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a b s t r a c t

Contemporary Vision and Pattern Recognition problems such as face recognition, fingerprinting iden-
tification, image categorization, and DNA sequencing often have an arbitrarily large number of classes
and properties to consider. To deal with such complex problems using just one feature descriptor is a
difficult task and feature fusion may become mandatory. Although normal feature fusion is quite effec-
tive for some problems, it can yield unexpected classification results when the different features are
not properly normalized and preprocessed. Besides it has the drawback of increasing the dimensionality
which might require more training data. To cope with these problems, this paper introduces a unified
approach that can combine many features and classifiers that requires less training and is more adequate
mage classification to some problems than a naïve method, where all features are simply concatenated and fed indepen-
dently to each classification algorithm. Besides that, the presented technique is amenable to continuous
learning, both when refining a learned model and also when adding new classes to be discriminated. The
introduced fusion approach is validated using a multi-class fruit-and-vegetable categorization task in a
semi-controlled environment, such as a distribution center or the supermarket cashier. The results show

o red
that the solution is able t
the baseline.

. Introduction

Recognizing different kinds of vegetables and fruits is a recur-
ent task in supermarkets, where the cashier must be able to point
ut not only the species of a particular fruit (i.e., banana, apple, pear)
ut also its variety (i.e., Golden Delicious, Jonagold, Fuji), which
ill determine it’s price. The use of barcodes has mostly ended

his problem for packaged products but given that consumers want
o pick their produce, they cannot be packaged, and thus must be
eighted. A common solution to this problem is issuing codes for

ach kind of fruit/vegetable; which has problems given that the
emorization is hard, leading to errors in pricing.
As an aid to the cashier, many supermarkets issue a small book

ith pictures and codes; the problem with this solution is that
ipping over the booklet is time-consuming.

This paper reviews several image descriptors in the literature
nd introduces a system to solve the problem by adapting a camera

o the supermarket scale that identifies fruits and vegetables based
n color, texture, and appearance cues.

Formally, given an image of fruits or vegetables of only one vari-
ty, in arbitrary position and number, the system must return a list

∗ Corresponding author at: Av. Albert Einstein, 1251, Cx. Postal 6176, CEP 13083-
70, Campinas/SP, Brazil. Tel.: +55 19 8801 0992; fax: +55 19 3521 5888.
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168-1699/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.compag.2009.09.002
uce the classification error in up to 15 percentage points with respect to

© 2009 Elsevier B.V. All rights reserved.

of possible candidates of the form (species, variety). Sometimes, the
object can be inside a plastic bag that can add specular reflections
and hue shifts.

Given the variety and the impossibility of predicting which kinds
of fruit/vegetables are sold, training must be done on-site by some-
one with little or no technical knowledge. Therefore, the system
must be able to achieve a high level of precision with only a few
training examples (e.g., up to 30 images).

Often, one needs to deal with complex classification problems.
In such scenarios, using just one feature descriptor to capture the
classes’ separability might not be enough and feature fusion may
become necessary.

Although normal feature fusion is quite effective for some
problems, it can yield unexpected classification results when the
different features are not properly normalized and preprocessed.
Besides it has the drawback of increasing the dimensionality of the
data which might require more training examples.

This paper presents a unified approach that can combine many
features and classifiers. It requires less training and is more ade-
quate to some problems than a naïve method, where all features
are simply concatenated and fed independently to each classifica-

tion algorithm. We expect that this solution will endure beyond the
problem solved in this paper.

The introduced fusion approach is validated using an image data
set collected from the local fruits and vegetables distribution center
and made public. The image data set contains 15 produce categories

http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:anderson.rocha@ic.unicamp.br
dx.doi.org/10.1016/j.compag.2009.09.002
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Fig. 4 shows the variability in the number of elements within an
image.

Sometimes, the elements are inside a plastic bag which adds
specular reflections to the analyzed image. Furthermore, the pres-
A. Rocha et al. / Computers and Ele

omprising 2633 images collected on-site in a period of 5 months
nder diverse conditions. The implemented solution achieves a
lassification error less than 2% for the top one responses. With
he top two responses such error is smaller than 1%.

Section 2 gives a brief overview of previous work in object recog-
ition and image categorization. Section 3 presents the different
inds of image descriptors used in this paper as well as the produce
ata set. Section 4 introduces the solution for feature and classifier
usion, and Section 5 presents experimental results. Finally, Section
draws the conclusions and future directions.

. Literature review

Recently, there has been a lot of activity in the area of Image Cat-
gorization. Previous approaches considered patterns in color, edge
nd texture properties (Stehling et al., 2002; Unser, 1986; Pass et al.,
997); low- and middle-level features to distinguish broad classes
f images (Rocha and Goldenstein, 2007; Lyu and Farid, 2005; Cutzu
t al., 2005; Serrano et al., 2004). In addition, Heidemann (2004) has
resented an approach to establish image categories automatically
sing histograms, colors and shape descriptors with an unsuper-
ised learning method.

With respect to the produce classification problem, Veggievi-
ion (Bolle et al., 1996) was the first attempt of a Supermarket
roduce recognition system. The system uses color, texture and
ensity (thus requiring extra information from the scale). However,
s this system was created sometime ago, it does not take advan-
age of recent developments. The reported accuracy was ≈ 95%
n some scenarios but to achieve such result it uses the top four
esponses. The data set used in this paper is more demanding in
ome respects; while the data set in Veggievision had more classes,
he image capturing hardware gave a more uniform color and sup-
ressed specular lights. The data set assembled in this paper has
reater illumination and color variation among images, also there
s no measure to suppress specularities.

In general, the produce classification problem can be seen as
special instance of object’s categorization. Turk and Pentland

1991) employed principal component analysis and measured the
econstruction error of projecting the image to a subspace and
eturning to the original image space. We believe this is ill suited for
roduce classification because it depends heavily on illumination,
ose and shape.

Recently, Agarwal et al. (2004) and Jurie and Triggs (2005)
dopted approaches that break down the categorization problem
o the recognition of specific parts that are characteristic of each
bject class. These techniques, generally called bag-of-features
Marszalek and Schmid, 2006; Grauman and Darrel, 2005; Sivic et
l., 2005), showed promising results even though they do not try
o model spatial constraints among features.

Weber (2000) takes into account spatial constraints using a gen-
rative constellation model. The algorithm can cope with occlusion
n a very elegant manner, albeit very costly (exponential in the
umber of parts). A further development made by Fei-Fei et al.
2006) introduced prior knowledge into the estimation of the dis-
ribution, thus reducing the number of training examples to around
0 images while preserving a good recognition rate. Even with this

mprovement, the problem of exponential growth with the num-
er of parts persists, which makes it unpractical for the problem
resented in this paper, which requires speed for on-line operation.

Another interesting technique was proposed by Berg et al.
2005). In that work, feature points are found in a gradient image.

he points are connected by a joining path and a match is signalized
f the found contour is similar enough to the one in the database. A
erious drawback of this method for produce classification is that
t requires a nonlinear optimization step to find the best contour;
esides that it relies too heavily on the silhouette cues, which are
s in Agriculture 70 (2010) 96–104 97

not a very informative feature for fruits like oranges, lemons and
melons.

3. Materials and methods

In general, image categorization relies on combinations of sta-
tistical, structural and spectral approaches. Statistical approaches
describe the objects using global and local descriptors such as mean,
variance, and entropy. Structural approaches represent the object’s
appearance using well-known primitives such as patches of impor-
tant parts of the object. Finally, spectral approaches describe the
objects using some spectral space representation such as Fourier
spectrum (Gonzalez and Woods, 2007).

This paper analyzes statistical color and texture descriptors as
well as structural appearance descriptors to categorize fruits and
vegetables in a multi-class scenario. Since the best combination of
features was not known for this problem, we analyze several state-
of-the-art Computer Vision features in many different ways, and
assemble a system with good overall accuracy using underpinned
cross-validation procedures that allows the combination of the best
features and classifiers into a single and unified approach.

The following sections present the statistical and structural
descriptors used in this paper, as well as the data set assembled
for the validation process.

3.1. Supermarket Produce data set

The Supermarket Produce data set is one of the contributions in
this paper.1 In general, there are a few well-documented image
data sets available for image categorization and content-based
image retrieval tasks for testing algorithm performance. ALOI2 and
Caltech3 are two examples of such data sets for general categoriza-
tion.

The Supermarket Produce data set is the result of 5 months of on-
site collecting in the local fruits and vegetables distribution center.

The images were captured on a clear background at the reso-
lution of 1024× 768 pixels, using a Canon PowerShot P1 camera.
For the experiments in this paper, they were downsampled to
640× 480. The data set comprises 15 different categories: Plum
(264), Agata Potato (201), Asterix Potato (182), Cashew (210), Onion
(75), Orange (103), Taiti Lime (106), Kiwi (171), Fuji Apple (212),
Granny-Smith Apple (155), Watermelon (192), Honeydew Melon
(145), Nectarine (247), Williams Pear (159), and Diamond Peach
(211); totalizing 2633 images. Fig. 1 depicts some of the classes of
the data set.

All of the images were stored in RGB color-space at 8 bits per
channel. The images were gathered at various times of the day and
in different days for the same category. These features increase the
data set variability and represent a more realistic scenario. Fig. 2
shows an example of Kiwi and Granny-Smith Apple categories with
different lighting. The differences are due to illumination, no image
pre-processing was performed.

The Supermarket Produce data set also comprises differences
in pose and in the number of elements within an image. Fig. 3
shows examples of the Cashew category. Note that there are vari-
ations in the pose of the Cashew’s plastic repository. In addition,
1 Freely available from
http://www.liv.ic.unicamp.br/∼undersun/pub/communications.html.

2 http://staff.science.uva.nl/∼aloi.
3 http://www.vision.caltech.edu/Image Datasets/.

http://www.liv.ic.unicamp.br/~undersun/pub/communications.html
http://staff.science.uva.nl/~aloi
http://www.vision.caltech.edu/Image_Datasets/
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Fig. 1. Supermarket Produce data set.

Fig. 2. Illumination differences within categories.

Fig. 3. Pose differences. Cashew category.
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Table 1
Histogram-associated global measures.

Mean � = (1/2)
∑

i
ihs[i]

Contrast Cn =
∑

j
j2hd[j]

Homogeneity Hg = (1/(1+ j2))hd[j]

Energy En =
∑

i
hs[i]

2
∑

j
hd[j]2

Variance �2 = (1/2)
(∑

(i− 2�)2hs[i]+
∑

j2hd[j]
)

Fig. 4. Variability on the number of elements. Plum category.

nce of shadows (e.g., second and third images of Fig. 2(a)) and
ropping/occlusions (e.g., Fig. 5) makes the data set more realistic.

.2. Image descriptors
In this section, we describe statistical color, texture, and struc-
ural appearance descriptors (bag-of-features) in order to propose a
ystem to solve a multi-class fruits/vegetables categorization prob-
em.

Fig. 5. Examples of cropping and partial occlusion.
i j

Correlation Cr = (1/2)
(∑

i
(i− 2�)2hs[i]−

∑
j
j2hd[j]

)
Entropy Hn = −

∑
i
hs[i] log(hs[i])−

∑
j
hd[j] log(hd[j])

3.2.1. Global Color Histogram (GCH)
The simplest approach to encode the information present in an

image is the Global Color Histogram (GCH) (Gonzalez and Woods,
2007). A GCH is a set of ordered values, one for each distinct color,
representing the probability of a pixel being of that color. Uniform
quantization and normalization are used to reduce the number
of distinct colors and to avoid scaling bias (Gonzalez and Woods,
2007). This paper uses a 64-d GCH feature vector, which means a
histogram with 64 bins (features).

3.2.2. Unser’s descriptors
Unser (1986) has shown that the sum and difference of two ran-

dom variables with same variances are de-correlated and define the
principal axes of their associated joint probability function. Hence,
the author introduces sum s and difference d histograms as an
alternative to the usual co-occurrence matrices for image texture
description.

The non-normalized sum and difference associated with a rela-
tive displacement (ı1, ı2) for an image I, are defined as

sk,l = Ik,l + Ik+ı1,l+ı2
, (1)

dk,l = Ik,l − Ik+ı1,l+ı2
. (2)

The sum and difference histograms over the domain D are
defined similarly to the spatial level co-occurrence or dependence
matrix definition:

hs(i; ı1, ı2) = hs(i) = Card{(k, l)∈D, sk,l = i}, (3)

hd(j; ı1, ı2) = hd(j) = Card{(k, l)∈D, dk,l = j}. (4)

In addition to the histograms, as Table 1 shows, the method
uses some associated global measures: mean (�), contrast (Cn),
homogeneity (Hg), energy (En), variance (�2), correlation (Cr), and
entropy (Hn)) over the histograms.

This paper uses a 32-d Unser feature vector (histogram with 32
bins), calculated in the grayscale representation of the images.

3.2.3. Color coherence vectors (CCVs)
Pass et al. (1997) presented an approach to compare images

based on color coherence vectors. They define color coherence as
the degree to which pixels of that color are members of a large
region with homogeneous color. They refer to these significant
regions as coherent regions. Coherent pixels are part of some siz-
able contiguous region, while incoherent pixels are not.

In order to compute the CCVs, the method blurs and discretizes
the image’s color-space to eliminate small variations between
neighboring pixels. Then, it finds the connected components in the
image in order to classify the pixels within a given color bucket as
either coherent or incoherent.
After classifying the image pixels, CCV computes two color his-
tograms: one for coherent pixels and another for incoherent pixels.
The two histograms are stored as a single histogram. This paper uses
a 64-d CCV feature vector, which means two 32-bin histograms.
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Fig. 6. Dictionary of parts (partial), clustered using K-Means.

.2.4. Border/interior (BIC)
Stehling et al. (2002) presented the border/interior pixel classi-

cation (BIC), a compact approach to describe images. BIC relies on
he RGB color-space uniformly quantized in 4× 4× 4 = 64 colors.
fter the quantization, the image pixels are classified as border or

nterior. A pixel is classified as interior if its 4-neighbors (top, bot-
om, left, and right) have the same quantized color. Otherwise, it is
lassified as border.

After the image pixels are classified, two color histograms are
omputed: one for border pixels and another for interior pixels. The
wo histograms are stored as a single 128-dimension vector.

.2.5. Appearance descriptors
Agarwal et al. (2004) and Jurie and Triggs (2005) have proposed

o describe local appearance using a vocabulary of parts.
In such cases, images are converted to grayscale to locate inter-

st points and patches are extracted from the gradient magnitude
mage or the original grayscale image. Lowe’s feature point detec-
or, for instance, can be used to find the coordinates of interest
oints, together with orientation and scale. Once found, a square
egion around the point is extracted. The square side is propor-
ional to the scale and the orientation follows that of the feature
oint. Once extracted, all patches are resized to 13× 13 pixels.

All patches in the training set are clustered using K-Means. The
luster centers are used as a part dictionary. The found centroids
an be seen in Fig. 6.

This paper uses two different schemes for values of the com-
onents of the feature vectors. In the first one, the value for each
omponent is equal to the distance between the dictionary part di

nd the closest patch pj in the given image, as in the equation

i =min
∀j

pj · di

||pj||||di||
. (5)

In the second scheme, the value for the component is equal to
if this part is the closest one for some patch of the input image,

nd it is 0 otherwise

i =
{

1 if i = argmin
i

pj · di

||pj||||di||
for somej

0 otherwise.
(6)

When convenient, the name of the algorithm is suffixed with
he size of the used feature vector. For instance, K-Means-98 refers
o the use of K-Means algorithm on a code-book (feature space) of
8 dimensions.

The vocabulary of parts uses some images from the Supermarket
roduce data set in the vocabulary creation stage. The images used
or the vocabulary generation are excluded from the data set in the
osterior training/testing tasks.

.3. Supervised learning techniques
Supervised learning is a machine learning approach that aims
o estimate a classification function f from a training data set. The
ommonest output of the function f is a label (class indicator) of the
nput object under analysis. The learning task is to predict the func-
Fig. 7. Background subtraction results for four different approaches.

tion outcome of any valid input object after having seen a sufficient
number of training examples.

In the literature, there are many different approaches for super-
vised learning such as Linear Discriminant Analysis (LDA), Support
Vector Machines (SVMs), Classification Trees, Neural Networks
(NNs), and Ensembles of Classifiers (Bishop, 2006).

3.4. Background subtraction

For a real application in a supermarket, it might be necessary
to cope with illumination variations, sensor capturing artifacts,
specular reflections, background clutter, shading, and shadows.
Therefore, in order to reduce the scene complexity, it might be
interesting to perform background subtraction and focus in the
object’s description.

Fig. 7 depicts results for some segmentation approaches con-
sidered in this paper. Otsu background algorithm (Otsu, 1979)
is the fastest tested approach requiring only 0.3 s to segment an
input image of 640× 480 pixels. Meanshift (Comaniciu and Meer,
2002) provides a good image segmentation within 1.5 s in aver-
age but requires the correct tuning of parameters for different
image classes. Normalized cuts (Shi and Malik, 2000) approach
produces good results but, as it needs to calculate the eigenvec-
tors of the image, it requires ≈ 5 s to perform the segmentation,
even for a reduced image (128× 96 pixels). Therefore, this paper
also introduces a background extraction procedure, summarized
in Algorithm 1, which produces acceptable results in less than a
second and is illustrated in Fig. 7(e).

Algorithm 1. Background subtraction based on K-Means
Require: Input image I stored in HSV;

1: Idown ←Down-sample the image to 25% of its original size using
simple linear interpolation.

2: Get the S channel of Idown and consider it as an 1-d vector V of
pixel intensities.

3: Perform Dbin ← K-Means(V, k = 2).
4: Map M← Dbin back to image space. For that just do a linear scan

of Dbin.
5: Mup ←Up-sample the generated binary map M back to the input

image size.
6: Close small holes on Mup using the Closing morphological oper-

ator with a disk structuring element of radius 7 pixels.

We have found that, for the produce classification problem,

the best channel to perform the background subtraction is the S
channel of HSV-stored images. This is understandable, given that
the S channel is much less sensitive to lighting variations than
any of the RGB color channels (Gonzalez and Woods, 2007). All
approaches discussed here were implemented in the HSV color
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0 means a “Don’t care” value.
As Fig. 8 depicts, a feature that can be used to categorize ele-

ments of these classes is the shape. Texture and color properties
can be used as well.

Table 2
Class’ IDs for the toy example in Fig. 8.
00 A. Rocha et al. / Computers and Elec

hannel. After segmentation, all the features are calculated within
he object region defined by the masks.

. Feature and classifier fusion

This section shows the motivation and design of the feature and
lassifier fusion introduced in this paper.

.1. Motivation

When copping with complex multi-class categorization prob-
ems, such as the produce classification in this paper, it might be
ecessary to use several different features to capture the classes’
ariability and nuances. Therefore, efficient and effective feature
usion policies need to be deployed.

In spite of the fact that feature-level combination is not straight-
orward for multi-class problems, for binary problems this is a
imple task. In such scenario, it is possible to combine different
lassifiers and features by using classic rules such as and, or, max,
um, or min (Bishop, 2006). For multi-class problems, this is more
ifficult given that one feature might point out to an outcome class
i and another feature might result the outcome class Cj , and even
nother one could result Ck. With many different resulting classes
or the same input example, it becomes difficult to define a consis-
ent policy to combine the selected features.

One approach sometimes used is to combine the feature vectors
or different features into a single and big feature vector. Although
uite effective for some problems, this approach can also yield
nexpected classification results when not properly preprocessed.
irst, in order to create the combined feature vector, one needs
o tackle the different nature of each feature. Some can be well
onditioned such as continuous and bounded variables, others can
e ill-conditioned for this combination such as categorical ones. In
ddition, some variables can be continuous and unbounded. To put
verything together, one needs a well-suited normalization. How-
ver, this normalization is not always possible or sometimes leads
o undesirable properties in the new generated feature vector such
s equally weighting all the feature coefficients, a property that in
eneral it is not wanted.

When combining feature vectors this way, eventually it is nec-
ssary to cope with the curse of dimensionality. With the addition
f new features, there is an increase in the number of dimensions
hich then might require more training data.

Finally, if one feature needs to be added, it is necessary to
edesign the normalization in order to deal with all the aforemen-
ioned problems. The following section introduces a simple and
ffective solution for feature and classifier fusion that addresses
ost of the previously discussed concerns.

.2. The new feature and classifier fusion technique

The objective here is to combine a set of features and the most
ppropriate classifier for each one in order to improve the overall
lassification accuracy. To avoid the inherent problems of proper
ormalization and curse of dimensionality, we do not create a big

eature vector combining the selected features. Furthermore, doing
hat we would only perform feature fusion and we would still be
imited in doing the classifier fusion.

This paper tackles the multi-class problem as a set of binary
roblems. For that, we define a class binarization as a mapping
f a multi-class problem onto two-class problems (divide-and-

onquer) and the subsequent combination of their outcomes to
erive the multi-class prediction. We refer to the binary classifiers
s base learners. Class binarization has been used in the literature to
xtend naturally binary classifiers to multi-class and Support Vec-
or Machine (SVM) is one example of this (Dietterich and Bakiri,
Fig. 8. Toy example for feature and classifier fusion.

1996; Anand et al., 1995; Narasimhamurthy, 2005). To our knowl-
edge, this approach was not used before for classifier and feature
fusion.

In order to understand the class binarization, consider a toy
problem with three classes. In this case, a simple binarization con-
sists in training three base learners, each one for two classes. In

this sense, we need

(
N
2

)
= O(N2) binary classifiers, where N is

the number of classes.
The ij-th binary classifier uses the patterns of class i as posi-

tive and the patterns of class j as negative examples. To obtain the
final outcome, it is enough to calculate the minimum distance of
the generated vector (binary outcomes) to the binary pattern (ID)
representing each class.

Consider again a toy example with three classes as depicted in
Fig. 8. This example contains the classes: Triangles�, Circles©, and
Squares �.

To solve this toy problem, we train some binary classifiers dif-
ferentiating two classes at a time, such as�×©,�×�, and©×�.
Each class receives a unique identifier as Table 2 shows. In this
table, each column represents the differentiation of two classes at
a time. To populate the table is straightforward. First, we perform
the binary comparison�×© and tag the class�with the outcome
+1, the class© with −1 and set the remaining entries in that col-
umn to 0. Thereafter, we repeat the procedure comparing �×�,
tag the class � with +1, the class � with −1, and the remaining
entries in that column with 0. We repeat this procedure for each
combination of two classes. In the end, each row in Table 2 repre-
sents the code of that class (e.g., � = 〈+1,+1, 0〉), where the entry
�×© �×� ©×�

� +1 +1 0
© −1 0 +1
� 0 −1 −1
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To classify an input example, for instance, a triangle-shaped one,
e first apply the binary classifiers to verify if the input example

s a triangle or a circle based on shape, texture and color features.
ach classifier will result a binary response. Let’s say we obtain the
utcomes 〈+1,+1,−1〉 for the binary classifier �×© considering
hape, texture, and color features respectively. Majority voting can
e used to select one response (+1 in this case, or�). Then we repeat
he procedure and test if the input example is a triangle or a square,
gain for each one of the considered features.

Finally, after performing the last test, we end up with a vector.
hen we calculate the minimum distance from this vector to each
ne of the class unique IDs. In this example, the final answer is given
y the minimum distance of

in dist(〈1, 1,−1〉, {〈1, 1, 0〉, 〈−1, 0, 1〉, 〈0,−1,−1〉}). (7)

One aspect of this approach is that it requires more storage given
hat once the binary classifiers are trained their parameters need
o be stored. With respect to running time, there is also a small
ncrease given that more binary classifiers are needed to provide
n outcome. However, many classifiers employ some sort of class
inarization (e.g., SVM) and are considered fast. The majority voting
or each binary classifier and the distance calculation to the unique
lass IDs are simple and efficient operations.

Although the approach requires more storage and increase the
lassification time with respect to a normal multi-class approach,

t has some advantages:

. The combination of independent features gives more confidence
in the classification and it works as a simple error correcting
mechanism that can withstand some misclassifications.

Fig. 9. Average accuracy per class, WITHOUT fusion
s in Agriculture 70 (2010) 96–104 101

2. Well-tuned binary classifiers and features can be deployed to
solve localized class confusions.

3. Less contributing features can be easily identified. This is not
straightforward with normal binding in a big feature vector.

4. The addition of new classes and features only require training
for the new binary classifiers and features.

5. As there is no increase in the size of any feature vector, the
approach is less prone to the curse of dimensionality.

Finally, there is no requirement to combine the binary classifiers
using all combinations of two classes at a time. One can reduce
storage requirements and speed up the classification by selecting
classes that are in confusion and designing specific binary classifiers
to separate them (Rocha and Goldenstein, 2009). The expectation
in this case is that fewer binary classifiers would be needed. Indeed,
there is room for more research in this direction.

5. Results and discussions

In the quest for finding the best classification procedures and
features for produce categorization, this paper analyzes several
appearance-, color-, texture-, and shape-based image descriptors
as well as diverse machine learning techniques such as Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), Classi-
fication Trees, K-Nearest Neighbors (K-NN), and Ensembles of Trees

and LDA (Bishop, 2006). All the experiments hereafter are made on
real data (Section 3.1).

In the following experiments, we select the training images
using sampling without replacement from the pool of each image
class. If we are training with 10 images per class, we use the remain-

, considering diverse classifiers and features.
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ng ones for testing. We repeat this procedure 10 times, and report
he average classification accuracy (�), average error (� = 1−�),
nd standard deviation (�). We do not use the strictly 10-fold cross-
alidation, given that we are interested in different sizes of training
ets. In each round, we report the accuracy for the 15 classes sum-
ing the accuracy of each class and dividing by the number of

lasses.

.1. Results without fusion

Fig. 9(a) and (b) show the results for different classifiers and the
eatures GCH and CCV. The x-axis represents the number of images
er class in the training set and the y-axis represents the average
ccuracy in the testing set.

This experiment shows that Breiman’s decision Tree does not
erform very well. One possible explanation is that the descriptor
ata is not suitable for this kind of classifier. The ensemble of trees
BAGG), with 17 iterations performs better than simple decision
rees and it is more stable.

We also observe across the plots that LDA accuracy curve prac-
ically becomes flat for more than 24 examples. An ensemble of
DA (BLDA) performs random sampling across the training data
nd makes a better use of the provided information in such a way it
an improve the classification. Therefore, the ensemble of LDA with

7 iterations performs better than straight LDA, Trees, or ensemble
f Trees. Complementing, the simple K-Nearest Neighbors here is
s good as ensemble of Trees.

A more complex approach such as the appearance descriptor for
his particular problem does not yield a good classification accu-

Fig. 10. Average error results for fusion of BIC, CCV, and Unser fea
s in Agriculture 70 (2010) 96–104

racy, as Fig. 9(c) depicts. We tested three different approaches
for the appearance-based descriptor in Fig. 9(c). Two interesting
observations: (1) the approach based on patches with no gradi-
ent orientation is the only feature that does not benefit from more
examples in the training and (2) the approach based on patches
with gradient orientation is the one which benefits more with
more training examples. This suggests that, with enough training,
it might provide much better results. Notwithstanding, the training
data is limited as discussed in Sections 1 and 4.

Most likely, the appearance descriptor does not provide a sig-
nificant classification accuracy because the used patches do not
represent well all the images classes under analysis. Further inves-
tigation must be done in this direction to validate the use of
appearance descriptor or any other similar model. Although, pre-
vious results in literature argue that it requires less examples for
training, it is fact that it requires lots of good representative images
to create effective appearance patches and accomplish such claims.

It is hard to solve a multi-class problem using just one fea-
ture descriptor. As the classifier results for different features can
be quite different, it is possible that their combination, with each
classifier custom-tailored for a particular feature, may boost the
effectiveness. Section 5.2 shows such results.

5.2. Fusion results
This section presents results for the fusion approach introduced
in this paper (Section 4) and shows that the combined features
and classifiers boost classification results when compared the stan-
dalone features and classifiers.

tures considering SVM, LDA, BLDA, and Tree base learners.
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nd Unser features considering SVM and LDA base learners.
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Fig. 11. Average error results for fusion of GCH, CCV, a

.2.1. Top one response
Fig. 10 shows examples of the combination of the BIC, CCV,

nd Unser descriptors. This combination is interesting given that,
IC is a descriptor that analyzes color and shape in the sense
hat it codifies the object’s border and interior, CCV codifies the
olor connected components and Unser accounts for the image’s
extures.

Fig. 10 shows that the fusion works well regardless the classifier
sed. Consider the SVM classifier, with 32 examples per class in the
raining. In this case, the fusion results an average error of � = 3.0%
nd standard deviation of � = 0.43%. This is better than the best
tandalone feature, BIC, that is � = 4.2% and standard deviation of
= 0.32%. Although the absolute difference here seems small, it is

bout 3 standard deviations which means it is statistical significant.
For the LDA classifier, the fusion requires at least 24 examples

er class in the training to reduce the error. As observed in Section
.1, LDA curves become flat with more than 24 examples per class in
he training and adding more training data does yield better results.

hen combining different features, LDA does benefit from more
raining and indeed results lower error rates (� = 3%, � = 0.59%),
.8 standard deviations better than straight LDA on the BIC feature.

Fig. 11 switches the BIC descriptor to a simpler one with half of
he dimensionality (64-d). The results are comparable to the ones
btained with the fusion before. But now, the fusion shows even

ore power.
For 32 training examples and LDA classifier, for instance, the

usion reduces the classification error to about 5% while the best
eature without any fusion results an error of 15%. With SVM clas-
ifier and 40 examples per class in the training, the fusion (using

Fig. 13. Average error per class using fusion of the fea
Fig. 12. Top one, and two responses for SVM classifier with fusion.

the features GCH, Unser, and CCV) yields an error � ≈ 5% while the
best feature with no fusion produces an error of � ≈ 9%.

5.2.2. Top two responses
Fig. 12 portrays the results when the system is required to show
the top 2 responses. In this case, the system provides the user the
two most probable classes for a given input example considering
the different classifiers and features used. Using SVM classifier and
fusion of BIC, GCH, and Unser features, with 32 examples per class
in the training, the average error is � ≤ 1%.

tures BIC, CCV, and Unser, for an SVM classifier.
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.2.3. Average error per class
One important aspect when dealing with classification is the

verage expected accuracy per class. This information points out
he classes that need more attention when solving the confu-
ions. Fig. 13 depicts the average expected error for each one of 15
lasses. Clearly, Fuji apple is one class that needs particular atten-
ion. It yields the highest error when compared to the other classes.
nother class that has an interesting error behavior is Onions.
fter the error decreases when using up to 40 training examples

t becomes higher as the number of training examples increases.

.2.4. Average time
The average time to extract any of the features and perform

lassification using the introduced fusion technique is less than a
econd. However, the more examples in the training set the more
ime consuming are the combinations in the training stage. For
nstance, to train a multi-class classifier using the fusion approach
ntroduced in this paper, with SVM base learner, 48 training exam-
les per class, and the combination of the features BIC, CCV, and
nser, it is necessary about one hour in one 2.1 GHz machine with
GB of RAM.

. Conclusions and future work

Oftentimes, when tackling complex classification problems, just
ne feature descriptor is not enough to capture the classes’ sep-
rability. Therefore, efficient and effective feature fusion policies
ay become necessary. Although normal feature fusion is quite

ffective for some problems, it can yield unexpected classification
esults when not properly normalized and preprocessed. Addition-
lly, it has the drawback of increasing the dimensionality which
ight require more training data.
This paper approaches the multi-class classification as a set of

inary problems in such a way one can assemble together diverse
eatures and classifier approaches custom-tailored to parts of the
roblem. It presents a unified solution (Section 4) that can combine
any features and classifiers. Such technique requires less training

nd performs better if compared with a naïve method, where all
eatures are simply concatenated and fed independently to each
lassification algorithm.

The results show that the introduced solution is able to reduce
he classification error in up to 15 percentage points with respect
o the baseline.

A second contribution of this paper is the introduction to the
ommunity of a complete and well-documented fruit/vegetables
mage data set suitable for content-based image retrieval, object
ecognition, and image categorization tasks. We hope this data set
ill be used as a common comparison set for researchers working

n this space.
Although we have showed that feature and classifier fusion

an be worthwhile, it seems not to be advisable to combine weak
eatures with high classification errors and features with low clas-
ification errors. In this case, most likely the system will not take
dvantage of such combination.

The feature and classifier fusion based on binary base learners
resented in this paper represents the basic framework for solving
he more complex problem of determining not only the species of a
roduce but also its variety. Since it requires only partial training for
he added features and classifiers, its extension is straightforward.

iven that the introduced solution is general enough to be used in
ther problems, we hope it will endure beyond this paper.

Whether or not more complex approaches such as appearance-
ased descriptors provides good results for the classification is still
n open problem. It would be unfair to conclude they do not help
s in Agriculture 70 (2010) 96–104

in the classification given that, their success is highly based on
their patches representation. Such approaches are computational
demanding and perhaps not advisable in some scenarios.

Further work includes the improvement of the fruits/vegetables
representative patches, and the analysis of other appearance and
texture image descriptors to point out produce varieties. Further-
more, we are interested in the incorporation of spatial constraints
among the local descriptors.

In addition, we want to create the conditions for a semi-
supervised approach that would lead to a continuous learning
scenario, taking advantage of misclassified examples. In a semi-
supervised scenario, the initial training stage can be simplified
requiring only a few examples for each analyzed class.
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