
Nonlinear Dynamic Systems for Autonomous Agents NavigationSiome Goldenstein and Dimitris MetaxasComputer and Info. Science DepartmentUniversity of Pennsylvania200 South 33rd StreetPhiladelphia, PA 19104 Edward LargeComplex Systems and Brain SciencesFlorida Atlantic University777 Glades Road, P.O. Box 3091Boca Raton, FL 33431AbstractWe present a method for the generation of real-timenavigation of dynamic autonomous agents in game en-vironments. The method is based on the use of dy-namic systems theory which allows the development ofsets of di�erential equations that exhibit distinct be-haviors. The di�erential equations are a carefully de-signed set of attractor and repeller �elds. Coupled to-gether with a \behavioral" selection of the relevant con-tributions at each time instant are capable of exhibit-ing useful steering behaviors in complex environments.To avoid local minima, carefully designed noise termsare added. Using this approach we are able to demon-strate in real time behaviors such as single/multipletarget tracking with stationary and moving obstacles.Keywords: Digital Agents, Game Animation, MotionPlanning, Dynamical Systems.IntroductionThe importance of game and simulation applicationsgrows everyday, as does the need for animated agentsthat operate autonomously in these environments.These agents must be able to exhibit certain behaviorsautonomously, without user intervention. Among thevarious methods higher levels of behavior, and move-ment decisions were investigated �rst in the pioneeringwork by Reynolds (Reynolds 1987), and then in workby others (Bates, Loyall, & Reilly 1992; Noser & Thal-mann 1993; Reynolds 1993; Tu & Terzopoulos 1994;Noser et al. 1995). AI approaches (Lethebridge & C1989; Funge, Tu, & Terzopoulos 1999) are capable ofgenerating autonomous behavior, but typical such tech-niques require complex inferencing mechanisms. Thismay require considerable computational resources, rais-ing the question of scaling up such systems as the num-ber of independent agents grows, or when each agenthas a completely di�erent goal and behavioral direc-tives. In addition to these factors, agents must be ableto interact with real-time moving objects that might ei-ther contribute to or compromise the �nal goal. Otherapproaches to this problem employ learning, percep-Copyright c 2000, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

tion and dynamic techniques (Grzeszczuk & Terzopou-los 1995).In our dynamic system approach to this problem, theearly methods were restricted to the generation of in-dividual behaviors such as navigation toward a �xedgoal. Recently, however, methods have been developedto allow an agent to arbitrate among a large numberof potential behaviors, and to generate complex se-quences of activity in a manner that is robust, yet ex-ible in the face of a changing environment (Steinhage& Sch�oner 1997; Large, Christensen, & Bajcsy" 1999;Goldenstein, Large, & Metaxas 1999). To achieve thisresult a second dynamical system is de�ned that op-erates in the space of task constraints. This dynamicapproach, forces task constraints to compete for repre-sentation at the behavioral level. Thus, at any giventime the behavioral vector �eld (and the observed be-havior) comprises a subset of possible task constraints.The parameters of the dynamical system are chosen insuch a way that the agent's behavior is appropriate tothe current situation.In this paper, we discuss an alternative methodol-ogy that has its roots in behavior-based robotics andis based on a novel way of combining di�erential equa-tions exhibiting particular behaviors. According to thismethodology, one de�nes a representation whose dimen-sions correspond to agent behavior. Using this type ofapproach, Sch�oner and colleagues have developed a dy-namical system for robot path planning and control. Inthis system a set of behavioral variables, namely head-ing direction and velocity, de�nes a state space in whicha dynamics of robot behavior is described (Sch�oner,Dose, & Engels 1996). Path planning is governed bya nonlinear dynamical system that generates a timecourse of the behavioral variables. The system dy-namics are speci�ed as a nonlinear vector �eld, whilethe task that the agent will execute depends upon thetask constraints. Task constraints are modeled as com-ponent forces, de�ning attractors and repellers of thedynamical system. The individual constraint contribu-tions are additively combined into a single vector �eld,which determines the observed behavior.Here we adapt the above methodology to develop au-tonomous dynamic behaviors for games. In particular,



we devise a set of time adaptive di�erential equationsto rule the heading angle and forward speed of a givendigital autonomous agent. Based on a principled com-bination of these equations we create a whole set ofrelatively complex \low-level" behaviors which are re-active in nature. To avoid unstable �xed points in thedi�erential equations1 we add a Gaussian noise term ineach equation. Using this system decisions are madeon-line and do not require any previous memory, train-ing or global planning. The set of targets and obstaclescan change during the course of the simulation, sincethe agent is able to make \smart" local decisions basedon its current global knowledge of the dynamic envi-ronment it is situated. An example of such a behavioris that the agent will temporarily disregard a target ifthere is an unsurpassable moving/stantionary obstacleimmediately between them. It will then focus like ahuman would do to �rst avoid the obstacle and thenrefocus on the target.Our system allows single/multiple target tracking inthe presence of multiple static/moving obstacles. Thedesign of the di�erential equations allows the tracking oftargets whenever their position is within the visible coneof an agent requiring only the estimation of its currentposition. However, obstacles are processed in a localfashion based on their relative location to the agentand the target. Given our applications, in our currentimplementation our agents are memoryless, reactive innature and depending on the situation (emergence ofnew obstacles and/or targets) their movement can bediscontinuous.In the following sections, we present previous relatedwork in the area, the design of our system and the seriesof real-time experiments.Movement DynamicsIn our methodology we combine two distinct dynamicsystems to model the movement and behavior of eachautonomous agent. The �rst system controls the move-ment of the agent. The state space of this system is twodimensional, the �rst parameter represents the head-ing direction, while the other speci�es its velocity. Thesecond system controls the agent's movement decisionmaking, i.e., its behavior. The state space of this sys-tem is the space of the agent's behaviors. The param-eter values of the state vector components determinewhich \elements" of the environment (e.g., obstacles,targets) will be used in the calculation of the agent'smovement and therefore behavior.Each autonomous agent movement is described in po-lar coordinates. It consists of a heading direction � anda forward velocity v. The heading angle is controlled bya one dimensional non-linear dynamical system, whichconsists of \repellers" placed in the subtended angle ofthe obstacles, and attractors in the subtended angles of1In di�erential equation terminology a �xed point is apoint where the derivative is zero and acts like a trap re-sulting in the agent not to be able to move.

targets (Section . In our formulation, the heading speedis modi�ed by either the heading angle information orthe relative location of the obstacles (Section ).Based on our formulation, an agent ignores targetsor obstacles, depending on the scene geometry aroundthe agent at each time instance. It is modeled basedon another type of nonlinear dynamical system, run-ning on a more re�ned time scale. This system out-puts weights that linearly combine the di�erent attrac-tor and repeller contributions as calculated by the �rstsystem. An important aspect of our methodology isthat it scales linearly with the number of obstacles andtargets in the environment.In the following we present the details of each of eachof the two dynamical systems.The Basic Movement DynamicsThe �rst dynamical system models the control of thebasic movement of each autonomous agent. The move-ment is de�ned by a 2D vector representing the agent'sheading angle and forward speed.The heading angle � of a given agent is controlled bya dynamical system of the type:_� = f(env); (1)where env is the vector of variables which models theenvironment (e.g., the geometry and position of the ob-stacles and targets) and we describe in detail below.According to our dynamical system formulation eachelement of the environment can \attract" or \repel" anagent. We will therefore use attractors to model targetsand repellers to model objects that should be avoided.We model an attractor asftar = a sin(��  ); (2)where  is the angle of the target's location relative tothe agent's location and a is a constant parameter.In order to model complex environment obstacles, en-emies or hazards are distinct entities. Fire-pits, for ex-ample, are clearly more dangerous than a large wall.Therefore the repeller de�nition should have enoughparameters to model the di�erent types of objects. Weachieve this by de�ning a repeller to be the multiplica-tion of three di�erent functions, Ri;Wi; Di, which resultin being able to model the type of repeller, its distanceto the agent and the extent of its inuence to the envi-ronent. We therefore repeller asfobsi = Ri Wi Di: (3)Function Ri models a generic repeller, and is con-structed as: Ri = (� �  i)� i e�1��� i� i �; (4)where  i is the angle of obstacle i and � i is the anglesubtended by it.



The second function, Wi, is responsible for limitingthe angular range of the repeller's inuence in the en-vironment and is modeled asWi = 12[tanh(h1(cos(��  i)�cos(2� i + �))) + 1]; (5)which models a window-shaped function and h1 is re-sponsible for the inclination of the window's sides andis modeled byh1 = 4=(cos(2� )� cos(2� + �)): (6)Here � is a \safety margin" constant.The third and last function, Di, models the inuenceof the obstacle to the environment by taking into ac-count the distance of the obstacle from the agent andis modeled as Di = e� rid0 ; (7)where ri is the relative distance between them, and d0controls the strength of this inuence as the distancechanges.The resulting inuence on the agent from all obstaclesi = 1; : : : ; n, is the sum of the respective repellersfobs = nXi=1 fobsi : (8)Therefore, the de�nition of the dynamical systemcontrolling the heading angle in (1) is obtained as:_� = f(env) == jwtarjftar + jwobsjfobs + n: (9)The weights wtar and wobs are intended to eliminatespurious attractors that can occur by the direct sum-ming of the nonlinear functions modeling the vari-ous obstacles and targets in the environement. Theseweights are obtained through a \constrain competi-tion", the second dyanamical system mentioned previ-ously and described in details in Section . They are theessence of the \low-level" behavior modeling. Finally,the noise term n is an extremely important factor. Itallows the system to escape from unstable �xed pointsin the de�nition of (9) (e.g., the \center" of a repeller,where _� = 0, but any slight diplacement would make itescape from such a situation such as the situation of aball situated on the crest of a hill).All the above functions are carefully designed so thatcertain expected actions will appear in the �nal system.Let's �rst consider a simple example (Fig. ), the resultof a simple interaction between a target, an attractor,and an obstacle, a repeller. Let's also take the simplecase that the location of the obstacle is close to thestraight line between the agent and the target.It is then clear that the agent will have to go aroundthe obstacle in order to hit the target. In this case,the modeling of the agent's heading direction _� basedon (9) is shown in the lower right graph of Fig. . Itis the composition of the target function (upper right

graphic) and obstacle function (middle right graphic).The presence of two �nal attractors, indicated by thetwo arrows in the lower right graph, show the two pos-sible obvious ways to get to the target and avoid theobstacle.
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.Figure 1: Attractor and Repeller interaction.A second more complex example consists of the agentfacing two di�erent obstacles located side by side. Ifthe obstacles are too far apart, the agent should beable to pass between them, otherwise it will have togo around them. This decision is taken automatically,as it can be seen in Fig. . Fig. 2(a) depicts the casewhere two obstacles are too close, Fig. 2(b) depicts thecase where the distance between the obstacles is exactlyequal to the size of the agent, a critical condition, andFig. 2(c) depicts the case when the obstacles are farapart to allow the easy passage of the agent betweenthem. For this simple case (no target and two obstacles)we have plotted at the bottom of each �gure (9) as afunction of the angle between the agent orientation andthe y axis (assuming that the noise term n is zero).These functions clearly show that the dynamical systemexhibits the correct behavior in terms of the value of the_�. For example in Fig. 2(a) _� = 0 depicts an unstable�xed point which would result in the agent trying togo through the obstacles. However, the insertion of asmall amount of noise n will overcome this situationeasily given the function diagram.
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1(c)Figure 2: Interaction of repellers of two obstacles.Constrain CompetitionIndividually, the attractors and repellers de�ned in sec-tion work well, but because of their non-linear char-acteristics their direct sum might not always yield theexpected results. For instace, in the example shown in
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. φFigure 3: Attractor of the angle dynamical system.Figure , the sum of one attractor with the two repellerspropose an impossible path inbetween the two obstacles{ they are too close from each other to allow the agent'spassage.To avoid this kind of problem, the composition of theattractors and repeller functions is not obtained by a di-rect sum, but though an weighted average by weightswi. These weights are the result of the second dynam-ical system, which runs at a more re�ned time scalewrt the dynamical system in (9). This second systemis modeled as_wi = �iwi(1� w2i )�Xj 6=i j;iw2jwi; (10)where in the simple case where only obstacles andtargets are modeled, the state space (wi) consists of(wtar; wobs), as used in (9).This system is completely de�ned by the parameterfunctions �i, termed competitive advantage, the param-eter functions ji, termed competitive interaction, andthe initial value of its state space. At each time in-stant these parameters will be computed according tothe geometry of the environment, and through (10) weobtain the weights to be used in (9). At a given timeinstance in the computation of (9), the computation ofthe weights based on (10) is not done in one step butin multiple steps. This is in order to ensure that thecomputed weights result in a stable �xed point of (10)as we will explain below. This explains why the wholesystem runs in multiple time scales { (10) is evaluatedat a much faster rate compared to (9).The correct design of the parameter functions �i andji will provide the desired low level behaviors. There-fore it is important to understand the stability of thissystem (for more details see (Perko 1991)), and incorpo-rate the geometry of the environment in the \low-level"behaviors. Table 1 shows the stability analysis for (10):wtar wobs Stability0 0 Unstable �tar; �obs > 00 �1 Stable obs,tar > �tar�1 0 Stable tar,obs > �obs�Atar �Aobs Stable �obs > tar,obsand �tar > obs,tarTable 1: Stability Analysis.There are four distinct cases each one related to adi�erent behavior. The �rst case, (wtar; wobs) = (0; 0)

leads to a situation where the target and the obstaclecontributions in (9) are turned o�. Obviously this caseshould be avoided, because the agent would move inan unpredictable way. To avoid this situation, both �ishould always be greater than zero.The second case (wtar; wobs) = (0; 1) occurs whenthe target's contribution is turned o� (like in the caseof Fig. ). It is stable as long as obs,tar > �tar.The third case (wtar; wobs) = (1; 0) happens whenobstacles are ignored. This may occur, for example,when there are no obstacles near the target. This caseis stable when tar,obs > �obs.The last case is when the values of both weightsare nonzero, (wtar; wobs) = (Atar; Aobs), also knownas the \averaging" solution. The following two con-ditions have to be satis�ed for this case to be stable�obs > tar,obs and �tar > obs,tar. This is de�netely adesirable situation.It is important to note that conditions two and threeare not mutually exclusive, and they can happen simul-taneously. In this case we have a situation of bistability,where the stable condition that will prevail depends onthe initial conditions. In this case there can be constantalternation between behaviors. A possible solution toavoid this problem is to give a \hysteresis" to the chang-ing of the weights.Based on the above, the design of �i and ij shouldcreate the di�erent stable points according to the en-vironment parameters. This process is described withdetails in (Large, Christensen, & Bajcsy" 1999), andthe functions for this two-dimensional case are:obs;tar = e�c2PtarPobsec2 tar;obs = 0:05�tar = atar �obs = tanh nXi=1 Diwhere Ptar and Pobs are:Ptar = sgn(dFtard� )ec1jFtarj (11)Pobs =Wobssgn(dFobsd� )ec1jFobsj (12)and also atar is such that whenever there is competitionamong targets and obstacles, targets will loose, but itwill always be active if there is only a \background"noise. This is set here to be 0:4(1 � �obs). Di (7) isthe function used in the distance contribution of eachobstacle repeller, and their sum gives a good estimativeof the concentration of obstacles around and near theagent.Modeling the Agent's VelocityMany di�erent approaches can be used for modelingthe forward velocity. A possible approach is to assign aconstant value to the forward velocity. This approachhas drawbacks in a real time changing environment: ifan obstacle is suddenly in front of the agent, there mightnot be enough time for the agent to change direction



and will result in a collision. A better approach is tohave the agent move faster when there are no objectsaround and slower in a crowded area. The agent shouldalso retreat when it is too close to an obstacle. Anequation for the forward velocity that satis�es the abovedesign criteria is the followingv = rmin � d1t2c ; (13)where rmin is the distance to the closest obstacle, d1the safety distance and t2c is the time to contact. Thismethod basically applies a constant time to contact ap-proach. If the closest obstacle is far then the forwardvelocity is large. Also if the closest obstacle is at a dis-tance smaller than d1, then the resulting forward veloc-ity will be negative, meaning that the agent will retreat.Note that only obstacles in front of the agent should beconsidered for this calculation. We have used the abovemethod in all our examples.Experimental ResultsThe system was implemented in C, using lua(R. Ierusalimschy & Celes 1996) as an extensible em-bedded language to describe both the scene and thetarget(s)/agent(s) movement.The constant a in (2) was set to 1 and thesafety margin � in (6) was set to 0.8. The Eu-ler integration time step was 0:25 and all the sim-ulations run in faster than real time. All ex-periments described below can be found on-line athttp://www.cis.upenn.edu/�siome/research/aaai2000In the �rst experiment we used a single static targetand a series of static obstacles between it's location andthe target's initial position. Note that in this case d0was 3:0.In the second experiment the scene is composed ofone static target and multiple moving obstacles. Theagent avoids colision by changes of direction and some-times by a velocity reduction or even a complete stop.In this simulation d0 was set to 2:0.In the third experiment there is a group of staticobstacles and a moving target. The agent successfullyreaches the target and avoids the moving obstacles. Inthis case d0 was set to 0:8 and the �nal velocity was theresult of the method scaled by 0:8.In the last experiment we illustrate the exibility ofour method by showing multiple moving and static tar-gets together with moving and static obstacles . Theconstant d0 was set to 1:0.In the videos all experiments appear rendered basedon the use of the rendering package Pov-Ray.ConclusionsWe have presented a technique to model autonomousagents navigation for game environments. Using a dy-namical system approach we control the agent's head-ing direction and its velocity. We have demonstratednatural low-level agent behavior in envirnments withmultiple targets and stationary/moving obstacles.
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