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Abstract—We present a new anthropometry-based method to
personalize head-related transfer functions (HRTFs) using man-
ifold learning in both azimuth and elevation angles with a single
nonlinear regression model. The core element of our approach is
a domain-specific nonlinear dimensionality reduction technique,
denominated Isomap, over the intraconic component of HRTFs
resulting from a spectral decomposition. HRTF intraconic compo-
nents encode the most important cues for HRTF individualization,
leaving out subject-independent cues. First, we modify the graph
construction procedure of Isomap to integrate relevant prior
knowledge of spatial audio into a single manifold for all sub-
jects by exploiting the existing correlations among HRTFs across
individuals, directions, and ears. Then, with the aim of preserv-
ing the multifactor nature of HRTFs (i.e. subject, direction and
frequency), we train a single artificial neural network to predict
low-dimensional HRTFs from anthropometric features. Finally,
we reconstruct the HRTF from its estimated low-dimensional ver-
sion using a neighborhood-based reconstruction approach. Our
findings show that introducing prior knowledge in Isomap’s man-
ifold is a powerful way to capture the underlying factors of spatial
hearing. Our experiments show, with p-values less than 0.05, that
our approach outperforms using, either a PCA linear reduction,
or the full HTREF, in its intermediate stages.

Index Terms—HRTTF personalization, manifold learning, spatial
audio, virtual auditory displays.

I. INTRODUCTION

HE Head-Related Transfer Functions (HRTFs) encode

audio localization cues such as Interaural Time Difference
(ITD), Interaural Level Difference (ILD) and spectral coloring,
caused by sound scattering around the head, pinna and torso
before it reaches the eardrum [1].
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Since HRTFs differ widely among individuals, it is necessary
to personalize them to ensure high-quality spatial audio.
Nonindividualized HRTFs hinder localization accuracy, often
causing front-back and up-down confusions [2].

The unsolved problem of HRTF customization is increas-
ingly subject of much research due to the growing importance
of auditory augmented reality applications [3], [57]. The most
accurate approach to personalizing HRTFs is through direct
measurements. However, this is a complex, time-consuming,
expensive, and not scalable procedure [4].

In light of this, several alternative methods aimed at avoiding
measuring HRTFs have been proposed, including the esti-
mation of HRTFs from a small set of measurements [5].
Furthermore, there are several theoretical models (e.g. spher-
ical head model [6], snowman model [7], structural mod-
els [8], [9]) which attempt to approximate the complicated
human anatomy. Additionally, several numerical methods (e.g.
boundary element method [10], [11], finite-difference time-
domain method [12]) have been proposed. However, they
require expensive acquisition hardware and are computationally
intensive. Pursuing a different direction, several authors have
proposed perceptual-based methods, where subjects choose
their HRTFs through listening tests by tuning some parame-
ters until they achieve an acceptable spatial accuracy [13], [14].
Moreover, Sunder et al. proposed an individualization method
in the horizontal plane that uses a frontal projection headphone
to introduce idiosyncratic pinna cues [15].

Alongside the aforementioned methods, HRTFs can
also be customized from anthropometric measurements.
Anthropometry-based regression methods predict individual-
ized HRTFs using a model derived from a baseline database.
It is precisely this kind of individualization methods that this
work focuses on.

This paper introduces a new customization method to person-
alize HRTFs using Isomap, a nonlinear dimensionality reduc-
tion technique. Here, we extend for all directions the ideas of
our preliminary study in the horizontal plane [16]. Our main
contribution is our graph construction procedure for learning
a single Isomap manifold for all subjects that incorporates
important prior knowledge of spatial audio to exploit the corre-
lation existing among HRTFs across individuals, directions and
ears. Besides, instead of personalizing the HRTFs directly, we
customize the intraconic component of HRTFs resulting from
a spectral decomposition [17]. The intraconic component of
HRTFs aims at providing the most important cues for individ-
ualization, leaving out subject-independent cues. Finally, our
approach constructs a single regression model using an artificial
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neural network that does not break the inherent multifactor
nature of HRTFs (i.e. frequency, direction and subject factors).

II. RELATED WORK

Anthropometry matching is the most straightforward way
to personalize HRTFs from anthropometric data. In this con-
text, various approaches in the literature [18]-[20] customize
HRTFs by finding the best match in a baseline database of
anthropometric features.

Middlebrooks [21] introduced an anthropometry-based
method that uses frequency scaling of HRTFs based on the
assumption that inter-subjects difference in anatomy features
produce a frequency shift in individualized HRTFs.

On the other hand, anthropometric regression methods pre-
dict the individualized HRTFs of a new subject using a
model derived from a baseline database. Linear dimensional-
ity reduction techniques such as Principal Component Analysis
(PCA) [22] and Independent Component Analysis (ICA) [23]
have been widely used prior to customization. There are sev-
eral HRTF customization methods to map anthropometric fea-
tures to low-dimensional HRTFs previously calculated with
PCA [24]-[27].

Due to the inability of linear regression methods to predict
the complex relationship between anthropometric features and
low-dimensional HRTFs, various authors introduced nonlin-
ear regression techniques such as Artificial Neural Networks
(ANN) [28] and Support Vector Regression (SVR) [23], [29]
in conjunction with PCA [28], [29] or ICA [23]. Moreover,
because SVR is only capable of training a multiple-to-one
regression model (i.e. SVR needs to train a separate model for
each dimension of low-dimensional HRTFs), Wang et al. [30]
proposed a joint SVR to exploit the correlation between compo-
nents of low-dimensional HRTFs.

The anthropometry-based regression methods described so
far construct a model for each direction, which in turn means
that the inherent multi-factor nature of HRTFs (i.e. frequency,
direction and subject) is broken [31]. To overcome this problem,
Grindlay et al. [32] introduced a three-mode (i.e. frequency,
direction and subject mode) multilinear tensor representation
for HRTFs. A single linear regression model is used for map-
ping anthropometric features to a five -dimensional vector
obtained by means of N-mode Singular Value Decomposition
(N-mode SVD) and which represents the subject mode in the
tensor. A similar tensor-based approach is used in [31] and [33],
but to construct the regression model, they employed an ANN
and high-order partial least squares, respectively. More recently,
Bilinski et al. [34] used a HRTF tensor representation to learn
a sparse vector of a subject’s anthropometric features as a lin-
ear superposition of the anthropometric features of a training
subset. They applied the same sparse vector to synthesize the
HRTF of a subject.

In addition to linear representations, nonlinear dimension-
ality reduction techniques have been also applied to HRTFs.
Duraiswami et al. [35] applied Locally Linear Embedding
(LLE) [36] to learn the nonlinear manifold structure in median
plane HRTFs of the same subject. They also proposed a new
HRTF interpolation method that estimates an HRTF as a linear
combination of its neighbors on the low-dimensional manifold.
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Fig. 1. The interaural coordinate system as described in [43], where azimuth is
defined in the range —90° < 6 < 90° and elevation in —90° < ¢ < 270°.

Furthermore, Kapralos et al. compared PCA, Isomap [37]
and LLE through correlation analysis [38] and subjective exper-
iments [39], concluding that Isomap and LLE outperform PCA
in finding the underlying factors of spatial hearing.

Based on the results of Duraiswami et al. [35] and Kapralos
et al. [38], [39] using LLE and Isomap for HRTF interpolation
and dimensionality reduction, in our previous work [16], we
proposed a novel technique for customizing horizontal plane
HRTFs using Isomap.

All aforementioned manifold learning studies support the
idea suggested by Seung et al. [40] that nonlinear manifold
techniques are crucial for understanding how perception arises
from the dynamics of neural networks in the brain.

In this paper, we extend the ideas of our previous customiza-
tion method [16] for locations beyond the horizontal plane. In
this line, we apply Isomap over HRTFs to construct a manifold
structure and then we employ an artificial neural network to pre-
dict the HRTFs for a new subject based on his anthropometric
parameters.

As in previous works [16], [25], [28], [32], we work with the
minimum phase assumptions of HRTFs [41], i.e., a minimum-
phase function cascaded with a pure delay. In practice, the pure
delay is the ITD and it is commonly cascaded in either the left
or right HRTF of each left-right HRTF pair. It is important to
stress that the calculation of ITD is beyond the scope of this
work. Various studies address the estimation of ITD, notably in
[6], [42]. Besides, unlike previous works [16], [25], [28], [32],
we do not personalize the HRTFs or the directional transfer
functions (i.e. mean removed HRTFs [22]) directly. Instead, we
customize the intraconic component of HRTFs resulting from
a spectral decomposition of HRTFs magnitude as suggested by
Romigh and Simpson [17]. Here, we focus only on the spectral
features of the intraconic component of HRTFs magnitude and,
unless otherwise stated, when we refer to HRTF we are refer-
ring to its intraconic portion. Finally, in this work, we only use
the interaural coordinate system [43] depicted in Fig. 1.

III. METHODOLOGY

Fig. 2. summarizes the pipeline of our HRTF customization
approach. First, the extraction of the intraconic portion from full
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Fig. 2. Pipeline of our HRTF customization approach.

HRTFs aims at providing the most important cues for individ-
ualization, leaving out subject-independent cues. Then, Isomap
with a custom graph construction procedure performs a non-
linear mapping of the intraconic component of HRTFs to a
low-dimensional space. Subsequently, an ANN learns a regres-
sion model from a training dataset to relate anthropometric
features to low-dimensional HRTFs. Finally, for a new sub-
ject with known anthropometric parameters, the model predicts
his low-dimensional HRTFs which in turn are mapped back to
the high-dimensional space by means of a neighborhood-based
reconstruction approach.

We performed simulations of our approach on the CIPIC
HRTF database [43]. We estimated the performance of such
simulations using k-fold cross-validation and spectral distor-
tion as metric. For comparison, we implemented PCA instead
of Isomap for dimensionality reduction, and we tested the full
HRTFs instead of their intraconic component. In summary, four
conditions were tested: Isomap over full HRTFs, Isomap over
the intraconic portion of HRTFs, PCA over full HRTFs and
PCA over the intraconic portion of HRTFs. We also performed
paired t-tests between the aforementioned conditions.

We chose only PCA for comparison because in this work
we aim at exploring, first, whether it is worth using more
complex techniques in the dimensionality reduction stage of
anthropometry-based methods. Therefore, here we preferred to
focus on how to construct and interpret a single manifold for
all subjects, which had also not been addressed by prior works
using manifold learning. Finally, we use a spectral distortion
metric, as widely used in similar studies.

IV. HRTF PERSONALIZATION
A. Spectral Decomposition

In a recent study, Romigh and Simpson [17] decomposed
the HRTF at each location as the sum of average, lateral and
intraconic spectral components. First, they obtained directional

spectra by subtracting the mean across all locations (i.e. the
average component) from each HRTF. Then, they calculated the
lateral component for each azimuth angle as the median spec-
trum of all directional spectra measured at that azimuth angle.
Lastly, they computed the intraconic component by subtracting
the corresponding lateral component from the directional spec-
tra at each location [17]. In order to recover the original HRTF
spectrum at each location, they added together the correspond-
ing average, lateral and intraconic components. Finally, the
complex-valued HRTF were recovered using minimum phase
assumptions.

After a series of psychoacoustic experiments where a lis-
tener’s component were swapped out for the corresponding
KEMAR’s component, Romigh and Simpson found that the
intraconic component encodes the most important cues for
HRTF individualization and localization is only minimally
affected by introducing non-individualized cues into the other
HRTF components [17].

Based on these results, we used the intraconic spectral com-
ponents as ground-truth HRTFs instead of the full ones. For
simplicity, we will use the term intraconic HRTF when referring
to its intraconic component.

B. Dimensionality Reduction using Isomap

Let X ={xy,...,xy} CRP be a high-dimensional
dataset in a D x N matrix of N sample vectors x; and
Y = {y1,...,y~n} C R? be a corresponding low-dimensional
representation in a d x N matrix of N sample vectors y;,
where d < D.

Isomap is a nonlinear dimensionality reduction technique
first introduced in [37] that provides a method for reducing X
into a low-dimensional embedding Y. Linear dimensionality
reduction methods such as PCA attempt to preserve pairwise
Euclidean distances by retaining most variance as possible [37].
However, such techniques does not take into account the data-
point neighborhood [44].

On the other hand, Isomap aims to maintain the intrinsic
geometry of data (i.e. the datapoint neighborhood relationships)
by preserving the pairwise geodesic distances (i.e. the distance
over the manifold) [37]. For example, in nonlinear manifolds
such as in the Swiss Roll dataset [44], PCA might map two dat-
apoints as near points as measured by the Euclidean distance,
while their geodesic distance is much larger.

Isomap can be summarized in three steps. The first step is
to construct a graph G(V, E') on the high-dimensional dataset
X. Each sample x; € X is represented by a node v; € V, and
two nodes v; and v, are connected by an edge (v;,v;) € E with
length dx (x;, x;) if x; is one of the K nearest neighbor of x;.
The edge length dx (x;,x;) is given by some distance metric
between x; and x; [37]. A common metric and the one used in
this paper is the Euclidean distance.

In the second step, we calculate the geodesic distance
between each pair of points by computing the shortest path
between these two nodes in G. Then, after calculating the
geodesic distances between all datapoints in X, they are stored
pairwise in a matrix D . The pairwise geodesic distance matrix
D represents the geodesic distances between all samples on
the manifold [45].
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Same elevation HRTFs

Criterion 2
Eight surrounding HRTFs

Criterion 1
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Fig. 3. Tllustrative example of the criteria to construct the Isomap’s graph for
P = 3 subjects. Color represents HRTFs of the same subject, and (6, ¢) repre-
sents the azimuth and elevation in the interaural coordinate system. L = Left
ear and R = Right ear.

The third and final step is to construct the d-dimensional
embedding by applying multidimensional scaling (MDS) on
D¢ [44]. Formally, the eigenvectors of the double-centered
matrix 7(D¢) are calculated, where 7(D¢g) = —HScH/2,
{Sc}ti; = ({Dg}ij)? (ie. S is the matrix of squared distances)
and H;; = 6;; — 1/N (ie. H is the centering matrix). Recall
that IV is the number of sample points and § is the Kronecker
delta function. Finally, let A, be the pth eigenvalue (in decreas-
ing order) of the matrix 7(D¢), and v}, be the ith component
of the pth eigenvector. Then set the pth component of the
d-dimensional coordinate vector y; equal to \/A,v} [37].

In the first step of Isomap, we need to construct a graph,
i.e., we need to select a number of neighbors for each high-
dimensional point. Common approaches construct the graph
by finding the K nearest neighbors or all neighbors within a
specified radius r of each data point. In general, neighborhood
selection in Isomap presents an opportunity to incorporate a pri-
ori knowledge from data [46]. With this in mind, we aim at
constructing the graph G by taking advantage of the existing
correlations among the HRTFs at different directions, frequen-
cies, and individuals. One of our contributions is our graph GG
construction procedure:

Criterion 1. if x; and x; represent HRTFs of the same
location and ear but different subject, then connect them.

In previous studies [23], [25], [26], [28], [30], they performed
dimensionality reduction separately for each direction. Here,
instead of applying Isomap separately for each location and
ear, with this criterion, we tried to exploit the correlation of
HRTFs among subjects across same directions. Using this cri-
terion, P — 1 neighbors were obtained, where P is the number
of subjects in the dataset X.

Criterion 2. Let (6;,¢;) and (0;, ¢;) be interaural coordi-
nates (azimuth # and elevation ¢) of HRTFs represented by x;
and x; respectively. Regardless of the subject, if x; and x;
represent HRTFs of same elevation (i.e. ¢; = ¢;) and oppo-
site ears, and 0; is the mirror horizontal azimuth of 0; (i.e.
0; = —0;), then connect x; and x;.

The intuition behind this criterion was to take advantage of
the correlation existing due to left-right symmetry of HRTFs

at frequencies below 5.5 kHz [47]. Applying this criterion, P
neighbors were obtained.

Criterion 3. Let x; and x; be HRTFs of the same subject
and ear. If x; is one of the eight HRTFs surrounding x;, then
connect them.

The intuition behind this criterion was to emphasize the sim-
ilarities between spatially close HRTFs of the same subject and
ear. Using this criterion, eight neighbors were obtained.

With the aim of clarifying how the above mentioned crite-
ria were applied, Fig. 3. shows an illustrative example. Note
that with our criteria, it is straightforward to prove that the
constructed graph G is always connected.

Before applying Isomap, we first need to select the number
of neighbors, K, and the intrinsic dimensionality, d. Due to the
criteria proposed for the graph construction explained earlier,
the number of neighbors was set to K =2P + 7, ie., P —1
from Criterion 1, P from Criterion 2 and eight from Criterion
3. We determined the intrinsic dimensionality by means of the
maximum likelihood intrinsic dimensionality estimator [48].
This dimensionality estimator attempts to reveal the intrinsic
geometric structure of the observed data and it has demon-
strated to be a good choice in manifold learning problems
[44], [49].

Finally, note that, unlike previous works [23], [25]-[28],
[30], we applied dimensionality reduction only once, over the
entire dataset, for HRTFs of all subjects, directions and ears.
This way, as tensor-based approaches [31]-[34] do, we tried to
preserve the multi-factor (i.e. frequency, direction and subject)
nature of HRTFs.

C. Regression using an Artificial Neural Network

Artificial Neural Networks (ANN) are systems capable of
approximating nonlinear functions of their inputs. Since the
relationship between HRTFs and anthropometric parameters is
very complex, a nonlinear predictor is suitable for this task.
Here, we used a back propagation ANN whose inputs are s
anthropometric parameters, the azimuth angle, the elevation
angle, and the ear (Left = 1, Right = —1). The outputs of
the ANN are the low-dimensional HRTFs obtained by Isomap.
Besides, the ANN uses sigmoid activation functions in the
hidden layer and a linear activation function in the output layer.

We trained the ANN using Levenberg-Marquardt optimiza-
tion and an early stop approach for improving generalization
and to avoid overfitting. This way, we used a training subset
for updating the network parameters. We also monitored a val-
idation subset during the training process. When the validation
error increased for 10 iterations, the training was stopped and
the network parameters at the minimum of the validation error
were returned.

We varied the number of hidden layer units and selected 35
hidden nodes that produced the lowest mean squared validation
error. With this network topology, we achieved a mean squared
validation error of 0.0078 that corresponds to a 0.91 coefficient
of determination (R2-value).

After the regression model is learned, the individual HRTF
on the low-dimensional space for a new subject can be predicted
by his anthropometric parameter measurements.



GRIJALVA et al.: MANIFOLD LEARNING APPROACH FOR PERSONALIZING HRTFs

Finally, since our approach trains only one ANN for all
HRTF data, the ANN exploits the relationships between low-
dimensional components of HRTFs across directions and ears.

D. Neighborhood Reconstruction Mapping

Unlike linear reduction techniques, Isomap produce a low-
dimensional embedding Y = {y1,...,yn} € R? from the
samples in X = {xy,...,xy} C RP without generating an
explicit map [44]. As we are interested in high-dimensional
HRTFs, we need to project a low-dimensional HRTF predicted
by the ANN back into the original space. Since Isomap assumes
that a sample and its neighbors are locally linear, we can per-
form the mapping using a linear combination of a sample’s K
neighbors. Thus, the reconstructed HRTF, H , s

K
H = E W;X;.
i=1

To calculate the weights w;, we followed Brown et al. [45],
and chose w; to be the inverse Euclidean distance between the
sample and the neighbor ¢ in the low-dimensional embedding.

ey

V. EXPERIMENTS

We implemented the proposed personalization method
according to the block diagram in Fig. 2. Next, we define the
elements and conditions of the simulations.

1) HRTF Database: We used the publicly available CIPIC
database [43] which contains Head-Related Impulse Responses
(HRIRSs) of both ears measured for 45 subjects at 25 azimuths
and 50 elevations (i.e. M = 1250 locations per subject and
ear) in the interaural coordinate system. We selected only the
subjects whose anthropometric features were complete (i.e.
35 subjects). Because not all anatomical features of CIPIC
database are relevant for HRTF individualization, we selected
s = 8 anthropometric parameters according to [50]: head depth,
pinna offset back, cavum concha width, fossa height, pinna
height, pinna width, pinna rotation angle and pinna flare angle.
For selecting those parameters, the authors in [50] performed
a statistical analysis in the entire virtual auditory space (i.e.
azimuth and elevation) based on PCA, Pearson’s product-
moment correlation coefficient analysis and multiple linear
regression analysis. Note that the only parameter related to head
dimensions is head depth. Although both head depth and head
width are important for ITD estimation [6] (head height is less
relevant), keep in mind that our work does not deal with ITD
but with the spectral features of minimum phase’s magnitude
of HRTFs as stated in Section II. Thus, the fact that we use
head depth as the only parameter related to head dimensions in
our study does not pose a critical problem.

2) HRIR Pre-processing: Each HRIR from CIPIC database
has roughly 4.5 ms (i.e. 200 samples long) for a frequency sam-
pling of 44.1 kHz and 16 bit resolution. First, we transformed
each HRIR into a HRTF by means of a 512-point FFT. In order
to reduce the effects of the limitations in the frequency response
of the equipments utilized for HRIR measurement, we filtered
the HRTFs to retain frequencies between 200 Hz and 15 kHz,
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leaving 172 magnitude coefficients (i.e. each HRTF is a point in
a D = 172 dimensional space). Finally, we applied the spectral
decomposition described in Section IV-A to the filtered HRTFs,
preserving the intraconic component. In order to analyze the
effects of personalizing the intraconic HRTFs instead of the full
ones, we performed the same simulation for both conditions.

3) k-fold Cross-Validation: We divided the dataset into
five folds of seven subject each. Then, we applied k-fold
cross-validation, using four folds for training (i.e. P = 28 sub-
jects) and one for testing. So, we estimated the model from
N =2.-P-M =170,000 HRTFs.

4) Dimensionality Reduction: For Isomap, the intrinsic
dimensionality was estimated by means of the maximum likeli-
hood intrinsic dimensionality estimator [48]. So, we reduced
the N HRTFs of dimension D = 172 to d = 5 dimensions.
Since the number of subjects is P = 30, for the Isomap graph
construction, each HRTF is connected to K = 2P + 7 neigh-
bors. On the other hand, instead of Isomap, we implemented
also PCA for comparing both methods. For PCA, we used
d = 5 components that correspond to 88% of variance retained,
which is in line with previous studies showing that five PCA
components (approximately 90% of variance) capture the most
perceptually relevant properties of HRTFs [22], [51]. Finally,
k-fold cross-validation was also applied to evaluate the PCA
performance. Both Isomap and PCA were implemented using
Matlab Dimensionality Reduction Toolbox [44].

5) Neural Network: As explained in Section IV-C, the
inputs of the artificial neural network are the s = 8 anthro-
pometric parameters, the ear (Left = —1, Right = 1), the
azimuth and the elevation. The outputs are the low-dimensional
HRTFs. We used Matlab Neural Network Toolbox to imple-
ment the ANN.

6) Performance Metric: As an error metric, we chose the
mean spectral distortion in dB defined by

Ny

1 |H (k)|
SDy = | — 20log g T——1 (2)
Ea\p7p> i)

where H and H represent the measured and reconstructed
HRTF respectively and Ny is the number of frequency points.
The reconstructed HRTF, H , was calculated using Equation (1).
In summary, we tested the following four conditions:
1. Intraconic HRTFs as ground-truth and Isomap as dimen-
sionality reduction method, labeled as Intra-ISO.
2. Full HRTFs as ground-truth and Isomap as dimensionality
reduction method, labeled as Full-ISO.
3. Intraconic HRTFs as ground-truth and PCA as dimension-
ality reduction method, labeled as Intra-PCA
Full HRTFs as ground-truth and PCA as dimensionality
reduction method, labeled as Full-PCA

VI. ANALYSIS AND RESULTS
A. Isomap Manifold Analysis

It is important to analyze how the Isomap embedded compo-
nents relate to source azimuth and elevation. Fig. 4(a). shows
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Fig. 5. Isomap components as a function of location. In all plots, datapoints represent the mean across all subjects for a specific location and error bars correspond
to a £ 1 standard deviation interval. For azimuth data (second and third column plots), we separated left and right ear plots to put in evidence ipsilateral and
contralateral variability across individuals. All Isomap components are normalized to have zero mean and unit variance.

the two-dimensional manifold (i.e. first embedded dimension the first component can distinguish front locations from back
vs second one) where the color represents the elevation angle. ones. Notice also in the same figure that there is a tendency
We observe that the first component of Isomap embedding for the first component to increase in magnitude as the source
roughly increases with elevation. That tendency is confirmed moves from the frontal plane (i.e. ¢ = 90°). On the other hand,
by the correlation coefficient between elevation angle and the in Figs. 5(b) and 5(c), there is no clear pattern between first
first component value, which is 0.94. component and azimuth as in the case of elevation. In fact,
Figs. 5(a) through 5(c) present the first component as a func-  error bars tend to increase as source moves towards contralat-
tion of source location. In Fig. 5(a). is evident the strong cor- eral locations and their mean value (i.e. datapoints in plots) keep
relation between elevation and first component. Besides, first roughly constant with respect to azimuth angle.
component’s value is negative for front locations (i.e. ¢ < 90°) Figs. 4(b) and 4(c) show the same two-dimensional man-
while it is positive for rear positions. This pattern suggests that ifold but this time the color represents azimuth angles. We
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plotted separately low-dimensional HRTFs of each ear to put
in evidence the symmetry introduced in the graph construc-
tion procedure proposed in Section IV-B. Observe that the
second component of Isomap embedding roughly increases
with azimuth for left ear. This trend, as expected because the
left/right symmetry, is inverted (i.e. Isomap second component
decreases with azimuth) for low-dimensional HRTFs of the
right ear. Moreover, the correlation coefficient between azimuth
angle and Isomap second component is 0.879 for left ear and
—0.880 for right ear.

Figs. 5(e) and 5(f) present the second component as a func-
tion of source azimuth where it is evident the strong correlation
between azimuth and Isomap second component. Observe also
that the component’s value tends to be roughly positive for con-
tralateral locations and negative for ipsilateral directions. On
the other hand, Fig. 5(d) shows that the second component
encodes also some elevation cues, although this relationship
is not as strong as in the case of first component. Notice that
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the second component only tends to decrease when the source
moves from frontal plane (i.e. ¢ = 90°). However, it is not
capable of distinguishing front locations from back ones since
it exists front and back elevation angles that produce the same
component’s value. Furthermore, error bars are larger when
compared to Fig. 5(a) which suggests that second component
varies widely across subjects at a specific elevation angle.

Fig. 5(g) through 5(i) show the third Isomap component
as a function of direction. In Fig. 5(g), the third component
tends to decrease as the source move from frontal plane, which
revels that the third component is capable of encode some
elevation information. However, this component can’t resolve
front/back ambiguities because back elevation angles can pro-
duce the same component’s value as front ones. Thus far, the
third component behavior is similar to the second component.
Nonetheless, Figs. 5(h) and 5(i) show no clear pattern between
azimuth and the third component as in the case of the second
component.

So far, we have mainly analyzed directional relationships of
Isomap components. With respect to inter-subject differences
captured by Isomap, they are far more complex to visual-
ize than directional ones due to its non-linear nature. Still,
observe the variability of the black points in Fig. 6. These are
low-dimensional HRTFs of same direction but different sub-
ject in the two-dimensional manifold where most of variance
is captured (i.e. first and second dimensions). Although they
are relatively close to each other, as expected because of our
graph construction procedure, their high variability is due to
inter-subject differences.

Moreover, in general, error bars in Fig. 5. for all Isomap com-
ponents increase for contralateral locations and the same pattern
is observed when the source moves from the frontal plane.
This trend confirms that the head shadowing effect and vertical
cues (mostly introduced by the pinna) causes wide variations in
HRTFs.

In summary, we found that the Isomap first component is
strongly correlated with elevation and the second one with
azimuth. Although the second and third components also
encode some elevation cues in a lesser degree, they are not
able to distinguish front locations from back ones. The pattern
of the remaining two dimensions shown in Fig. 5 is consid-
erably more complicated. Still, in general, for all components
inter-subject variability increases for contralateral locations and
when sources move away from frontal plane.

B. Spectral Distortion Analysis

As stated in Section V, we performed simulations for four
conditions: Intra-ISO, Full-ISO, Intra-PCA and Full-PCA.

Fig. 7 shows the mean spectral distortion (MSD) for four
frequency bands. In the same figure, error bars represent 95%
confidence intervals (£20). Observe that, as expected, the MSD
increases with frequency but Isomap performed better than
PCA, specially in frequencies above 4 kHz that normally are
harder to predict because of their high inter-subject variability.
Still, in Intra-ISO and Full-ISO conditions, Isomap manage s
to keep MSD roughly below four dB and six dB for 4-8 kHz
and 8-15 kHz bands, respectively. Moreover, note that the
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TABLE 1
PAIRED T-TEST FOR DIFFERENT FREQUENCY BANDS. ALL BOLD ENTRIES REFER TO A STATISTICALLY SIGNIFICANT DIFFERENCE AT A 95%
CONFIDENCE LEVEL. THE LOWER THE P-VALUE THE BETTER. P-VALUES ARE SHOWN UP TO THE THIRD DECIMAL PLACE

Paired t-test 02-10kHz 10-20kHz 20-40kHz 4.0-80kHz 8.0-150kHz
Intra-ISO with respect to Full-ISO 0.001 0.007 0.008 0.046 0.003
Intra-ISO with respect to Intra-PCA 0.001 0.000 0.004 0.002 0.000
Full-ISO with respect to Full-PCA 0.000 0.000 0.000 0.002 0.003
Intra-PCA with respect to Full-PCA 0.000 0.001 0.029 0.175 0.365
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Fig. 8. Vertical Mean Spectral Distortion.

confidence interval shows that in the frequency ranges 2 to
4 kHz and 4 to 8 kHz the Isomap conditions have much less
variability than their PCA counterparts.

Table I summarizes the results of a series of paired t-tests
along different frequency bands, where bold entries indicate
a statistically significant difference at a 95% confidence level
(p < 0.05). We found that for all frequency bands, both Isomap
conditions data (i.e. Intra-ISO and Full-ISO) come from a pop-
ulation with a mean less than its corresponding PCA condition
(i.e. Intra-PCA and Full-PCA), confirming that Isomap per-
forms better than PCA. Moreover, for all frequency bands,
Intra-ISO shows a small but statistically significant improve-
ment over Full-ISO. On the other hand, for PCA, although
Intra-PCA presents a more evident improvement over Full-
PCA, this improvement is only statistically significant in low
frequency bands. Still, observe that the error bars, particu-
larly for high frequency bands, are in general smaller for both
intraconic conditions.

Observe that for the intraconic conditions in Table I, although
the relatively high p-value of 0.046 at the 4-8 kHz band
corresponds to a statistically significant difference at a 95%
confidence level, they do not differ in a statistically signifi-
cant way at a 99% confidence level. However, observe also
that MSD sub-band analysis has a strong propensity to hide
some important causes of distortion, e.g., MSD at ipsilateral
and contralateral locations tend to cancel each other out due to
the averaging across ears and directions. For the aforesaid rea-
sons, it is convenient to analyze the MSD of each ear separately
as a function of sound source position.

Fig. 8. shows the MSD as a function of azimuth. Because we
calculate this MSD across all elevations for a specific azimuth

TABLE II
MEAN SPECTRAL DISTORTION IN DB FOR DIFFERENT FREQUENCY
BANDS. BOLD ENTRIES REFER TO THE LOWER MSD IN A SPECIFIC
FREQUENCY BAND

Band [kHz] Intra-ISO  Full-ISO Intra-PCA  Full-PCA
02-1.0 1.2572 1.3231 1.6134 2.0795
1.0-2.0 1.7882 1.8873 2.2548 2.7443
2.0-40 2.2142 2.2972 2.8642 3.1020
4.0 -8.0 3.4673 3.5218 4.6730 4.9446
8.0-15.0 5.8007 5.9760 7.6836 7.5635

TABLE III

PAIRED T-TEST FOR VERTICAL MEAN SPECTRAL DISTORTION. ALL
BOLD ENTRIES REFER TO A STATISTICALLY SIGNIFICANT DIFFERENCE
AT A 95% CONFIDENCE LEVEL. THE LOWER THE P-VALUE THE BETTER.
P-VALUES ARE SHOWN UP TO THE THIRD DECIMAL PLACE

Paired t-test Left Right
Intra-ISO with respect to Full-ISO 0.000  0.000
Intra-PCA with respect to Full-PCA 0351  0.279

(i.e. the MSD in the cone of confusion), we refer it as vertical
MSD. As before, both Isomap conditions present less vertical
MSD than the PCA ones. On the other hand, in a general way,
Intra-ISO condition performs better than Full-ISO. This is espe-
cially notable for ipsilateral locations where Intra-ISO reaches
up to 1 dB improvement over Full-ISO. For contralateral loca-
tions, due to the head shadowing effect, the vertical MSD tends
to increase for both Full-ISO and Intra-ISO conditions.
Furthermore, in a paired t-test performed for each ear
separately (refer to Table III), the Intra-ISO condition showed
a statistically significant improvement (p < 0.05) over the
Full-ISO condition. Nonetheless, in a similar paired t-test
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TABLE IV
PAIRED T-TEST FOR LATERAL MEAN SPECTRAL DISTORTION. ALL BOLD
ENTRIES REFER TO A STATISTICALLY SIGNIFICANT DIFFERENCE AT A
95% CONFIDENCE LEVEL. THE LOWER THE P-VALUE THE BETTER.
P-VALUES ARE SHOWN UP TO THE THIRD DECIMAL PLACE

Paired t-test Left Right
Intra-ISO with respect to Full-ISO 0.000 0.000
Intra-PCA with respect to Full-PCA  0.368  0.271

between Intra-PCA and Full-PCA, no statistically significant
improvement was found. This last result is not surprising
taking into account that we found no statistically significant
difference (refer to Table I) between PCA conditions for
high-frequency bands which in turn are the major contributors
to elevation perception. Moreover, we expected some improve-
ment of Intra-ISO over Full-ISO because the information
lost after the spectral decomposition (i.e. the lateral and
average components) is less perceptually relevant for HRTF
personalization [17].

Fig. 9. shows the MSD as a function of elevation. Because
we calculate this MSD across all azimuths for a specific eleva-
tion, we refer it as lateral MSD. In this figure, it is clear that
Isomap performs better than PCA in all conditions. Observe
that, for all conditions, the lateral MSD decreases as the sound
source moves toward the frontal plane (i.e. ¢ = 90°), reaching
a minimum around top directions. Note also that the Full-
ISO and Intra-ISO lateral MSD stays roughly below 5.5 dB,
except for very low elevations at back locations where the lat-
eral MSD reaches up to 6 dB. This increase of lateral MSD
confirms that complex scattering of sound waves coming from
low elevations are harder to predict. Besides, the Intra-ISO lat-
eral MSD shows a modest improvement over Full-ISO that
is more prominent for back locations closer to the frontal
plane.

Again, we performed paired t-tests for each ear separately
between Intra-ISO and Full-ISO, and between Intra-PCA and
Full-PCA conditions (refer to Table IV). We found that Intra-
ISO data comes from a population with a MSD less than
Full-ISO condition (p < 0.05). However, we did not found
statistically significance difference between PCA conditions.

Taking into account that high-frequency cues are needed for
front/back discrimination, this last result is in accordance with
the lack of statistically significance difference found in high-
frequency bands for PCA conditions in Table I.

Although prior works have performed experiments on differ-
ent baseline datasets, anthropometric features, frequency bands
and spatial locations, we would like to make a reasonable com-
parison with the approaches used in those works in terms of
the spectral distortion reported by them. However, it should be
kept in mind that most works do not report standard deviation
values, which makes a fair comparison harder. Personalization
methods based on linear dimensionality reduction techniques in
conjunction with linear regressors [25], [26] report MSD scores
across all frequencies near 6 dB, which is higher than our MSD
(4.6 dB, o0 = 0.15). On the other hand, MSD across all fre-
quencies on customization techniques using linear dimension-
ality reduction together with nonlinear regressors ranges from
roughly 3 [28] to 5 dB [30]. Although our results are slightly
better than [30], they are lower than [28], which is—according
to our research—the smallest score reported among studies using
MSD. Finally, in general, tensor-based approaches [31]-[34]
perform better than PCA-based methods, reaching their best
performance at 3.5 dB in the frequency band 50 Hz—8 kHz
[34], which is comparable to our results in the frequency band
0.2-8 kHz (2.9 dB, 0 = 0.0735).

So far, we have restricted our comparison to methods using
MSD as metric. We considered relevant to analyze our data
using the variance metric proposed by Middlebrooks [21],
which produced very similar results to those using MSD in the
sense that Intra-ISO presented the best performance, while both
PCA conditions performed the worst. The error of Intra-ISO for
frequency bands up to 4 kHz is less than 3.58 dB?, grows in the
4 to 8 kHz band (8.9 dB?, o = 0.7) and reaches its maximum
for frequencies above 8 kHz (24.96 dB?, o = 1.13). As a ref-
erence, using a frequency scaling approach, Middlebrooks [21]
found that the 95 percentile of inter-subject spectral difference
(measured by the variance metric) across 990 pairs of subjects
was 9.3 dB%. This confirms what we found using MSD with
respect to the weaker performance of our method in frequency
bands above 8 kHz.
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VII. CONCLUSION AND FUTURE WORK

The findings of this paper show that Isomap has proven to
be a powerful technique to discover the manifolds of spatial
hearing. By incorporating important prior knowledge, Isomap
was capable of explaining the directional factor (i.e. azimuth
and elevation) of spatial audio. Even though no Isomap com-
ponent alone explains inter-subject differences, the wide inter-
dimension variability observed confirms its nonlinear behavior.
Hence the importance of nonlinear regressors such as Artificial
Neural Networks (ANN) to map anthropometric features into
low-dimensional HRTFs. Unlike regression techniques such as
Support Vector Regression, ANN is a multiple output predictor
that permits to exploit the correlations between Isomap compo-
nents (i.e. inter-dimension correlations). Moreover, instead of
constructing one regression model per direction, our approach
lets to construct a single model that does not break the inher-
ent multifactor nature of HRTFs (i.e. frequency, direction and
subject factors).

In all simulations performed, the results show that Isomap
has a better performance and less variability than PCA as
measured by the mean spectral distortion (MSD) with 95%
confidence intervals. Furthermore, our results put in evidence
that Isomap can capture high-frequency cues from intraconic
HRTFs where PCA does not. Thus, we confirmed that the intra-
conic representation effectively encodes the most important
cues for individualization of HRTFs.

On the other hand, the main weakness of Isomap is the
lack of an explicit mapping function [44] to project new
high-dimensional datapoints into an existing low-dimensional
embedding (i.e. out-of-sample extension), and to reconstruct
a low-dimensional datapoint into a high-dimensional represen-
tation(i.e. back-projection). Out-of-sample extension might be
performed by means of the Nystrom approximation [52], [53],
so that, for new datapoints, there is no need to recalculate the
entire manifold.

The back-projection is a more challenging problem to over-
come. Here, we have reconstructed high-dimensional HRTFs
using a linear combination of its neighbors (i.e. neighborhood-
based reconstruction). It should be observed that the main
weakness of this reconstruction is that its accuracy depends
on how dense the initial database is. This problem might
be addressed using some spatial HRTF interpolation before
HRTF personalization to guarantee a more populated manifold.
However, note that if the initial database is not sampled ade-
quately in space, the resultant interpolated HRTFs will not be
suitable to reconstruct the personalized HRTFs. In this sense,
although the CIPIC dataset is one the most complete pub-
licly available HRTF datasets including anatomical measure-
ments, we expect that our method could perform better given a
more suitable input dataset (i.e. higher spatial resolution, more
subjects and better quality anatomical measurements). Lastly,
although we chose the reconstruction weights to be the cor-
responding neighbor’s euclidean inverse distances, there is an
alternative approach where the weights are determined in a
least-squares optimization. However, this approach proved to
produce larger spectral distortion.

One question that arises for practical use is whether our
method will produce an acceptable perceptual result. Since

low-frequency distortion is low, we expect that cues acting on
those bands will not be affected in listening tests. On the other
hand, the error in high-frequency bands is relatively high, which
will affect elevation perception. However, it should be kept in
mind that we demonstrated that an important part of this distor-
tion is due to contralateral and low elevation errors. Moreover,
previous studies concluded that the spectral detail of HRTFs
at high frequency is inaudible [54], which in turn, implies that
the high contralateral error is likely to be, to some extent,
perceptually irrelevant. Thus, in listening tests, we expect the
localization accuracy to be good at lateral locations, reasonable
at vertical directions but poor in low elevations.

Another problem that might arise is how to apply Isomap
when the graph has two or more connected components. In such
case, the resultant components would lie on different manifolds.
Further studies might address this problem using techniques to
merge multiple manifolds as proposed, e.g., in [55]. It should
be noted that, since our approach guarantees a connected graph,
we do not address the non-connected graph case.

In future work, we plan to explore a subband representa-
tion for HRTFs in conjunction with manifold learning. Since
different localization cues act in different frequency bands, a
subband representation would permit a more flexible way to
construct the manifold structure. In this context, it would be
possible to incorporate prior knowledge in the subband where
this prior is effectively valid. For example, we could introduce
left/right symmetry only in subbands where symmetry is more
prominent.

We also plan to explore a multi-task learning (MTL)
approach to learn the regression model. MTL learns multi-
ple related tasks simultaneously using a shared representation
aimed at improving generalization [56]. In the HRTF person-
alization context, a task could be, e.g., learning a regression
model per direction. The MTL approach might preserve the
multi-factor nature of HRTFs by using a shared representation
instead of learning a single regression model as we do in this

paper.
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