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Abstract

This paper discusses the problem of motion processing
and proposes the use of a mathematical model, which
describes a motion signal as a path with variable har-
monic components. We show that this model is quite
suited to representing a motion path as a periodic part
with additional motion texture (noise), as described in
[18]. This provides a good mathematical formulation
to the idea of “motion content”. We also describe some
mathematical tools that can be used with the model in
order to construct different motion paths filters. As an
aplication, we describe an algorithm to change auto-
matically the time duration of a motion. We also point
to interesting research directions on motion processing,
using the model here introduced.

CR Categories: I.3.7[Computer Graphics]: Three-
dimensional graphics–Animation; I.4.8[Image Process-
ing and Computer Vision]: Scene analysis–Time vary-
ing images.

Additional Keywords: Motion processing, Mo-
tion editing, Windowed Fourier Transform, Gabor
wavelets, Lapped Cosine Transform, Cyclification,
Reparametrization, Harmonic components.

1 Introduction

Motion processing uses operations over motion paths
in order to modify an existing animation. With the
widespread use of motion capture devices, the area of
motion processing has turned out to assume an impor-
tant role in computer animation systems.
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In fact, the development of robust motion processing
techniques allows us to store captured motion, creating
motion databases, which could be further modified to
achieve some desired animation goals [13], [9].
These techniques should allow us to envision for an-

imation the same paradigm of image based rendering
and modeling. In fact, by capturing some specific mo-
tions from a family of characters, we should be able to
create a “motion panorama” which would allow us to
reconstruct any motion related with the family.
The image based rendering paradigm has produced

fruitful results so far mainly because of the well estab-
lished mathematical foundations in the area of image
processing and computer vision. The existence of both
functional and stochastic models for images, along with
techniques for inverse problems allow us to develop a
plethora of linear, projective and more complex non-
linear filters. These filters allow us to analyze, pro-
cess and sinthetize families of images, which entails the
whole paradigm of image based rendering and model-
ing.

2 Previous Work

A motion signal is a vector function of one variable
f : R → Rn. This signal represents the positional and
rotational values of the nodes of a character hierarchy
(see Figure 1). We have f(t) = (f1(t), . . . , fn(t)),
where each component fi(t) is called a motion path.
Motionprocessing consists in the use of operators on a

space of motion signals. Motion processing techniques
are used in many animation production environments
and some processing techniques are found in commer-
cial software currently available. Computer games such
as FIFA Soccer [2] and virtual reality applications such
as ActiveWorlds [1] employmotion databases with hun-
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Figure 1: Motion signal.

dreds of small pieces of movements. According to user
interaction, these motion paths are combined in real-
time in order to achieve the desired goal.
There are two basic approaches to construct these op-

erators:

• Using spacetime constraints;

• Constructing operators directly on motion signal
spaces.

Spacetime constraint methods reduce the problem to
the use of optimization techniques tominimize some en-
ergy functionals obtained by imposing different spatial
constraints on the motion signal (i.e. the configuration
space of the motion) (see [24]). Examples of this ap-
proach can be found in [25], [19] [10], [4], [14].
The direct approach, also called the signal process-

ing approach, mimics on the idea of traditional image
processing. A classical example occurs in keyframe an-
imation systems, where sampling, reconstruction and
resampling techniques are used to create motion paths
from the keyframes. Also these techniques enable us
to change some of the motion parameters (e.g. motion
speed and acceleration) [6].
The signal processing approach to motion processing

has been well addressed in [3]. In [22] a motion pro-
cessing approach is used to create “emotional filters” for
a character. In [4] operators are defined to change the
time duration of a motion (cyclification).
In order to further develop the techniques of direct

motion path operator construction, a point of fundamen-
tal importance consists in devising good mathematical
models for motion path representation. Currently, there
are essentially two basic approaches to representing a
motion path:

• Spline-based representation;

• Periodic representation.

In the first model the motion signal is considered as
a curve in the Euclidean n-dimensional space Rn, and
splines of different nature are used to represent and pro-
cess the motion path. All of the “spline carpentry” is
used to devise operators over motion signals. As an
example, when a motion is captured spline-based inter-
polation techniques are used to reconstruct the motion
signal from the samples [21].
In the periodic representation the motion path is as-

sumed to be a periodic path. In this case the motion
is completely characterized by its amplitude, frequency
and phase. This representation allows us to use Fourier
based techniques in order to construct motion filters. An
interesting example of this approach appeared in [22],
where “emotionalfilters” are developed representing the
motion signal by periodic paths. These filters are com-
puted on the Fourier domain by modifying the phase,
amplitude and frequency of the motion signal.
The analysis and detection ofmotion cycles is an easy

task for perfectly periodic motions, where the beginning
and end of the curves match precisely. However, due to
the nature of human locomotion, it is very unlikely that
a perfectly periodic motion will occur. Small variations
in phase and amplitude components of a “potentially
periodic” human motion signal are caused by a series
of factors, including oscillations of torque in muscles,
uneven terrain and other external factors. These biome-
chanic and external factors introduce an important noise
component in the signal, which is a fundamental aspect
of natural-looking motion. We will call a motion with
these properties as near–periodic.
We conclude that the use of periodic paths to repre-

sent a motion path is a crude approximation. Figure 2
shows the motion path of the elbow corresponding to
two cycles.

Figure 2: Motion path of the elbow motion.
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Ken Perlin, [18], has pointed out that the presence of
noise, (Perlin noise), is an essential component to obtain
expressivemotion of characters: The noise enhances the
character gestures and allow us to obtain more pleasing
gestures when animating the character. This established
the fact that a motion signal is composed of periodic
components plus noise, which is commonly referred as
“motion texture”.

3 Our contribution

The basic idea of the direct computation of motion path
filters consists in extending the classical technique of
image processing to motion. The success of image pro-
cessing comes from the existence of very good math-
ematical tools to process images: good image models
(functional and stochastic), andgoodmathematical tools
to work with, arising from the theory of function spaces
and stochastic processing.
Therefore, it is clear that the mathematical represen-

tation for a motion signal needs further investigations in
order to design better motion filtering techniques. This
is the main contribution of this work.
We propose the use of a new model for a motion sig-

nal based on the idea of using variable harmonic com-
ponents. This idea is borrowed from the study of music
and speech signals. We describe some mathematical
tools to create motion filters using the model, and we
describe an automatic algorithm to change the duration
of a motion without modifying the “motion contents”.
Also, we point to new mathematical tools, based on

wavelets, to compute the harmonic components of amo-
tion signal in order to create a whole new family of fil-
ters.

4 Variable harmonic contents

Periodic signals posses distinguished harmonic compo-
nents characterized by three parameters: amplitude, fre-
quency and phase. The study of these signals, in partic-
ular their description, representation and processing, is
attained with the use of Fourier theory. Unfortunately,
there are important signals that are not periodic, and the
use of Fourier theory to study these signals has several
limitations.
Figure 3 shows the plot of the amplitude variation

along time of a music signal (a) and a speech signal (b).
These two signals have some resemblance, although the

speech signal has noticeable noise. This comes from the
fact that both of them have harmonic components.

(a)

(b)

Figure 3: Musical signal (a), speech signal (b).

Since the signals are not periodic, these harmonic
components have a variable nature, and an important
issue consists in characterizing mathematically the na-
ture of these components. This characterization should
enable us to devise new tools to describe, represent and
define operators on these signals.

4.1 The LCT decomposition
A well known approach to study harmonic contents of
audio signals consists in subdividing the time domain
of the signal into a number of “harmonic components
packets”. This is attained using a block basis transform.
Essentially, we obtain a partition of the time interval, and
for every interval of the partition we measure the har-
monic components using an interval based cosine basis
at different scales. An example of this approach is the
classical Discrete Cosine Transform (DCT). Neverthe-
less, because of the periodicity of the cosine, the DCT
basis has the disadvantage of having discontinuities at
the boundaries.
A more recent approach was devised by H. Malvar,

[16, 17], in the discrete case and, R.R. Coiffmann, Y.
Meyer, [5], for continuous signals: Lapped block trans-
forms. In this transform the cosine basis are windowed
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in such a way to avoid boundary discontinuities, and the
intervals of the time partition overlap so as to maintain
the orthogonality of the DCT.
The most used block basis transform is the Lapped

Cosine Transform (LCT) which can be considered as
a smoothed version of the DCT. Figure 4 illustrates
the time-frequency decomposition of a signal using the
LCT.

Figure 4: Time-frequency representation.

The LCT time×frequency representation computes,
for each time interval, the harmonic contents of the sig-
nal at different scales. Therefore the transform is able
to measure the variable nature of the signal’s harmonic
components.

4.2 The harmonic decomposition
Another approach to study the harmonic components of
a signal consists in decomposing the signal using sums
of sinusoidal partials ([20]):

f(t) =
K∑

k=1

fk(t) =
K∑

k=1

ak(t) cos φk(t). (1)

This is called the harmonic decomposition of the signal.
In [12] speech signals are studied by using a decom-

position of the type

f(t) =
K∑

k=1

fk(t) =
K∑

k=1

ak(t) cos φk(t) + Noise.

(2)

This is in accordance with our previous remark that
speech signals have harmonic contents, as those of mu-
sic sound, with some additional noise.
The decomposition in equation (1) resembles a

Fourier series decomposition. Nevertheless both the
amplitude ak and the “phase function” φk change along
the time. The derivative φ′

k(t) is called the instanta-
neous frequency of the signal. Note that in the case of
periodic signals the amplitude is constant and φk(t) =
bt+c. Therefore, the instantaneous frequency coincides
with the frequency of the signal.
The characterization of the harmonic components of

music and speech signals using instantaneous frequency
is not new. J. Ville, [23], used the so calledWigner-Ville
transform

PV f(u, ω) =
∫ +∞

−∞
f

(
u +

τ

2

)
f∗

(
u − τ

2

)
e−iτωdτ,

in order to compute the instantaneous frequency of a
signal. In fact, theorem below was proved by him:

Theorem (Ville) If f(t) = a(t)eiφ(t) then

φ′(u) =

∫ +∞
−∞ ωPV fa(u, ω)dω
∫ +∞
−∞ PV fa(u, ω)dω

Nevertheless, it is well known that the Wigner-Ville
transform has computational problems caused by the
interference of crossed terms of the quadratic factor.
Recently, other time-frequency transforms have been

used to compute the harmonic decomposition of a sig-
nal. In [8] a method is described to compute the in-
stantaneous frequency and the variable amplitude using
theWindowed Fourier Transform. On the other hand, S.
Mallat, [15], has used Gabor wavelets, in order to obtain
the harmonic sum decomposition of a music signal.

5 Harmonic content of motion signals

We have seen in Section 2 that motion signals have a
near–periodic nature, and also posses noise. This fact
lead us to study these signals by characterizing them by
having variable harmonic components as in the case of
music and speech signals. By comparing the elbowmo-
tion signal from Figure 2, with those of Figure 3, it is
clear the resemblance between them. A major distinc-
tion is that the frequency of motion signals are very low
compared with those of speech or musical sound. This
is in fact a computational advantage.
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The above remark leads us to propose the use of the
mathematical models described in the previous section
in order to study motion signals. Therefore, we could
either use the harmonic decomposition in (1) to obtain
the amplitude and instantaneous frequency of the signal,
or we could use the Lapped Cosine Transform to obtain
a decomposition of the harmonic contents.

5.1 Motion retiming
A common problem when reusing a motion path is that
of changing the time duration. When a virtual player
is pursuing the ball in a soccer game, a small piece of
motion (e.g. a captured run motion) needs to be re-
peated several times to produce the effect of a running
character. In another example, captured facial motions
usually need some time-scaling processing in order to
be synchronized with previously recorded audio.
Motion retiming is usually attained with two distinct

techniques: motion reparametrization or motion cycli-
fication. The first technique uses sampling and recon-
struction methods techniques and it is quite suitable
when a motion path is described using splines (see [6]).
Motion cyclification performs a motion cycle analysis
and detection in order to retime the motion (see [7]).
Therefore, it is strongly based on the periodic nature of
the motion signal.

5.1.1 Retiming using harmonic decomposition

Consider a motion path f decomposed into harmonic
components as in equation (1). For a given constant
α ∈ R, define the signal gα(t) by

gα(t) =
n∑

k=1

ak(αt) cos
(

φk(αt)
α

)
(3)

Note that the signal f has been rescaled in time in or-
der to obtain gα. Moreover, from the definition of gα it
follows that the amplitude of f at t0 is equal to the ampli-
tude of g at αt0. Also, the instantaneous frequency of f
at t0 equals the instantaneous frequency of g at t = αt0.
We conclude that the operator f %→ gα changes the du-
ration period of motion without changing its harmonic
components (amplitude and instantaneous frequency).

5.1.2 Retiming using LCT decomposition

In this section we use the LCT decomposition of a mo-
tion signal in order to present an automatic method for

changing the duration of a motion without altering the
“motion content”. A complete description of this tech-
nique has been published in [7].
The idea of the retiming algorithm is to use the LCT

decomposition to obtain the “Harmonic content pack-
ets” of the signal. From this representation we scale the
time content of the packets, replicating them, without
changing the frequency content of each packet.
The retiming operation (W ) in the frequency domain

uses an affine dilation on the time axis of the time ×
frequency representation (which is equivalent to scaling
the image on the time axis). This results in a replication
of the atom elements of the representation, as shown in
Figure 5.
The process of time dilation is as follows: we trans-

form the 1D signal, T (f); apply the time scaling (di-
lation or compression), W (T (f)); and reconstruct the
curve in the time domain using the inverse transform,
T−1(W (T (f))). Since regions of the image represent
the presenceof certain frequency components in the time
segment limited by its boundaries, its stretching is re-
sponsible for a replication of the oscillations (prolonging
the phenomenon in the expansion case). A very good
illustration of the technique for speech signal is shown
in the dilation Figure 6 (from [11]).

time

fr
eq
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nc

y

→
time

fr
eq

ue
nc

y

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

→
0 10 20 30 40 50 60 70 80

−0.5

0

0.5

Figure 5: Time dilation in time × frequency domain.

The window computation

An essential step in the process of retiming of a motion
path is the computation of the window size of the LCT.
We compute this size based on the lowest frequency
present in the motion signal. This frequency is called
the fundamental cycle of the motion path.
Our method employs a circular autocorrelation func-

tion which measures the similarity between translated
versions of a signal, as shown in Figure 7 (a). The fun-
damental cycle is given by the distance between consec-
utivemaximum points of the correlated signal (Figure 7,
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Figure 6: Time × frequency representation and time
dilation of a signal f (top). (from [11])

b). In our method the signal borders are smoothed us-
ing awindowing process, thus givingmoreweight to the
central part of the data. This is extremely important be-
cause in periodic or near–periodic functions, there will
exist at least one maximum at each multiple of the fun-
damental cycle. However, there is no guarantee that
other (lower) local minima will also exist. Without the
windowing, all maxima concerning the multiples of the
fundamental cyclewill have amplitude similar to the sig-
nal energy, which makes difficult the task of choosing
the fundamental cycle.

5.1.3 Examples

In the following examples our method was applied to
several individual motion curves. In all cases, the fun-
damental cycle detected by the algorithm is represented
as a gray rectangle over the original signal, which is
placed at the top. A dilation factor of two has been used
in all examples.

∫
f(u).f(u − t)du

(a)

fundamental cycle

autocorrelation function

(b)

Figure 7: Autocorrelation of a near–periodic signal (a)
and its autocorrelation function (b).

Periodic motion

Figure 8 (top) shows a sine function with fixed period.
Note that although this function is periodic, in this ex-
ample the beginning and end of the signal doesn’tmatch,
and therefore a simple concatenation would not gener-
ate good results. Figure 8 (bottom) shows the result of
the cyclification applying our algorithm. Note that are
no discontinuities in the boundaries of the cycle.

Figure 8: Time duplication of a periodic motion with a
dilation factor of 2.
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Pendulum with friction

Figure 10 (top) shows the motion curve resulting from
a kinematic simulation of a pendulum presented in Fig-
ure 9.

A

B

O

Figure 9: Kinematic simulation of a pendulum.

It is important to notice that in this case there is only
a basic frequency which is repeated along the curve, but
its amplitude decreases quadratically with time due to
a simulated friction coefficient imposed to the system.
The resulting signal (Figure 10, bottom) shows a repli-
cation of the frequency component, while preserving the
quadratic decaying of its amplitude.

Figure 10: Time duplication of a pendulum motion
curve using a dilation factor of 2.

Left uparm joint curve

In this example, a motion curve (left uparm joint) from
a captured walking sequence was used as input to our
algorithm. Note that the resulting signal is a perfect
cyclification of the original one, with no discontinuities
during the motion loops.

Figure 11: Time duplication of a left uparm motion
curve. The dilation factor is 2.0.

6 Conclusions and current work

We have presented a novel mathematical framework to
study motion paths, based on the characterization of the
motion signal by the variable nature of its harmonic con-
tents. We have exploited this motion signal representa-
tion using the LCT transform with very promising re-
sults, as is the case with the retiming algorithm here
described.
Currently, we are implementing algorithms to com-

pute the harmonic decomposition of a motion signal,
using the Windowed Fourier Transform and Gabor
wavelets. It is our purpose to use this decomposition
in order to experiment with them in the definition of
a new family of motion path operations. In particular,
we are implementing an algorithm of motion retiming
based on harmonic decompositions, using equation (3).
We are also investigating the application of our cy-

clification method to articulated figure motion by using
captured human motion paths as input. In this case, an
important aspect that must be considered in the cyclifi-
cation process is that of synchronism between segments
in periodic or near–periodic human motions.
We have detected coupling patterns during the move-

ment of joints or groups of joints in specific sets of near–
periodic human motions (e.g walking). These joints
may have what we call strong and weak dependencies
on their phases. A strong dependence within a group
of joints means that their motion curves have a com-
mon periodic behavior, with phases that are multiples
of a predominant fundamental cycle. In a weak depen-
dence, the motion curves of joints are being influenced
by the movement of other joints or groups of joints. As
an example, in awalkmovement (Figure 12), themotion
of knees, feet, elbows and hands is strongly influenced
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Figure 12: Selected frames from a walk sequence.

by the motion of upper arm and upper leg joints. This
happens due to the structural relationship existing be-
tween these joints and also due to the nature of the walk
motion. Events such as heel-strike and toe-touch are
interpreted and processed by the human locomotor sys-
tem, triggering actions that will control the basic aspects
of a human gait. Moreover, there is a weak dependence
between the joints of the arms and legs. This happens
due to the necessity of a balance control that is achieved
by a cross synchronization of arms and legs motions.
By detecting the predominant cycle associated to

groups of joints and using it as starting point to the
cyclification process, we believe that our method will
preserve and correctly replicate all the fundamental cy-
cles of the motion path.
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