note that with some re�nement of the hand model� through adding more nodes �, the same dag 
ouldbe used for tra
king a hand with a deformable model.The tra
king algorithm would then estimate the pa-rameters of the model in a manner 
onsistent with thevalues that the 
yberglove generates. The 
ompellingadvantage of this 
onsisten
y is that it makes it easyto swit
h from 
omputer vision-based tra
king to a 
y-berglove, and vi
e versa, without having to adjust therest of the appli
ation to deal with a di�erent set ofparameters.5. Con
lusions and Future WorkIn this paper we introdu
ed a powerful data stru
-ture that 
an represent models for both 
omputer vi-sion and graphi
s. Using a small set of simple math-emati
al primitives (the dag dependen
ies) it is pos-sible to des
ribe extremely 
omplex deformations. Inaddition, new dependen
ies 
an be easily 
reated byapplying the 
hain rule to determine the Ja
obian.When 
reating hard 
oded models by hand, the taskof 
omputing the Ja
obians is hard and extremely time
onsuming . Using the dag data stru
ture, it is easy toautomati
ally spe
ify 
omplex deformations over largenumber of nodes � the 
omputation of the Ja
obians isdone automati
ally, on demand.The dag data stru
ture 
an represent both layeredand hierar
hi
al deformations as we have shown in thetwo examples. A possible future appli
ation is to de�nea deformable fa
e whose parameters 
oin
ide with thempeg4 fa
ial animation parameters (fap), thus allow-ing our fa
e tra
king system to generate mpeg4 data.This te
hnique allows the formal spe
i�
ation of de-formations as graphs. An interesting problem, for ex-ample, that remains open is how to develop algorithmsthat 
an simplify a graph to obtain a more 
ompu-tationally e�
ient stru
ture. Another important andextremely hard appli
ation is the 
onstru
tion of thedependen
y graph for a set of nodes based on data.
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